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Abstract: Crowd monitoring systems (CMSs) provide a state-of-the-art solution to manage crowds
objectively. Most crowd monitoring systems feature one type of sensor, which severely limits the
insights one can simultaneously gather regarding the crowd’s traffic state. Incorporating multiple
functionally complementary sensor types is expensive. CMSs are needed that exploit data fusion
opportunities to limit the number of (more expensive) sensors. This research estimates a data
fusion algorithm to enhance the functionality of a CMS featuring Wi-Fi sensors by means of a small
number of automated counting systems. Here, the goal is to estimate the pedestrian flow rate
accurately based on real-time Wi-Fi traces at one sensor location, and historic flow rate and Wi-Fi
trace information gathered at other sensor locations. Several data fusion models are estimated,
amongst others, linear regression, shallow and recurrent neural networks, and Auto Regressive
Moving Average (ARMAX) models. The data from the CMS of a large four-day music event was
used to calibrate and validate the models. This study establishes that the RNN model best predicts
the flow rate for this particular purpose. In addition, this research shows that model structures that
incorporate information regarding the average current state of the area and the temporal variation in
the Wi-Fi/count ratio perform best.

Keywords: crowd monitoring system; data fusion; Wi-Fi sensor data; automated counting systems;
pedestrian movement dynamics; crowd management; RNN-LSTM; ARMAX; mass events

1. Introduction

Crowd monitoring systems (CMSs) provide a state-of-the-art solution to manage large crowds
objectively. In recent years, researchers have discovered the potential of CMSs for crowd behavior
research and have started to leverage CMSs to derive new insights regarding crowd movement behavior.
For instance, ref. [1] inferred the pedestrian traffic state (i.e., walking velocity, density, and flow rate) at
a nautical event (SAIL 2015) using a comprehensive CMS and ref. [2] determined activity patterns and
destinations of staff and students on a university campus. Other researchers explored to what extent
social media crawlers can be used as a tool to monitor activity schedules and movement behavior of
crowds [3,4].

Most CMSs mentioned in literature feature only one type of sensors. An early bird in this respect
is the use of RFID CMSs to track the progress of athletes in a marathon. In recent years, CMSs using
Bluetooth and Wi-Fi sensors are commonly adopted to track activity patterns of individuals in urban
environments [5,6] and CMSs featuring GSM cell-tower data are used to study aggregate (inter-city)
movement patterns [7]. Yet, single-sensor sensing networks can produce a limited range of insights.

Sensors 2020, 20, 6032; doi:10.3390/s20216032 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/20/21/6032?type=check_update&version=1
http://dx.doi.org/10.3390/s20216032
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 6032 2 of 25

In particular, Section 2 will show that most monitoring techniques either determine density, flow rate
or route split information. Crowd managers generally require detailed insights featuring all three
crowd movement characteristics simultaneously to manage large crowds. Thus, there is a need for
CMSs that deliver a comprehensive estimate of the state of a crowd.

Multiple functionally complementary sensor types can be deployed in one sensor network in
order to extend the functionality of CMSs, the potential of which was illustrated by ref. [1]. However,
outfitting all sensor locations in a sensor network with multiple sensor systems is very expensive.
In order to limit operation costs of CMSs, data fusion techniques are required that utilize the strengths
of the overlapping presence of complementary sensor types in a limited number of locations in order to
derive additional crowd state information at locations where only one sensor type is present, in general
the least expensive one.

This paper estimates a data fusion algorithm that enhances the capabilities of a CMS that is mainly
equipped with Wi-Fi sensors. More specifically, this research establishes whether a network of Wi-Fi
sensors can be used to predict pedestrian flow rates during a large music event by enhancing the CMS’s
sensor network with a limited number of complementary automatic counting systems. Data from
an operational CMS featuring a four-day music festival in the Netherlands is used to calibrate and
validate the new algorithm.

Data fusion is defined by Hall and Llinar (1997) as the combination data from multiple sensors
and related information from associated databases to achieve improved accuracy and more specific
inferences than could be achieved by the use of a single sensor alone. In this study, various types of
models are estimate to translate Wi-Fi counts to flow rate information. All models leverage data from
multiple semantically distinct sensors (i.e., Wi-Fi and automated counting systems) in order to infer
the flow rate for one particular sensor location. Yet, some more simple model types use the data from
multiple data sources in the sensor network only to derive the model. During application, they will
only accept the locally available Wi-Fi counts as an input. In contrast, other more sophisticated model
types use the data from multiple data sources during application in order to improve the flow rate
estimation at one specific location. The implementation of various model types allows us to quantify
the potential improvement of the flow rate inferences as a result of real-time data fusion.

This paper will continue as follows. First, the research on monitoring systems for crowd
management purposes is reviewed in Section 2. Afterward, the methodology to determine the best
flow rate estimation model is presented in Section 3. This section introduces the technical details
of the CMS’s sensors, the model types under investigation, and the goodness-of-fit metrics adopted
to determine the best flow rate estimation model. Section 4 describes the case study and Section 5
presents the data used to estimate and validate the models. Afterward, the results of the case study
are presented in Section 6. This paper concludes with a summary of the main findings and several
suggestions for further research.

2. Overview of Sensor Systems for Crowd Monitoring Purposes

Multiple CMSs have been developed in recent years and many functionally distinct sensor types
have been used to provide input to CMSs. Section 2.1 provides an overview of the most used sensor
types in a CMS and discusses their (dis)advantages. This overview shows that the most comprehensive
pedestrian traffic state estimation can be derived using a combination of Wi-Fi sensors and automatic
counting systems. Accordingly, Section 2.2 zooms into the state-of-the-art featuring the usage of Wi-Fi
sensor data for pedestrian traffic state estimation purposes.

2.1. Techniques to Monitor Crowd Movement Behavior

In general, six monitoring techniques exist that provide real-time information regarding
the movements of crowds, being camera systems, automatic counting systems, RFID sensors,
Wi-Fi/Bluetooth sensors, GPS sensors, and social media data. This section briefly discusses each of
the monitoring techniques, including a description of the sensor type, recent examples of CMSs that
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make use of this monitoring technique and the type of insights that can be gathered regarding crowd
movements using a network consisting solely of one sensors type.

One of the most popular CMSs is a system consisting of live camera feeds, for instance, closed-circuit
television (CCTV). Ref. [8] mention the usage of an extensive network of CCTV systems to manage
the Hajj in Mecca. The authors also have often encountered this type of CMS in the control centers
of mass events in the Netherlands. Here, specialist security personnel that is trained to analyze
crowd movements and to detect incidents monitor the live video feeds. A camera network provides
crowd managers with qualitative insights regarding the crowd’s movements, for instance population
characteristics and movement speed.

