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Over the past several years, the success of genome-wide associa-
tion studies (GWAS) and pharmacogenomics has gradually begun
to enable personalized medicine in some fields. In the field of
liver diseases, host genetic factors are now very useful in clinical
practice for predicting treatment outcome and adverse reactions
for pegylated interferon plus ribavirin combination therapy
against chronic hepatitis C virus (HCV) infection. Recently, three
virus-related hepatocellular carcinoma (HCC) GWAS were
reported from Asia. One study examined hepatitis B virus-related
HCC in China, where hepatitis B is very prevalent, and the other
two examined HCV-related HCC in Japan. We identified a com-
mon variant in the DEPDC5 locus associated with HCV-related
HCC, and another group identified an association involving the
MICA locus. In this review, we compare the results of these
GWAS and earlier candidate gene studies. Further research is
needed to determine the role of these single nucleotide polymor-
phisms on HCC risk, but identification of these markers could
make it possible to assess the magnitude of the risk of cancer
based on each patient’s genetic background. Consideration of
the genetic background of the patients will likely play a role in
personalized medicine for HCC, and understanding the mecha-
nism underlying the association could suggest novel promising
therapeutic targets in the future. (Cancer Sci 2012; 103: 846–850)

O ver the last several years, the success of GWAS and the
International HapMap Project, a large-scale database of

SNPs, has identified genetic risk factors for more than 150 dis-
eases, as well as genetic differences in drug response.(1–4) The
success of these studies as well as pharmacogenomics has grad-
ually begun to enable personalized medicine in some fields.(5–8)

The goal of personalized medicine is to optimize the medical
care and outcomes for each patient based on clinical, genetic,
and environmental information.(9) In the field of liver diseases,
host genetic factors are now very useful in clinical practice for
predicting treatment outcome and adverse reactions of PEG-
IFN-a plus ribavirin combination therapy against chronic HCV
infection,(10–17) which causes chronic hepatitis and HCC.

Epidemiology and Risk Factors of HCC

Hepatocellular carcinoma is the third leading cancer-related
cause of death and the seventh most common form of cancer
worldwide.(18) There are 750 000 new cases of HCC and nearly
700 000 deaths each year, making it a lethal form of cancer.(18)

A variety of risk factors for HCC have been reported, including
hepatitis viruses, vinyl chloride, tobacco, aflatoxin B1, alcohol
consumption, non-alcoholic fatty liver disease, diabetes mell-
itus, obesity, diet, coffee, oral contraceptives, and hemochroma-
tosis.(19) Incidence of HCC varies around the world, largely

reflecting the distribution of HBV and HCV. As HBV infection
is highly prevalent in many Asian countries and in Africa,
HBV is the most common etiology of HCC in these regions,
whereas in many developed countries, including Japan, HCV
infection is the most common risk factor for HCC.(18–21)

Chronic hepatitis caused by HCV often leads to fibrosis and cir-
rhosis (stage F4 fibrosis), which markedly increase the risk of
developing HCC.(22) However, the incidence and progression of
HCC varies by region, and only a fraction of HCV-infected
patients develop HCC. To date, many studies have examined
patients with HCV and identified several predictive factors for
HCC, including liver fibrosis, age, male gender, alcohol con-
sumption, diabetes mellitus, obesity, ethnicity, and co-infection
with HBV.(18,23–25) In contrast to chronic HBV carriers, the
influence of viral load and viral genotype on HCC is still con-
troversial in chronic HCV carriers.(26) In addition to these
factors, multiple host genetic factors are thought to contribute
to HCV-related HCC development. Single nucleotide polymor-
phisms are the most common form of genomic variation,
involving change at a single nucleotide in either coding or non-
coding DNA. The contribution of SNPs in the development of
HCC has been investigated by various means. For decades,
numerous studies have been undertaken using a candidate gene
approach, in which candidate genes are selected prior to analy-
sis on the basis of known functions thought to be relevant to
disease risk, for example, inflammatory genes and oncogenes,
and the corresponding genomic region is intensively screened
for disease-associated SNPs. For example, the association
between HCV-related HCC and SNPs in the region of the
IL-1beta, MDM2, and UGT1A7 genes have been reported from
Japan and other countries.(27–32) It has been reported that these
gene polymorphisms are also associated with HBV-related
HCC.(33–36) In addition, the influence of HFE and MnSOD gene
polymorphisms on HCV-related HCC has been reported from
many countries, although not from East Asian countries.(37–39)

Gene polymorphisms associated with activity of hepatitis and
liver fibrosis progression, which contribute to the development
of HCC, have also been reported in HCV patients.(40,41) In spite
of this effort, most studies had insufficient sample sizes, and the
associations with HCV-related HCC were not robust. Therefore,
better predictive genetic markers are still needed.

