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In a recent letter to the IJE, Zhou et al. attempt to assess whether

metformin exposure would affect lung cancer incidence, using Men-

delian randomization (MR).1 The authors should be commended for

considering MR as a means to address this important question. MR

may circumvent some of the biases inherent in conventional phar-

macoepidemiology, such as confounding by indication, and thus has

the potential to complement the evidence base on the issue. Zhou

et al. conducted sound MR models to assess the effect of a long-term

increase in circulating growth differentiation factor 15 (GDF15) on

lung cancer. However, this is not equivalent to assessing the hypoth-

esis that they proposed in their study. The adoption of circulating

GDF15 as a proxy for metformin exposure is based on a fundamen-

tal misconception about how to instrument a drug exposure effec-

tively with an MR design.

As the authors cite, an increase in circulating GDF15 is suggested

to be a consequence of metformin use.2 This coincides with many

other physiological responses to metformin treatment, including a

marked decrease in blood glucose (one of the reasons for the drug

being the first-line therapy for type 2 diabetes prevention and treat-

ment). Individually, none of the responses following from drug use

will fully encapsulate the effects of metformin exposure, and so

none can be used in isolation to anticipate how the therapeutic will

influence outcomes (see Figure 1 for an illustration of this issue).

Rather, instrumenting variation in GDF15 as an exposure in MR

models will assess whether the modulation of circulating GDF15

affects risk of an outcome. If the authors had reported an association

of higher genetically-indexed GDF15 concentrations with lower risk

of lung cancer, pharmacologists might have considered scouring our

therapeutic armamentarium for agents to increase GDF15, and then

to test any candidates as means to reduce lung cancer incidence. In

such an instance, metformin would be implicated as a viable candi-

date for this purpose. This scenario shows how the use of MR to

evaluate a biomarker’s causal relationship with an outcome can

guide therapeutic discovery. In contrast, it is important to grasp that

identifying a role (or lack thereof) of GDF15 in the aetiology of lung

cancer does not necessarily offer any credible evidence to implicate

or refute metformin’s ability to influence lung cancer risk, given that

the drug could be having beneficial or detrimental effects on disease

incidence by one or more distinct pathways.

As analogy, consider statins in relation to coronary artery

disease (CAD) prevention. In addition to reducing circulating low-

density lipoprotein cholesterol—the major reason why these drugs

prevent CAD events—statins also lower C-reactive protein (CRP),

an inflammatory marker.3 If we were to instrument circulating

CRP as a proxy for statin exposure in MR models as a means to

evaluate whether statin use reduces CAD risk, we would not detect

an effect because CRP does not appear to be a causal factor in CAD

risk.4,5 Conversely, genetic variation in HMGCR, the gene which

encodes the target of statins, is associated with CAD risk—implicat-

ing the enzyme targeted by statins in CAD aetiology.6 If we assess

this variation in relation to CAD risk by its direction of effect

on low-density lipoprotein cholesterol (LDL-C; variants which

reduce LDL-C also lower the risk of CAD), we provide strong evi-

dence to support the benefits of statins for CAD prevention. Here

we should conclude that the use of variation at HMGCR can be

informative in the repurposing potential, or pharmacovigilance for

potential side effects, of exposure to statins or other drugs with simi-

lar mechanisms of action, whereas the use of genetically-indexed

biomarkers of statin response for these purposes has more capacity

to mislead us.

MR studies designed to address the effects of drug exposure

on outcomes should, therefore, instrument the function of a drug’s

target, not biomarkers related to drug use. Target-focused MR is

more likely to encapsulate all of the (on-target) effects of drug expo-

sure into an overall estimate, and hence predict the consequences of

drug use more reliably. Instrumenting target function specifically

has tended to involve the study of cis-acting variation in the vicinity

of genes encoding a protein target of interest—an approach which

has been termed cis-MR to mark the distinction between instru-

menting drug target function and the instrumenting of any other

traits, including biomarkers which may be downstream of drug

exposure.7

Unfortunately, applying cis-MR to assess how metformin expo-

sure may affect traits is likely to be prohibitively challenging, for at

least three related reasons:

i. considerable uncertainty about metformin’s target(s);

ii. possible non-selectivity, i.e. the drug may induce its effects via

multiple targets;

iii. metformin may not exert its effects exclusively via proteins or

other products encoded by the human genome.