In combination with computer vision algorithms, live video feeds can also serve as a digital
sensor that produces a quantitative output. For example, refs. [9,10] identify abnormal crowd
movement behavior using optical flow algorithms. Ref. [11] determine the crowd’s density using
the image texture. More recently, automated counting of pedestrians based on video feeds was
introduced [12–14]. The insights regarding the crowd’s movements gathered using a camera or CCTV
system predominantly pertain to the cameras’ field of view. Moreover, this CMS type requires an
extensive support infrastructure (i.e., power and communication infrastructure), which can be difficult
to arrange. Besides that, the installation of new surveillance systems is often controversial, given the
increasing concerns regarding the right to be forgotten.

Recently, several other types of digital sensors have been introduced that can also count pedestrians,
such as thermal cameras [15] and depth sensors [16,17]. The main advantage of these newer counting
techniques intrinsically protects the privacy of pedestrians. However, require near top-down vantage
point and continuous power supply, which is often challenging to realize in practice. Both requirements
limit the widespread usage of these new sensing techniques for crowd monitoring at outdoor locations.
They are, however, progressively used to monitor indoor venues, such as transfer hubs [18].

Active and passive Radio Frequency Identification (RFID) sensors are often used during sports
events, the entertainment business and religious events [19–21]. As passive RFID sensors are relatively
small, cheap and need no or very little power, they are easily incorporated into wearables that can
be handed out to visitors, such as tickets, wristbands, and t-shirts. The identification information
retrieved from passive RFID sensors is spatially sparse and dependent on the location of the sensing
stations. Active RFID sensors emit a continuous signal, which ensures a spatially and temporally
continuous signal of visitors’ locations. For long-term monitoring, often the sensing stations need to be
hooked up to a power supply and communication infrastructure. Moreover, the range of RFID sensing
stations is relatively small.

Besides RFID, Wi-Fi sensors, which intercept communications signals transmitted via Wi-Fi and
Bluetooth, can be used to monitor crowd movements. These near-field communication sensors capture
the Media Access Control (MAC)-addresses, hereafter coined Wi-Fi trace, of the device that transmits
the message, are more and more used to monitor crowd movements. Various researchers used Wi-Fi
traces to identify pedestrian destination sequences [5,22], travel times [23] and arrival & departure
times [24]. Wi-Fi sensors are quite small and can be connected to a small battery pack, which enables
installation at locations where no or little electricity is available. A network of Wi-Fi sensors provides
sparse spatial information regarding the location of a subset of the crowd. As Wi-Fi and Bluetooth
sensors identify and record the MAC-address of Wi-Fi enabled devices in their vicinity, severe digital
security measures are imperative to ensure the privacy of the public. Contrary to RFID sensing,
Wi-Fi/Bluetooth sensing does not require actively involving the crowd.

Another sensor type makes use of the Global Positioning System (GPS). A self-contained pocketsize
GPS sensor and smartphone applications with an in-built tracking function are most often adopted for
crowd monitoring purposes. Both GPS sensor types transmit, amongst other things, their GPS-position,
speed and acceleration at regular time intervals. Literature illustrates that GPS trackers have been
used to identify visitors’ routes, the walking speed and activity locations [1,25]. Similarly, smartphone
applications have been adopted at the Hajj for crowd management purposes [26] and music events
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to track the traffic state [27,28]. Successful deployment of GPS sensors depends severely on the
distribution strategy of the GPS trackers or smartphone application’s popularity, which varies between
crowd types and contexts. Privacy concerns of GPS sensors are generally limited as users explicitly opt
in to the tracking of their movements.

The last data type features social media crawlers, which analyze (geo-posted) messages from
popular social media platforms, such as Twitter and Instagram. Social media crawling has been used to
study mobility patterns [29], traffic anomalies [30] and the number of people in a restricted area [3,4,31],
moreover, mapped demographic information, human movement patterns, and the popularity of
Points of Interest (POIs). Social media are most often used to determine aggregate statistics of crowds.
In general, the potential of social media crawling is very dependent on who shares what at what
moment in time via which medium under what license. No privacy concerns arise when visitors
pro-actively share their messages with the world.

Crowd managers require a range of insights regarding the crowd’s movements, among other
things, atmosphere, anomalies, walking speed, density, flow rate, route choice, and destination choices.
Here, density refers to the number of individuals that is present within a limited space at a certain
moment in time (in P/m2) and the flow rate refers to the number of individuals that passes a certain
cross-section within a limited amount of time (in P/m/s/). Table 1 presents a summary of the insights that,
according to literature, can be derived using the monitoring techniques introduced above. Furthermore,
the table identifies whether a part of the full population is monitored, whether the data is spatially
discrete or continuous and whether privacy concerns can be expected. As one can see, none of the
monitoring techniques can derive all the required insights. Moreover, none of the techniques can
provide a comprehensive state estimation within an area featuring the entire population.

Table 1. Summary of insights that can be directly captured using a specific type of sensor without
assumptions or information from other data sources.

Sensor Type Variables Monitored
Crowd

Data Type Privacy
ConcernsAT AN V K Q RC D

Camera Systems X X - - - - - E Point Yes
Automated Counting Systems
(Computer Vision Algorithms) - - X X X - - E Point Yes

Automated Counting Systems
(Depth Sensor/Laser/IR) - - X X X - - E Point No

Passive RFID Sensors - - - - - X X S Point No
Active RFID Sensors - - - - - X X S Point/area No

Wi-Fi / Bluetooth Sensors - - - - - X X S Point Yes
GPS Tracker - - X - - X X S Area No

GPS Smartphone Application - - X - - X X S Area Yes
Social Media (text) X X - - - X X S Area No

Social Media (image) X X - X - X X S Area No

AT = atmosphere, AN = anomalies, V = walking speed, K = density, Q = flowrate, RC = route choice, D = destination,
S = subset of the population, E = entire population.

A combination of monitoring techniques is required to enhance the functionality of CMSs.
The overview illustrates that several combinations of semantically distinct sensor types can provide
complementary information. One of these combinations is the combination of automatic counting
systems and Wi-Fi or RFID sensors. The benefits of the combination of these two static sensor types
are that both sensor types are readily available in crowd management practice and do not rely on the
active involvement of the crowd. Moreover, together they can potentially gather the most diverse set of
insights pertaining to crowd’s state at discrete points in the network. Thus, this paper will specifically
focus on the combination of automated counting systems and Wi-Fi sensors.

