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THE BIGGER PICTURE Single-cell technologies are able to capture information of a biological system cell
by cell. Such a level of precision is changing thewaywe understand complex systems such as cancer or the
immune system. However, a major challenge in studying single-cell systems and their underlying biological
phenomena is their inherently noisy nature due to their complexity. Random matrix theory is a field with
many applications in different branches of mathematics and physics. In the words of one of its developers,
the theoretical physicist Freeman Dyson, it describes a ‘‘black box in which a large number of particles are
interacting according to unknown laws.’’ A complex system with a large number of components (such as
genes, biomolecules, or cells) interacting according to unknown laws is the epitome of systems biology.
Therefore, random matrix theory looks like a suitable framework to mathematically describe the noise
and complexity of gene-cell expression data coming from single-cell biology.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Single-cell technologies provide the opportunity to identify new cellular states. However, a major obstacle to
the identification of biological signals is noise in single-cell data. In addition, single-cell data are very sparse.
We propose a new method based on random matrix theory to analyze and denoise single-cell sequencing
data. The method uses the universal distributions predicted by random matrix theory for the eigenvalues
and eigenvectors of random covariance/Wishart matrices to distinguish noise from signal. In addition, we
explain how sparsity can cause spurious eigenvector localization, falsely identifying meaningful directions
in the data.We show that roughly 95% of the information in single-cell data is compatible with the predictions
of random matrix theory, about 3% is spurious signal induced by sparsity, and only the last 2% reflects true
biological signal. We demonstrate the effectiveness of our approach by comparing with alternative tech-
niques in a variety of examples with marked cell populations.
INTRODUCTION

Characterizing different cellular subtypes in heterogeneous pop-

ulations and describing their evolution plays a central role in un-

derstanding complex systems such as cancer or the immune

system. Single-cell technologies offer the opportunity to identify

previously unreported cell types and cellular states and explore

the relationship between new and known cell states.1–7 Howev-

er, there exist several significant biological and technical chal-
This is an open access article under the CC BY-N
lenges that complicate the analysis. The first challenge is the

lack of a complete quantitative understanding of the different

sorts of noise that arise in single-cell measurements, such as

intrinsic cell-to-cell variability and spatial and temporal fluctua-

tions within a cell. Moreover, different technologies show biases

arising from the process of detecting, amplifying, and

sequencing genomic material that significantly vary across

different genomic loci. Correctly estimating noise and distin-

guishing between biological and technical sources of signal is
Patterns 1, 100035, June 12, 2020 ª 2020 The Author(s). 1
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essential for any further analysis, otherwise it is difficult to reliably

distinguish states or identify potential variations of a single state.

A second complicating factor for single-cell analysis is the spar-

sity of data (i.e., the large fraction of zero values in the original

data matrix), typically caused by the very small amounts of

genomic material being amplified.

A number of computational and statistical approaches have

been designed to address these challenges.4,8–13 Imputation

methods try to infer the ‘‘true’’ expression levels of missing

values from the sample data by empirically modeling the under-

lying distributions; for instance, using negative binomial plus

zero inflation (dropout) for single-cell data. These techniques

usually assume that all values are generated by the same distri-

bution (i.e., they assume independent and identically distributed

random variables, or i.i.d.). Although there have been efforts to

understand the intrinsic stochastic nature of gene expres-

sion,14,15 we currently do not have predictive quantitative

models of gene expression. Therefore, it is not clear what the

correct distribution is, or whether it is reasonable to make the

i.i.d. assumption. Given the lack of a quantitative microscopic

description of cell transcription, we would ideally like to have a

statistical description of the noise in single-cell data that does

not rely on specific details of the underlying distributions of

expression.

Universality and Random Matrix Theory in Single-Cell
Biology
Historically a similar problem arose in the 1950s in nuclear phys-

ics, when the lack of quantitative models of complex nuclei pre-

cluded accurate predictions of their energy levels. However,

simple theoretical models based on experimental data showed

that some observables, such as the spacing between two

consecutive energy levels, followed distributions that could be

derived from random matrices, i.e., matrices whose entries

are independently sampled from a given probability distribu-

tion.16–18 The same distributions were subsequently identified

in a variety of complex systems including quantum versions of

chaotic systems19 and patterns of zeros of the Riemann zeta

function.20,21 In this paper, we show that these distributions

also appear in the context of single-cell biology and that their

properties can be used to denoise single-cell data (Figure 1A).