Despite decades of study since the discovery of metformin, the

drug’s target(s) are still uncertain. Part of the drug’s effects appear

to be mediated by hepatic modulation of mitochondrial complex I

and mitochondrial glycerol-3-phosphate dehydrogenase.8,9 How-

ever, a sizeable proportion of its glucose-lowering capacity may

result from effects in the gastrointestinal tract, possibly via
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interactions with gut microbiota.10,11 Results from cis-MR to assess

the efficacy of a drug (or surveillance for side effects) on the basis of

uncertain targets should be interpreted very cautiously, and as an

appraisal of the targets being addressed, rather than the consequen-

ces of using a related therapeutic. The possibility that metformin

may be promiscuous and operate by more than one target also raises

methodological questions, given that typical cis-MR designs assess

the impact of modulating individual targets (a sound framework for

addressing selective drugs designed for a single target) and address

single proteins rather than complexes. Finally, when a drug’s target

is not encoded by the human genome, the use of cis-MR for evaluat-

ing the drug’s effects may be precluded entirely, unless function of

the non-human target could be instrumented satisfactorily by other

data, e.g. bacterial genomics.

In conclusion, cis-MR is a valuable study design for addressing

many questions in pharmacoepidemiology as well as drug discovery.

Several methodological challenges are unique to these applications

of MR, including different possibilities for variant selection criteria

and various traits which might be used to index pharmacological

action, e.g. variant associations with circulating concentrations of

targets or downstream markers of target activity—areas of research

where there is no current consensus.12 Paramount among these

choices is the careful consideration of the target(s) of a given thera-

peutic, and whether we can claim to be indexing the anticipated

effects of drug use reliably at all. Metformin is a cautionary case

study in this respect.
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Zhou et al. recently reported findings from a Mendelian randomiza-

tion analysis aiming to examine the causal relationship between met-

formin use and lung cancer risk.1 This is a topical question because

of previously reported associations between use of metformin, a

commonly prescribed drug for the treatment of type 2 diabetes, and

lower cancer risk across several anatomical sites, including lung

cancer.2,3

In lieu of an established drug target of metformin, Zhou et al.

used genetically-proxied measures of growth differentiation factor

15 (GDF15), a cytokine previously reported to be strongly associ-

ated with metformin use,4 to ‘assess the causal relationship between

metformin use and lung cancer occurrence’. The authors interpreted

their findings as indicating no evidence of a causal relationship

between these traits. We have some methodological and interpreta-

tive concerns regarding the analyses presented in this paper.

In order to examine the causal effect of metformin on lung can-

cer risk using GDF15 as a marker of metformin use, it is necessary

to assume that (i) metformin use affects GDF15 levels and (ii) any

effect of metformin on lung cancer is entirely mediated through

GDF15 levels. Although we believe the first assumption to have rea-

sonable face validity, we believe that the second assumption is likely

to be violated.

The identification of GDF15 as a potential biomarker of met-

formin use was first reported in a cross-sectional analysis of met-

formin use and 237 serum biomarkers using baseline data from

8401 participants enrolled in the Outcome Reduction with Initial

Glargine Intervention (ORIGIN) trial.4 The large effect size for

this association observed in models adjusted for clinical factors

and other serum biomarkers (Odds ratio of metformin use: 3.94;

95% confidence interval: 3.59–4.33 per standard deviation

increase in GDF15) provides some assurance that this finding is

unlikely to be largely driven through residual confounding (e.g.

due to unmeasured or imprecisely measured confounders).

Though GDF15 appears to be a plausible mediator of some of

the antidiabetic effect of metformin (e.g. by reducing body

weight), reverse causation (i.e. higher pre-baseline GDF15 levels

increasing the likelihood of subsequent metformin prescription)

cannot be ruled out given emerging evidence to suggest an effect

of nutritional imbalance on circulating GDF15 levels.5,6 At a

minimum, it would have aided the reader in interpreting conclu-

sions from their analysis if Zhou et al. had more clearly con-

veyed the novelty of the findings reported in the ORIGIN trial

and, thus, the provisional nature of the hypothesized relationship

between metformin use and GDF15.
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