2.2. Monitoring the Pedestrian Movement Behaviour Using Wi-Fi & Bluetooth Sensors

Wi-Fi and Bluetooth scanners are more and more readily adopted to analyze movement patterns in
urban environments. These studies featured, amongst other things, highway traffic [32,33], public transit,
pedestrian spaces in city centers [22,34], campuses [35,36], mass events [1,37,38] and buildings [39,40].
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Table 2 presents a large, though not comprehensive, overview of the studies featuring the tracking
of pedestrian movement patterns using Wi-Fi or Bluetooth sensors. The table illustrates that nearly all
these studies use Wi-Fi sensors to analyze aggregate movement patterns in urban areas. Most frequently
studies monitored the origin-destination patterns of pedestrians, the sequence of scanners that recorded
a Wi-Fi trace (hereafter coined route), and the number of unique Wi-Fi traces identified by a sensor
within a specific time period [34,41–43]). A limited set of studies details more intricate procedures to
derive the time spent at a location and the travel time between sensors [23,44–46]. Some studies also
attempted to identify the full trajectory of pedestrians using a network of Wi-Fi scanners and various
types of triangulation algorithms [39,47,48].

Table 2. Filtering procedure Wi-Fi sensor list.

1. Combine records with distinct ids but similar device ids (i.e., hashed and shortened MAC-addresses).
2. Delete records of device ids that only occur once in the list.
3. Delete records of device ids that are only found at one sensor-location.
4. Retain the first registration of ids at a sensor.
5. For all sensor locations, retain following registrations of ids at a sensor if:

• the time between the first registration and the next is longer than 5 min and
• the id has been registered at another sensor in between.

A second set of studies has attempted to derive more detailed pedestrian traffic state information.
Most of these studies determined the flow rate at a corridor or intersection over a relatively long
time period [43,49–52]. Yet, to the authors’ knowledge, only ref. [53] identified the flow rate at a very
precise temporal and spatial scale, namely pedestrians per meter per second. Meanwhile, little research
has been performed concerning the derivation of walking speeds and crowd densities. For example,
ref. [53] used several algorithms to determine the walking speed, and density of a crowd and ref. [37]
translated the number of Wi-Fi enabled devices to the number of visitors near a Wi-Fi sensor.

This overview illustrates that Wi-Fi sensors can be used to determine the trends in the traffic
state variables density, walking speed, and flow. However, the translation from the number of Wi-Fi
traces per interval to traffic state variables remains challenging, because the range of a Wi-Fi sensor is
dependent on the crowd density [37]. Besides that, the detection rate of the Wi-Fi enabled devices is
conditional to the type of pedestrian behaviors that are monitored. That is, the detection rate differs
between moving and stationary pedestrians.

Preliminary research of Duives et al. [37] illustrates that the combination of automatic counting
systems and Wi-Fi sensors can be used to translate the number of traces to the actual number of
pedestrians for a specific context (i.e., a stationary crowd near a music stage). However, this study also
indicates that more research is needed to determine which model type can best translate Wi-Fi traces to
flow rates in real-time for moving crowds. Moreover, this paper has not studied the potential of data
fusion in order to improve the translation.

3. Introduction of the Data Format, Data Fusion Methods, and Goodness-of-Fit Metrics

Multiple mathematical models can be used to infer flow rates from Wi-Fi sensors using automatic
counting system data. As there is no predefined idea regarding the model type that would be best suited
for this purpose, this research will compare several models with different mathematical structures,
some of which apply data fusion in order to improve the flow rate estimation. In order to illustrate the
differences between the various types of models, a mixture of straightforward and more sophisticated
(data fusion) models is estimated.

Section 3.2 will introduce all selected model types. Beforehand, Section 3.1 presents the format
of data that serves as input and output of the data fusion model. The last Section 3.3 presents the
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goodness-of-fit metrics used to determine the best method. For a description of the case study and an
introduction of the data, the reader is referred to Section 5.

3.1. Introduction Data Format

The sensor network of the case study produces two types of data, namely automated counts and
Wi-Fi data. Every minute, the automated counting systems push a message to the server consisting of
five fields, namely an identification code of the sensor, the timestamps at which the counting interval
respectively starts Ts

begin(t) and ends Ts
end(t), and the total number of pedestrians that walked away from

Ns
up(t) and towards Ns

down(t) the camera within the time interval (Equation (1)). The total flow rate per
minute at a cross-section qs

total(t) is accordingly derived as the sum of the two flow rates (Equations (2)
and (3)). The total flow rate is the only dependent variable in all estimated (data fusion) models.

〈id, Ts
begin(t), Ts

end(t), qs
up(t), qs

down(t)〉 (1)

Ts(t) = Ts
end(t) − Ts

begin(t) (2)

qs
total(t) =

Ns
up(t)

Ts(t)
+

Ns
down(t)

Ts(t)
(3)

Wi-Fi sensors produce lists of hashed MAC-addresses. Each record of this list consists of at
least the sensor id, the hashed MAC-address, the timestamp at which the Wi-Fi trace was first seen,
the signal strength, and the device id. The list of active Wi-Fi enabled devices contains noise consisting
of, for instance, stationary Wi-Fi enabled devices near the Wi-Fi sensor and Wi-Fi enabled-devices that
transmit rotating MAC-addresses. In order to work with the list of MAC-addresses, first the list of
MAC-addresses is filtered (see Table 3 for the procedure).

The resulting list contains the hashed MAC-addresses and the timestamps at which each
MAC-address was in range of a particular Wi-Fi sensor. The number of Wi-Fi enabled devices
that are registered per minute is derived Ns

WiFi, hereafter identified as Wi-Fi count, which is the
length of the cleaned list of MAC-addresses. The Wi-Fi count reflects the number of unique Wi-Fi
enabled devices within the vicinity of the sensor, and is as such, a proxy for the pedestrian density in a
pedestrian-only area.

Important to realize is that the Wi-Fi counts of different sensor locations cannot be added
or subtracted as the same individual can pass multiple sensors during a one-minute time interval.
Moreover, if multiple Wi-Fi sensors jointly cover one cross-section, the raw list of hashed MAC-addresses
of both sensors should be combined first before starting the filtering and transformation procedure.
The Wi-Fi count time series serves as the main input for all data fusion models that are estimated in
this study.

Some model types featured in this study accept additional contextual variables. For instance,
one could add the data from all other sensors to the input of a model for one location. However,
the resulting model would be very difficult to generalize, which severely limits the application of
the estimated model. Thus, contrary to other data fusion endeavors, aggregate statistics featuring
the overall status in the sensor network are used as additional inputs. In total, five additional input
variables are created that provide more context to the Wi-Fi count time series, which are:

1. the time interval between the current time and the start of the event on each day ∆T,
2. the total Wi-Fi count in the sensor network at the current time step

∑
Nwi f i(t),

3. the average total flow rate in the sensor network
∑

qtot(t),

4. the average difference between consecutive total flow rate measurements
∑

qtot(t) − qtot(t− 1),
5. the average multiplication factor r(t).
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Table 3. Summary of literature related to derivation traffic state using Wi-Fi & Bluetooth sensors.