Genome-Wide Association Studies of HCV Treatment
Response

Recently, methods for searching SNPs associated with diseases
or drug responses have been changing dramatically. In contrast
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to the older candidate gene approach, the GWAS approach
investigates not only the region around candidate genes with a
known or predicted role in disease but across the entire gen-
ome using an SNP array, which simultaneously genotypes hun-
dreds of thousands to millions of marker SNPs (also called tag
SNPs). An SNP is often in strong linkage disequilibrium with
multiple other SNPs in the same region, making it possible for
tagging SNPs to serve as proxy markers for nearby SNPs that
are not genotyped, and marker SNPs on genotyping platforms
are selected to provide maximum coverage of the genome.(42)

Over the past few years, this new high-throughput genotyping
technology has revealed thousands of SNPs that are signifi-
cantly associated with disease and drug responses, and this
approach has been particularly promising in the field of liver
diseases.
Anti-HCV therapy is prescribed in many countries to prevent

the progression of liver fibrosis and development of
HCC.(22,43,44) The current standard of care is PEG-IFN plus
ribavirin combination therapy, but this costly and poorly toler-
ated treatment leads to SVR in only 50% of patients with
HCV genotype 1, which is the most prevalent genotype in
many developed countries such as the USA, UK, France, Italy,
Spain and Japan.(45) To attempt to improve treatment efficacy,
several viral and host factors responsible for SVR have been
identified and studied extensively. Both HCV genotype and
viral load are strong predictors of SVR.(46) In HCV genotype
1b, amino acid substitutions at positions 70 and 91 of the
HCV core protein and the presence of multiple substitutions in
the interferon sensitivity determining region of the NS5A pro-
tein were also reported to affect treatment outcome, especially
among Japanese patients.(17,47,48) Host factors responsible for
SVR include age, gender,(15) degree of hepatic fibrosis,(49)

obesity, hepatic steatosis,(50) low-density lipoprotein choles-
terol, gamma-glutamyl transpeptidase,(48) and insulin resis-
tance.(51) In addition, although the individual effects of genetic
polymorphisms are typically small and of limited use for pre-
diction, we recently identified an SNP in MAPKAPK3 that
affects response to interferon therapy using a candidate gene
approach.(52) Using the GWAS approach, a series of studies
independently revealed that a common polymorphism within
the non-coding region of the IL28 locus is strongly associated
with both outcome of PEG-IFN plus ribavirin therapy for
chronic HCV infection(10–12) as well as spontaneous clearance
of the virus.(53) Similarly, a polymorphism within the ITPA
locus was found to strongly predict incidence of ribavirin-
induced anemia during therapy.(13,14) It is likely that future
treatment regimens will involve screening for these and other
SNPs in an effort to select the most promising treatment candi-

dates, as well as to identify patients at risk for serious side-
effects. Direct-acting antiviral agents, such as the protease
inhibitors telaprevir and boceprevir, have recently become
available, and in the near future triple therapy consisting of
PEG-IFN, ribavirin, and a protease inhibitor will likely become
the standard of care.(54,55) In a recent clinical trial, we found
that both IL28 and ITPA polymorphisms are also useful predic-
tive factors for outcome and occurrence of side-effects in triple
therapy.(56,57)