Reference Ref.
No.

Mode Setting DL
Monitored Variables

Speed Density Flow
Rate TS TT Traj. Route OD Presence

Chen et al. (2005) [41] P Building L - - - - - - - - X
Miyaki et al. (2007)b [54] P Outdoor pedestrian space L - - - - - X - - -
O’Neill et al. (2006) [55] P City streets of Bath L - - X X - - - - X
Miyaki et al. (2007)a [47] P City streets and Uni. of Tokyo L - - - - - X - - -
Millonig et al. (2008) [56] P Mall L - - - - - - X - -
Bullock et al. (2010) [44] P Airport security H - - - - X - - - X

Vu et al. (2010) [57] P University Campus L - - - - - - - - X
Stange et al. (2011) [42] P Racing event H - - - - - - X - X
Utsch et al. (2012) [58] P Soccer stadium Nimes, France H - - - X - - X - -
Musa et al. (2012) [22] P City streets of Chicago L - - - - - - X - -

Malinovskiy et al. (2012) [45] P Unknown L - - - - X - - - -
Versichele et al. (2012) [50] P Music event Ghent, Belgium H - - X - - - - X X

Abedi et al. (2013) [59] P, B Grassy field L - - - - X - - - X
Bonne et al. (2013) [38] P Mass event Pukkelpop, Belgium H+L - - - - - - X - -

Kostakos et al. (2013) [49] P City streets of Oulu, Finland L - - X - - - - - X
Nawaz et al. (2013) [60] C Parking lot L - - - - - - - - X

Xu et al. (2013) [48] P City streets of Sydney L - - X - - X - - X
Danalet et al. (2014) [5] P Campus L - - - - - - - X -

Fukuzaki et al. (2014) [40] P Active Lab, building L - - - - - - X - X
Schauer et al. (2014) [43] P Security gates airport H - - X - - - - - X

Fukuzaki et al. (2015) [61] P Shopping mall L - - - - - - - - X
Farooq et al. (2015) [46] P Festival, Montreal, Canada H - - - - X - - X X

Ma et al. (2015) [52] P University building L - - X X - - - - X
Hoogendoorn et al. (2016) [23] P Nautical event H - - - - X - - - -

Daamen et al. (2016) [1] P Nautical event H X X X - X - - - -
Poucin et al. (2016) [35] P Campus Concordia Uni. Montreal L - - - - - - X - X

Alessandrini et al. (2017) [62] P Joint Research Centre (JRC) Ispra L - - X X - X - - X
Guo et al. (2017) [63] P Building P X - - - - - - - X

Bellini et al. (2017) [34] P City streets San Francisco L - - X - - - - - X
Fang et al. (2017) [36] P University campus Dartmouth L - - - - - - X - -

Duives et al. (2018) [28] P Music Event H - X - - - - - - -
Potortì et al. (2018) [39] P Building L - - - - - X - - -

P = pedestrian, B = bicycle, C = car, L = normal city traffic, H = crowded pedestrian places, TS = Time spend, TT = Travel Time, Traj. = trajectory, OD = OD matrix.
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Here, the average total flow rate and average difference in the total flow rate are calculated as a
moving average over the last 5 min or 10 min. Earlier work on Wi-Fi sensors pointed out that these
intervals produce relatively good results for dynamic flows [37]. The average multiplication factor
is computed by dividing the total flow rate over the total Wi-Fi counts for a given day. Please note,
that all data fusion models featured in this study are estimated using the same ‘base’ set of variables.
The explanatory variables that are featured in the best model of a certain model type might differ as a
result of the estimation procedure.

3.2. Introduction Data Fusion Methods

Many different data fusion models can be used to estimate flow rates using Wi-Fi trace data
and counts. In order to determine which one is best suited, an array of models will be tested. Here,
model types are selected that either were encountered by the authors while working with crowd
management practitioners or are often adopted for time-series analyses. In particular, (in)direct
approximation using linear, multiple linear regression models and shallow neural networks are often
encountered in practice. RNN and ARMA models are often adopted in research for traffic time series
prediction [64,65]. Besides that, for most model types a ‘simple’ prediction application as well as
a more sophisticated data fusion application is derived. Here, prediction applications only accept
the locally available Wi-Fi count as input, while the data fusion applications also accept exogenous
variables constructed using real-time data from other sensors in the network.

Below, this section introduces the following flow rate prediction models: (1) + (2) an indirect
and direct approximation using linear and multiple linear regression models, (3) a shallow neural
network, (4) a recurrent neural network with a long short-term memory unit (RNN-LSTM) and (5) a
Autoregressive Moving Average model (ARMAX).

3.2.1. Indirect (Multiple) Regression Models

In practice, often the global average ratio between the flow rate at a cross-section and the count
of Wi-Fi enabled devices is determined using a two-step procedure. First, a multiplication factor is
determined using the historic Wi-Fi counts and flow rate data. Accordingly, the multiplication factor
is used to determine the current flow rate at a cross-section (see Equation (4)). Even though, this is
indirect and inefficient procedure, the authors encounter this method often in practice.

qs
total(t) = rs(t) ∗Ns

WiFi(t) (4)

Given that the relation between the multiplication factor and the Wi-Fi counts is not directly
apparent from the data, four distinct mathematical models are fitted, namely:

Model 1a. a linear model without a constant

rs(t) = c2Ns
wi f i(t) (5)

Model 1b. a linear model with constant

rs(t) = c2Ns
wi f i(t) + c1 (6)

Model 1c. a quadratic model with constant

rs(t) = c3Ns
wi f i(t)

2 + c2Ns
WiFi(t) + c1 (7)
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Model 1d. a logarithmic model with constant

rs(t) = c4 +
c5

log(c6Ns
wi f i(t))

(8)

Here, cx represents the parameters of the regression model featuring a certain data type. All four
models determine a global multiplication factor using the information from the locations where
counting data is available. That is, the time series data from all sensor locations that are equipped with
both sensor systems are used to determine one multiplication factor that will be used to estimate the
flow rate at all sensor locations.

3.2.2. Direct (Multiple) Regression Model

The use of an indirect approximation of the flow rate introduces additional (unwanted) noise.
A model that directly relates the flow rate to the Wi-Fi counts circumvents this issue. Here, the variance
in the data is directly incorporated in the model, which leads to slightly different model formulations
and parameter settings in case of the more complex model specifications. Also in this case, the relation
between the two variables is not clear-cut. Thus, four different regression models are fitted, namely:

Model 2a. a linear approximation without a constant

qs
total(t) = c2,wi f iNs

wi f i(t) (9)

Model 2b. a linear approximation with constant

qs
total(t) = c2,wi f iNs

wi f i(t) + c1 (10)

Model 2c. a quadratic approximation

qs
total(t) = c3,wi f iNs

wi f i(t)
2 + c2,wi f iNs

WiFi(t) + c1 (11)

Model 2d. an exponential approximation with constant

qs
total(t) = c1 + c4,wi f i ∗ exp

(
c5,wi f iNs

wi f i(t)
)

(12)

Besides direct regression models with just one independent and one dependent variable,
also exogenous variables can be added to the direct regression models. In this study, we have
chosen to enhance only the linear regression model with additional contextual variables in order to
limit the number of models that needed to be enumerated. The additional contextual variables that are
presented in Section 3.1 are incorporated in the variable set. All subsets of the entire set of variables are
tested. The best model is the model with the best model fit.

3.2.3. Shallow Neural Network (NN)

Machine-learning techniques can also be used to fuse the Wi-Fi and flow rate data. Thus, also a
shallow neural network is calibrated that features one layer of hidden nodes. This neural network
can consider more information than the regression models. Thus, the additional contextual variables
are incorporated in the shallow neural network. Depending on the number of extra variables that are
considered, the shallow neural network has 2 to 6 input nodes.

The best set of inputs and the number of hidden nodes are determined as part of the training.
A forward selection model is applied, in which first a model without additional contextual variables is
estimated. Accordingly, an additional model is estimated for all predictors that are not in the model,
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all of featuring one additional variable. Their adjusted coefficient of determination R2
adj are compared

against the base model. Here, specifically the R2
adj is adopted in order to ensure the model that explains

most of the overall variance is selected. Only models with the largest increase in the coefficient of
determination (with a minimum of R2

adj > 0.01) is retained. In the following rounds, the retained
model is enhanced step-by-step by adding variables using the same procedure until no more variables
can be added.

Given the nearly linear relation between the Wi-Fi counts and automated counts, the authors
expect that a low number of hidden nodes will be sufficient. Thus, nets with a varying hidden layer
size containing 1 to 10 hidden nodes have been trained. During training, the training data is split into
80% training data, 10% validation an 10% testing data. The training and test data samples are drawn at
random from the training data set (Wednesday and Friday). As a result, the goodness-of-fit metrics
can differ slightly between estimation runs. In order to account for the stochasticity, for each net size,
30 training runs are performed and the run with the 50th percentile of the coefficient of determination
is used in the comparison between model fits. The best shallow neural networks with and without
additional variables are presented in the results section.

3.2.4. Autoregressive Moving Average (ARMAX) Model

The presentation of the flow rate and Wi-Fi count time series in Section 4 illustrates that the time
series are stationary and autocorrelated. Therefore, also two model types are included that incorporate
memory explicitly into the estimation process. The first type, i.e., the ARMAX model, explicitly takes
into account state information from previous time. An ARMAX model can also accept more variables.
Thus, similar to the neural network model, five additional contextual variables have been added to the
model. The same model selection procedure has been adopted as for the shallow neural network model.

An analysis of the (partial) autocorrelation shows that the first ten lags are correlated. Therefore,
ARMAX models with any combination of 1–10 autocorrelation lags and 1–10 moving average lags are
estimated using the training data (i.e., Wednesday & Friday). The results for the best ARMAX models
with and without additional variables are presented in the results section.

3.2.5. Recurrent Neural Network

The second data fusion method, which formally incorporate memory, is a Recurrent Neural
Network with a Long Short-term Memory (RNN-LSTM). In this type of network, each neuron keeps
information content in memory and provides this information to the neuron as an additional input at
the next time step. A RNN-LSTM is often used to estimate complex non-linear processes and processes
in which autocorrelation exists.

Similarly, to the shallow neural network, 2–6 input nodes are defined, one layer of hidden neurons
containing 1–10 nodes and 1 output node (i.e., the flow rate). The input variables are similar to the
inputs of the ARMAX model. The RNNs are trained using 80% training, 10% validation and 10%
testing data, all of which featuring the training data set (Wednesday & Friday), using 10 runs per model
specification and retaining the 50th percentile model fit. The best RNNs with and without additional
variables are presented in the results section.

3.3. Goodness-of-Fit Metrics

Two goodness-of-fit metrics are used to determine which data fusion method performs best,
namely the adjusted coefficient of determination R2

m,adj (Equations (13)–(15)) and the Euclidian distance
RMSEm (Equation (16)). The first metric is used to determine the fraction of the variance that is
explained by the estimated models. A larger coefficient of determination represents a better model
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fit. The second metric is used to determine to what extent the trends in the time series are similar.
The smaller the root mean square error, the more similar two time-series are.

SSres =
T∑

t=0

(qs
tot,model(t) − qs

tot,data(t))
2 (13)

SStot =
T∑

t=0

(qs
tot,data(t) − qs

tot,data(t))
2 (14)

R2
m,adj = 1−

SSres/(n− p− 1)

SStot/(n− 1)
(15)

RMSEm =

√∑T

t=1

(qs
tot,data(t) − q̃s

tot,model(t))
2

T
(16)

4. Introducing the TT Festival 2018

The data fusion methods are calibrated and validated using data from a real-life case study,
namely data generated by the crowd monitoring system of the music and motorsport event TT Festival.
The following section will first provide a general description of the event in Section 4.1. Afterwards,
the sensing network is described in Section 4.2. The reader is referred to the following Section 5 for
a presentation of the time series of the Wi-Fi counts and flow rates that were captured during the
TT Festival.

4.1. The TT Festival

Each year the TT Festival is held in Assen, The Netherlands, in concurrence with the MotoGP
at the TT circuit nearby. In 2018, the TT Festival took place from Wednesday, 27 June, 18:00 until
Sunday, 1 July, 04:00. During four consecutive evenings, activities were organized at 3 to 10 music
stages in the city center of the municipality Assen. The inner city of Assen predominantly consists
of two-to-four-story houses with retail and restaurants on the lower floors (see Figure 1). Streets are
relatively wide according to Dutch standards and lined with trees. Most music stages were located on
open squares and/or wide corridors.
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Figure 1. An impression of the city center of Assen, The Netherlands, f.t.t.b. Rolderstraat, de Markt,
de Brink, Kerkplein.

A very mixed population of 20,000–65,000 visitors per day walked through the inner city of
Assen during these four evenings. Depending on the time of the day, young children, elderly, teens,
and adults were partaking in the entertainment. After midnight, especially teens and adults were
present. Men and women equally took part in the festivities. Compared to other Dutch festivals,
the average age of visitors is relatively high. Many visitors walked around in groups of friends or
family. As the MotoGP is an internationally renowned event, many international MotoGP fans visit
the TT Festival.