Genome-Wide Association Studies of HCV-Related HCC

The GWAS approach has also been used to identify HCV
patients at greatest risk for developing HCC. The primary goal
of antiviral therapy is to prevent development of HCC and
advanced liver disease and improve prognosis of patients. Par-
ticularly among HCV and HBV patients who are unable to
clear the virus, screening of additional SNPs associated with
susceptibility to HCC may help improve prognosis and better
target surveillance to high-risk patients. As for HBV, which is
the major cause of HCC in many Asian countries other than
Japan, we identified variants in the HLA-DP locus associated
with persistent HBV infection in Japanese and Thai study
groups using a GWAS approach,(58) and this result was also
confirmed in a Han Chinese patient group.(59) Subsequently, in
the first GWAS for HCC, Zhang et al.(60) recently identified
an SNP within the KIF1B locus associated with progression to
HCC among chronic HBV carriers. However, it is known that
the epidemiology is quite different between HBV-related and
HCV-related HCC, and different virological effects of HBV
and HCV have been reported.(61–63) Hepatitis B infection alters
pro-apoptotic and DNA repair pathways, whereas HCV infec-
tion primarily affects anti-apoptotic and inflammatory path-
ways.(63) Two GWAS studies were reported very recently from
Japan identifying genetic factors specific to HCV-related
HCC.(64,65) Kumar et al. identified the MICA locus associated
with HCV-related HCC, and we identified the DEPDC5 locus
(Table 1).

Study design. A flowchart of our study is shown in Figure 1.
To identify genetic markers associated with the risk of HCV-
related HCC development in the Japanese population, we car-
ried out a two-phase case–control study consisting of a GWAS
and a replication study using a total of 3312 Japanese patients
over the age of 55 with chronic HCV infection. An important
point is that the controls used in this study were not healthy
controls, but chronic HCV carriers who have the potential of
developing HCC in the future. This choice of control helps to
avoid confounding risk factors for developing HCV-related

Table 1. Recently reported genome-wide association studies of hepatocellular carcinoma (HCC)

Etiology Ethnicity
Characteristics

SNP
Chr.

(locus)

Sample size RAF
OR 95% CI P-value References

Case/control Case Control Case Control

HBV Chinese Chronic HBV carriers

with HCC/without

HCC

rs17401966 1 (KIF1B) 348 359 0.833 0.731 0.53 0.41–0.70 5.8 9 10�6 (60)

HCV Japanese Chronic HCV carriers

with HCC/non-HCC

controls

rs2596542 6 (MICA) 721 2890 0.388 0.331 1.34 1.16–1.53 4.5 9 10�6 (64)

HCV Japanese Chronic HCV carriers

(age � 55 years)

with HCC/without

HCC

rs1012068 22 (DEPDC5) 212 765 0.189 0.095 2.20 1.64–2.97 8.0 9 10�8 (65)

Chr., chromosome; CI, confidence interval; HBV, hepatitis B virus; HCV, hepatitis C virus; OR, odds ratio; RAF, risk allele frequency; SNP, single
nucleotide polymorphism.
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HCC with risk factors for chronic HCV. Another important
point is that we enrolled subjects over the age of 55 years
(Fig. 2) because age at initial diagnosis of HCV-related
HCC has been increasing in Japan since the identification of
HCV in 1989, and most patients are diagnosed at age 55 or
older.(23,66–68) These two points represent major differences

between the two Japanese GWAS studies of HCV-related
HCC, and we speculate that these differences partially explain
their inconsistent results, even though both studies focus on
Japanese patients (Table 1).

Results. We initially carried out a GWAS using the
Illumina HumanHap610-Quad BeadChip (Illumina, San
Diego, CA, USA). After applying strict quality control filters,
467 538 autosomal SNPs remained and were analyzed using
an additive model for genotype–phenotype association in 212
chronic HCV carriers with HCC (cases) and 765 chronic
HCV carriers without HCC (controls). Principal component
analysis revealed no population substructure in our study
group, and the Cochran–Armitage trend test indicated a low
probability of false-positive associations resulting from popu-
lation stratification. Only one intronic SNP, rs1012068, within
the DEPDC5 locus on chromosome 22, showed a statistically
significant association with HCC (P = 8.05 9 10�8) after
Bonferroni correction for multiple testing (calculated as
P < 0.05/467 538 = 1.07 9 10�7) with OR 2.20. To validate
these results, we carried out a replication study using 710
cases and 1625 controls and confirmed the association
between the SNP and HCC (P = 2.41 9 10�8, OR = 1.63).
After adjusting for age, gender, and platelet count, which is
known to correlate with the stage of liver fibrosis in HCV
patients,(22) the significance level of rs1012068 increased.
However, there are many confounding factors in the analysis
of HCC, so we cannot rule out the possibility that other con-
founding factors influenced the results. To investigate causa-
tive SNPs, we carried out fine mapping of the DEPDC5 locus
including neighboring genes, and resequenced all 42 exons of
the DEPDC5 gene, but found no SNP with a stronger associ-
ation than rs1012068. In contrast to MICA, which has previ-
ously been proposed to have a functional association with
HCC,(69) DEPDC5 has not been reported in association with
HCC, and its function remains unknown.(70) Further functional
analysis is needed to clarify which SNP is the true causative
variant and to define the role of DEPDC5 on the susceptibil-
ity of HCV-related HCC.