Each evening, the first acts commenced at 18:00 and the last acts finished between 01:00 and 04:00
at night. Each music stage had a specific theme and serviced a specific target audience. As the target
audiences overlapped, visitors moved from stage to stage throughout the evening. During the opening
hours of the TT Festival, the public spaces in the inner city were allocated to the visitors of the TT
Festival. That is, cyclists and motorized vehicles were not allowed to enter the premises of the TT
Festival during the opening hours of the event and pedestrians could safely use the entire width of
the streets.

4.2. Description of the Sensing Network

A crowd management center was set up to monitor and manage the crowds in the city center
during the TT Festival. The daily operations mainly used CCTV in combination with crowd spotters
to monitor the crowd’s movements. Besides that, a network of Wi-Fi sensors and several additional
automated counting systems was installed to analyze the crowd’s movement objectively after the event
finished. This analysis provided input for the layout and setup of the terrain in the future years.

The sensor network was set up to derive three quantities, being flow rates at the entrances,
stay duration times at the music stages and route splits. Automated counting systems were installed at
the four main entrances (C1, C2, C3 and C5, see the sensor network displayed in Figure 2) to determine
the first quantity. A fifth automatic counting system (C4) was deployed at a cross-section near the
main stage for research purposes. The data from all five cameras are used in this research.
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The latter two quantities are derived from Wi-Fi sensors, which were installed at all major
intersections on the festival premises. As the city of Assen has quite an intricate street network, it was
not possible to cover all intersections with Wi-Fi sensors. Therefore, Wi-Fi sensors were installed at
intersections on the most direct routes between any two stages.

5. Presenting the Wi-Fi Count and Flow Rate Time Series

The crowd monitoring system recorded data for the entire duration of the TT Festival,
from Wednesday 27 June at 18:00 until Sunday 1 July at 06:00. Instead of using all the data captured
during the festival, only the data of each day between 06:00 p.m. and 11:00 p.m. is used in this research.
This action is performed in order to limit the measurement errors in the flow rate time series, which are
known to increase after nightfall due to changing light conditions. Incorporating the effect of changing
light conditions is identified as an opportunity for future research.

5.1. Time Series Wi-Fi Count and Flow Rate

The time series of the flow rate for each of the four days and five sensor locations are presented in
Figure 3. These time series illustrate three trends. Firstly, a gradual increase in flow rate occurs on
all days at all five sensor locations. During the time period visualized in the figure, more visitors are
entering than leaving the premises. At the beginning of the event, a relatively gradual increase in the
total flow rate is found. Later in the evening, the flow rate increases more steeply. Especially on Friday
and Saturday, the inflow increases steeply between 20:00 and 22:00 at the counting systems C3 and C4,
which are respectively located near the main entrance and main stage. Besides that, the time series also
have several local maxima. These local fluctuations in the flow rate are most likely the result of the
music programming. Visitors tend to move from stage to stage while stages are changing between
acts. Consequently, specifically at the start and end of a performance, many visitors are on the move.
Lastly, not all time-series are complete. During the TT festival the battery of two counting systems,
i.e., camera C3 and C2, drained too quickly. Only the part of these two time series for which data is
available are taken into account in the research.

The time series of the Wi-Fi count, which are visualized in Figure 4, show different global trends
than the time series of the flow rate. For instance, the Wi-Fi counts and flow rates at locations 2 and 5
differ a lot. That is, the Wi-Fi count of location 2 is consequently higher than the Wi-Fi count at location
5, while the flow rate time series of both locations are quite similar. In addition, the Wi-Fi count time
series for location 1 has two large peaks on Friday, while the flow rate time series of the same day and
location has four smaller peaks.

Sensors 2020, 20, x FOR PEER REVIEW 13 of 26 

 

5.1. Time Series Wi-Fi Count and Flow Rate 

The time series of the flow rate for each of the four days and five sensor locations are presented 
in Figure 3. These time series illustrate three trends. Firstly, a gradual increase in flow rate occurs on 
all days at all five sensor locations. During the time period visualized in the figure, more visitors are 
entering than leaving the premises. At the beginning of the event, a relatively gradual increase in the 
total flow rate is found. Later in the evening, the flow rate increases more steeply. Especially on Friday 
and Saturday, the inflow increases steeply between 20:00 and 22:00 at the counting systems C3 and 
C4, which are respectively located near the main entrance and main stage. Besides that, the time series 
also have several local maxima. These local fluctuations in the flow rate are most likely the result of 
the music programming. Visitors tend to move from stage to stage while stages are changing between 
acts. Consequently, specifically at the start and end of a performance, many visitors are on the move. 
Lastly, not all time-series are complete. During the TT festival the battery of two counting systems, 
i.e. camera C3 and C2, drained too quickly. Only the part of these two time series for which data is 
available are taken into account in the research. 

The time series of the Wi-Fi count, which are visualized in Figure 4, show different global trends 
than the time series of the flow rate. For instance, the Wi-Fi counts and flow rates at locations 2 and 
5 differ a lot. That is, the Wi-Fi count of location 2 is consequently higher than the Wi-Fi count at 
location 5, while the flow rate time series of both locations are quite similar. In addition, the Wi-Fi 
count time series for location 1 has two large peaks on Friday, while the flow rate time series of the 
same day and location has four smaller peaks.  

Besides that, Figures 3 and 4 illustrate that the time series of the flow rate on Wednesday and 
Thursday follow a similar trend. Equivalently, the flow rate time series on Friday and Saturday are 
comparable. Therefore, the time series from Wednesday and Friday are used for training purposes, 
while the time series captured on Thursday and Saturday are only used for validation purposes. This 
means, that the data from these two days has not been used to train any of the models presented 
underneath. Moreover, the data from the automated counting sensor for which the flow rate is 
estimated is not included in the aggregate statistics that serve as the additional contextual variables 
for that specific location. Consequently, the ground truth for a particular sensor location is the data 
that was derived on that particular day. The goodness-of-fit metrics displayed in the results section 
relate only to the validation data (Thursday and Saturday). 

A student t-test confirms that the distribution of the values in the test time series of the flow rate 
is similar to the distribution of the values for the flow rate in the training time series. Thus, this split 
between training and validation data should not result in bias because of difference in the overall 
flow rate dynamics.  

 
(a) 

Figure 2. Cont.



Sensors 2020, 20, 6032 14 of 25

Sensors 2020, 20, x FOR PEER REVIEW 14 of 26 

 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Flow rate time series per day and per location (c1–c5) for (a) Wednesday, (b) Thursday, (c) 
Friday and (d) Saturday. 

 
(a) 

Figure 3. Flow rate time series per day and per location (c1–c5) for (a) Wednesday, (b) Thursday, (c)
Friday and (d) Saturday.

Sensors 2020, 20, x FOR PEER REVIEW 14 of 26 

 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Flow rate time series per day and per location (c1–c5) for (a) Wednesday, (b) Thursday, (c) 
Friday and (d) Saturday. 

 
(a) 

Figure 4. Cont.



Sensors 2020, 20, 6032 15 of 25
Sensors 2020, 20, x FOR PEER REVIEW 15 of 26 

 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Time series Wi-Fi counts per day and per location (c1–c5) for (a) Wednesday, (b) Thursday, 
(c) Friday and (d) Saturday. 

5.2. Relation Between Wi-Fi Count and Flow Rate 

Figure 5 visualizes the relation between the automatic counts and the Wi-Fi counts. A positive 
relation between the two time-series can be established. However, the point cloud is very scattered, 
with quite some outliers in the upper left and lower right corner. The first type of outliers, with high 
flow rates and low Wi-Fi counts, is the result of the double identification of pedestrians are stationary 
within the camera’s field of view. The automated counting system to which these data points belong, 
i.e. C3, is located at a corridor where visitors tend to stand still to watch the attractions on both sides 
of the street. The second type of outliers, concerning low flow rates and high Wi-Fi counts, are the 
result of rare moments that all devices that are registered are by chance devices without a rotating 
MAC-address.  

Figure 5, moreover, illustrates that the point clouds of the different cameras do not entirely 
overlap. Consequently, the ratio between the flow rate and the Wi-Fi counts is expected to differ 
slightly between sensor locations. However, as the signature of the sensor location cannot be 
established for the sensor locations where only Wi-Fi sensors are installed, the differences between 
the sensor locations are not discounted in this research. Future research is needed to establish 
whether similarities in the Wi-Fi count signature or sensing setting layouts can be used to improve 
the flow rate prediction model further. 

Figure 4. Time series Wi-Fi counts per day and per location (c1–c5) for (a) Wednesday, (b) Thursday,
(c) Friday and (d) Saturday.

Besides that, Figures 3 and 4 illustrate that the time series of the flow rate on Wednesday and
Thursday follow a similar trend. Equivalently, the flow rate time series on Friday and Saturday are
comparable. Therefore, the time series from Wednesday and Friday are used for training purposes,
while the time series captured on Thursday and Saturday are only used for validation purposes.
This means, that the data from these two days has not been used to train any of the models presented
underneath. Moreover, the data from the automated counting sensor for which the flow rate is
estimated is not included in the aggregate statistics that serve as the additional contextual variables for
that specific location. Consequently, the ground truth for a particular sensor location is the data that
was derived on that particular day. The goodness-of-fit metrics displayed in the results section relate
only to the validation data (Thursday and Saturday).

A student t-test confirms that the distribution of the values in the test time series of the flow rate
is similar to the distribution of the values for the flow rate in the training time series. Thus, this split
between training and validation data should not result in bias because of difference in the overall flow
rate dynamics.
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5.2. Relation Between Wi-Fi Count and Flow Rate

Figure 5 visualizes the relation between the automatic counts and the Wi-Fi counts. A positive
relation between the two time-series can be established. However, the point cloud is very scattered,
with quite some outliers in the upper left and lower right corner. The first type of outliers, with high
flow rates and low Wi-Fi counts, is the result of the double identification of pedestrians are stationary
within the camera’s field of view. The automated counting system to which these data points belong,
i.e., C3, is located at a corridor where visitors tend to stand still to watch the attractions on both
sides of the street. The second type of outliers, concerning low flow rates and high Wi-Fi counts,
are the result of rare moments that all devices that are registered are by chance devices without a
rotating MAC-address.Sensors 2020, 20, x FOR PEER REVIEW 16 of 26 
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Figure 5, moreover, illustrates that the point clouds of the different cameras do not entirely overlap.
Consequently, the ratio between the flow rate and the Wi-Fi counts is expected to differ slightly
between sensor locations. However, as the signature of the sensor location cannot be established for
the sensor locations where only Wi-Fi sensors are installed, the differences between the sensor locations
are not discounted in this research. Future research is needed to establish whether similarities in
the Wi-Fi count signature or sensing setting layouts can be used to improve the flow rate prediction
model further.

6. Best Data Fusion Model and Discussion of the Modeling Results

The data fusion methods introduced in Section 4 have been estimated using the training time series
presented in Section 5. These models are tested using the test time series, i.e., Thursday and Saturday.
Table 4 presents a summary of the goodness-of-fit metrics for all estimated data fusion methods.
The three best models, which are those with the highest R2

adj and lowest RMSE, are an RNN-LSTM
with one layer of 1 hidden node, a NN with 3 hidden nodes and a multiple linear regression model
featuring all five additional contextual variables. All three models incorporate memory of previous
time steps through the additional input variables or model structure.

Table 4. Summary of model estimation results, where the bold model is the best model. For all models,

the R
2

and RMSE are depicted for the Thursday and Saturday time series.

Wi-Fi Counts Only

Model No. Model Description R
2 RMSE

1a Indirect—linear without constant 0.1740 14.20
1b Indirect—linear with constant 0.3590 12.51
1c Indirect—quadratic 0.3590 12.51
1d Indirect—logarithmic 0.3195 12.89
2a Direct—linear without constant 0.3337 12.76
2b Direct—linear with constant 0.3398 12.70
2c Direct—quadratic 0.3590 12.51
2d Direct—exponential 0.3591 12.51
3 ARMA (4,0,5) 0.1808 14.29
4 NN—2 nodes 0.3619 12.44
5 RNN—6 nodes 0.3582 12.478

Wi-Fi counts + contextual variables

Model No. Model
Description ∆T

∑
NWiFi

∑
qtot(t) ∆

∑
qtot(t) r(t) R

2 RMSE

6 Direct—linear
with constant x x x x x 0.3849 12.24

7 ARMAX
(3,0,3) - x - - x 0.1167 15.54

8 NN—3 nodes - - x - - 0.4306 11.77
9 RNN—1 node - - - - 0.3626 12.47

In particular, the average total flow rate per sensor seems to be an essential additional determinant
to estimate the flow rate at other locations. The presence of this variable in the best model indicates
that the total flow rate influences the ratio between the Wi-Fi counts and the flow rate, which is in line
with the results of ref. [37]. They established that the ratio between Wi-Fi sensors and the total number
of static people near a sensor is dependent on the total number of people that are counted. That is,
the more devices are detected, the lower the multiplication factor becomes. The second variable added
to the RNN-LSTM is the average ratio between the Wi-Fi counts and flow rate. This finding suggests
that A) the ratio between Wi-Fi counts and the flow ratio varies over time and B) this dynamic variance
should be captured in order to predict the flow rate correctly. There can be multiple sources of the
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fluctuation of the multiplication factor. The authors expect that two important causes of this fluctuation
in the multiplication factor are changes in the population mixture (i.e., the average age, and thus the
type of smartphones changes during the evening) and changes in the walking speed (i.e., during the
evening, the average walking speed was found to decrease).