Limitations and future plans. An important limitation of our
GWAS is the relatively small number of cases and the conse-
quent lack of statistical power to detect other associations
that are less robust, including rare variants and SNPs with
weak effects. It remains to be determined whether other SNPs
influence susceptibility to HCV-related HCC in the Japanese
population. For a process as complex as HCV-related hepato-
carcinogenesis, interactions among two or more SNPs as well
as interactions with environmental factors should also be stud-
ied. In addition to SNPs, other types of genetic association,
such as copy number variation, should be examined in the
future. The question also remains whether the susceptibility
loci within MICA and DEPDC5 are associated with HCV-
related HCC in other ethnic groups. Additional studies on
other ethnic populations as well as stratification based on viral
subgenotypes will provide more comprehensive information
on the genetic etiology and heterogeneity of HCV-related
HCC.

Towards Personalized Medicine

In current clinical practice in Japan, patients with chronic hep-
atitis C are recommended for surveillance for progression of
liver fibrosis and early detection of cancer.(71,72) The suscepti-
bility SNPs are relatively weak markers, but in combination
with other clinical predictors, SNP genotyping could constitute
a useful addition to assess the magnitude of the risk of HCC
(Fig. 3). Intervention using PEG-IFN, ribavirin, and novel
agents such as telaprevir(54–57) for reducing the risk for
HCC(22,43,44) is planned in the future, and some SNPs

Fig. 1. Flowchart of our two-phase case–control study. For the gen-
ome-wide association study (GWAS) stage, we used the Illumina Hu-
manHap610-Quad BeadChip. After we excluded two samples with call
rate < 0.98, 467 538 single nucleotide polymorphisms (SNPs) passed
the SNP quality control filters (call rate � 0.99 in cases and controls,
minor allele frequency [MAF] � 0.01 and Hardy–Weinberg equilibrium
[HWE] P-value � 1.0 9 10�6 in controls). Only one SNP, rs1012068,
within the DEPDC5 gene reached statistical significance. We used mul-
tiplex-PCR-based Invader assays for the replication study and fine
mapping. Finally, SNP rs1012068 had the strongest independent asso-
ciation with hepatitis C virus-related hepatocellular carcinoma.(65)

Fig. 2. Scheme of our study design considering the age range for
developing hepatocellular carcinoma (HCC). All subjects were Japa-
nese patients with chronic hepatitis C virus (HCV) infection, therefore,
the controls used in this study were not healthy controls but chronic
HCV carriers.(65) We enrolled subjects over the age of 55 years because
most HCC patients are diagnosed at age 55 or older.(23,66–68) The
potential effect of the SNP on hepatocarcinogenesis seems to be more
difficult to detect in younger age groups, although males generally
develop HCC at a younger age than females,(23,66,67) and antiviral ther-
apy may prevent development of HCC.(22,43,44) SNP, single nucleotide
polymorphism.
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might provide information useful in deciding whether or not
intervention should be carried out. Once HCC has developed,
the most promising treatment is determined based on clinical
practice guidelines that are mainly based on tumor stage as
well as liver function.(71–74) For treating advanced HCC, vari-
ous anticancer agents and new molecular-targeted agents such
as sorafenib have been advanced, but treatment outcome is still
insufficient, and severe adverse drug reactions have occurred
in some cases.(75–77) Host genetic factors affecting drug
responses have not yet been thoroughly studied, and recent

research on HCC genomes have identified several previously
uncharacterized mutation patterns.(78,79) Host as well as cancer
genomes should be studied further, and both may bring about
benefits to HCC treatment in the future.

Conclusion

In conclusion, consideration of the genetic background of HCV
patients will likely play a role in personalized medicine for
HCV-related HCC, and understanding the mechanism underly-
ing the association may suggest novel therapeutic targets.
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