In order to get more insights into the forecasting capabilities of the models, the simulated flow
rate time series are compared with the actually measured time series of the flow rate, see Figure 6 for a
visual comparison of the results. The figure illustrates that the three models have slightly different
characteristics. In general, the three best models (i.e., model 6—multiple linear regression, 8—shallow
neural network—and 9—RNN-LSTM) are capable of predicting the general trend in the flow rate at
times when the flow rate is limited, i.e., less than 25 visitors per minute. However, none of the models
predicts the sharp increase in the flow rate that was measured at location 4 on Thursday and Saturday.
This was also not expected, as the time series of the Wi-Fi count at this location does not provide any
indication that a sudden change in flow rate is occurring.
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Furthermore, all model types have great difficulty capturing the exact measured values.
This suggests that the translation between Wi-Fi counts and flow rate is not as direct as one would
expect based on literature and, in particular, the pedestrian fundamental diagram [66]. The authors
assume that this finding is the result of the event settings for which these models are estimated. In those
settings, a pedestrian space serves multiple purposes simultaneously. That is, pedestrians use the
same space to travel from A to B or to watch a performance. Depending on the mixture of these two
behaviors, the expected relation between the Wi-Fi counts and flow rate differs. Future research into
the unravelling of these two activity types might improve the flow rate estimation.

Besides that, the several simple linear regression model (model 6) and the shallow neural network
model (models 8) predict several strange peaks in the flow rate at moments in time that these do not
occur in reality. These peaks are also found in the raw Wi-Fi counts, for instance between 18:00 and 19:00
at location 2. The lack of strange peaks in the output of the RNN-LSTM suggests that the RNN-LSTM
dampens these peaks. This dampening effect is possibly why the coefficient of determination of the
RNN is slightly higher than that of the other two models.

In addition, Figure 6 shows that the RNN model best captures the global trend at lower flow rates.
Given that low flow rates occur most of the time, models, which most accurately predict low flow rates,
are favored in the calibration process. Thus, the RNN is best capable of capturing both low and high
flow rate values.

A comparison of the scatter plots of the real data with the models’ results illustrates that all three
models have difficulties predicting high flow rates correctly (see Figure 7). This is irrespective of
the size of the Wi-Fi count. In all three graphs, distinct horizontal boundaries can be distinguished.
An classification of the validation set into four bins also shows that the NN and RNN models do not
generate any values higher than 50 (see Figure 8). The MLR model only generates a very low number
of values higher than 50 (i.e., < 1%). In comparison with the validation dataset (15%), the complete
lack of high value estimates by the models is striking. All three models are specialized in predicting
the low flow situations correctly. Consequently, the three ‘best’ models cannot be used to identify high
flow rate situations using Wi-Fi counts.Sensors 2020, 20, x FOR PEER REVIEW 20 of 26 
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A last analysis of the Mean Absolute Error (MAE) indicates that the MAE grows with time during
the TT Festival (see Figure 9). The increasing f can partly be explained by the fact that the MAE for
larger flow rates is bigger than for smaller flow rates. Since visitor numbers increase during the evening,
higher flows occur at the end of the evening. However, the MAE between 21:00 and 22:00 is even
larger than one would expect as a result of the higher flow rate. The authors expect that the very high
MAE can also be partly explained by the changes in the visitor population. That is, more young people
with state-of-the-art smartphones often results in a lower number of Wi-Fi traces as smartphones with
rotating MAC-addresses are filtered out. Consequently, the three best models seem to be sensitive
to the characteristics of the population. More research is required to, either explicitly incorporate
the population characteristics in the models, or derive data fusion models that are in-sensitive to the
population characteristics.
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7. Conclusions and Future Works

Many crowd monitoring systems make use of only one type of sensor, which severely limits the
type of insights regarding the crowd’s movements that one can gather simultaneously. This research
has estimated a data fusion model that enhances crowd monitoring systems that predominantly
feature one sensor type, namely Wi-Fi sensors. Using a small number of sensors of another type,
namely automatic counting systems, the flow rate can be estimated for sensor locations where only
Wi-Fi data is gathered.

Using historic data featuring the flow rate and Wi-Fi counts per minute, several data fusion
models have been calibrated. Among others, various regression models, shallow neural networks,
recurrent neural networks, and ARMAX models were estimated. The best three performing model
structures are the Recurrent Neural Network (RNN-LSTM), shallow neural network (NN) and a
multiple linear regression model. The NN estimated the flow rate the best, which is probably due to its
ability to predict non-linear behavior.

By doing so, this research shows that the installation of a limited number of highly specialized
sensors in a vast sensor network consisting of only Wi-Fi sensors can enhance the insights crowd
managers can gather regarding the pedestrian traffic state. More specifically, this work illustrates that
the installation of several well-placed automatic camera sensors allows one to approximate the flow
rate at parts of a sensor-network where no automated counting systems are available.

Moreover, this research shows that feeding the MLR, NN and RNN-LSTM with additional variable
pertaining the overall crowd movement dynamics at the terrain improves the flow rate estimates.
This suggests that the sensor data is to some extent spatially correlated. Consequently, when deriving
traffic state variables for one location, one can leverage the spatial and temporal correlations of other
sensors in the network to improve the estimation.

This work also identifies that the prediction technique has some limitations, which provide exciting
alleys for further research. First of all, the current flow rate estimation model is not specialized per
sensor location, as it is unclear to what extent the characteristics of the sensor location are influencing
the ratio between the Wi-Fi counts and flow rate under different circumstances. A comparison of the
Wi-Fi count and flow rate time series shows that differences exist between sensor locations. Therefore,
a classification of similar sensor locations could potentially improve the flow rate estimation model.

Moreover, a limited set of model structures is tested for the neural networks (both shallow and
recurrent). As such, currently this study cannot be ensured that the current structures of these neural
networks are the optimal structures. Potentially, deeper learning networks might further improve the
models’ capabilities. More research is required to determine the optimal model structure of neural
networks for this particular data fusion task.

Besides that, the current model is estimated based on one particular population of festival
visitors. This diverse and relatively old population is not necessarily representative for other festivals.
The authors expect that the type of populations might influence the validity of the data fusion model
as smartphone usage might differ between population types. Consequently, the current flow rate
estimation model cannot directly be used for other types of populations (e.g. pop concert visitors),
or other settings (e.g. shopping malls or theme parks). Research into the influence of the population
type and context on the model fit is required.

Last of all, the applicability of this method is dependent on the size of the population and the
percentage of visitors that carries a Wi-Fi enabled device that transmits a non-rotating MAC-address
whenever it is used. As the privacy-protocols installed on smartphones improve, the current filtering
procedure becomes increasingly problematic. Therefore, further research into data fusion methods that
can handle with noisy Wi-Fi data is essential.
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