Random matrix theory (RMT) studies the statistical properties

of the eigenvalues and eigenvectors of an ensemble of random

matrices. These statistical properties exhibit a phenomenon

known as universality, where under mild hypotheses the specific

details of the underlying probability distribution generating the

entries of the matrix become irrelevant (akin to the central limit

theorem).22,23 Specifically, the observed distributions depend
Figure 1. Random Matrix Theory Applications to Single-Cell Sequenci
(A) Schematic of the analysis based on randommatrix theory (RMT). Single-cell da

structure: a randommatrix, a sparsity-induced signal, and a biological signal. The

from sRMT applied to the covariance matrix of the data.

(B) Deviations from the Tracy-Widom (TW) distribution have been associated t

randomly distributed in an N sphere, whereas localized eigenvectors are locali

deviations in components of the eigenvectors from the expected distribution, whic

of the eigenvector as a random variable, its probability density function (PDF) (th

(C) The Wigner surmise distribution captures the spacing between eigenvalues o

(D) Departures from universal distributions predicted by RMT indicate interesting p

distribution. Deviations from universality can be found by analyzing the larger eig
only on the finiteness of the first few moments of the distribution

generating the matrix entries.24–26 RMT universality implies that

the density of eigenvalues of covariance matrices obtained

from a random matrix follows the Marchenko-Pastur (MP) distri-

bution.22,27 It also implies that the eigenvectors of a randomma-

trix are delocalized, i.e., their norm is equally distributed across

all their components (see Figure 1B and Supplemental Experi-

mental Procedures for an extensive discussion).

We propose here to apply this universality phenomenon to

identify statistical features of noise present in single-cell biology

(Figure 1). In particular, we claim that any single-cell dataset can

be modeled as a random matrix (that encodes the noise) plus a

low-rank perturbation (which is the signal). As a consequence,

we expect the noise of the system follows the distributions pre-

dicted by RMT universality. Large deviations from these distribu-

tions indicate the presence of a signal that can be further

analyzed. At the level of eigenvalues, random deviations from

the MP distribution are described by the Tracy-Widom (TW) dis-

tribution, which is the probability distribution for fluctuations on

the value of the largest eigenvalue of a randommatrix (Figure 1C).

Similar strategies using TW and MP distributions have been

already discussed in previous works.28–30

Eigenvector Localization in Single-Cell Biology
One of the main novelties of this work is the application of

the eigenvector statistics predicted by RMT to single-cell

sequencing. For the eigenvectors, the transition between noise

and signal is described by a phase transition: the delocalized ei-

genvectors give way to localized eigenvectors, i.e., eigenvectors

characterized by having their norm concentrated in a few com-

ponents (Figure 1B and Supplemental Experimental Proced-

ures). In condensed matter physics this phenomenon is known

as Anderson localization.31 In the single-cell context, localization

can be interpreted as groups of cells whose gene expression is

correlated. An essential feature of the situation is that the

distribution of components for delocalized eigenvectors approx-

imates a Gaussian distribution, whereas the localized eigen-

vector components have a non-Gaussian distribution (Figure 1B

and Supplemental Experimental Procedures). Eigenvalues that

lie outside of the MP distribution are associated with localized

eigenvectors (Figures 4 and 5).

As noted above, single-cell data are often very sparse. Spar-

sity introduces a subtlety in the analysis because sparse random

matrices can present deviations from the eigenvalue distribu-

tions predicted by RMT universality and can have localized

eigenvectors (Figure 2A). As a consequence, in a sparse dataset

the deviations from the MP distribution and the localized eigen-

vectors will be partially induced by the sparsity. A way to identify
ng Data
ta can bemodeled using sparse randommatrix theory (sRMT), showing a 3-fold

strategy proposed here is to identify the biological signal using the predictions

o the phenomenon of eigenvector localization. Delocalized eigenvectors are

zed along some directions in the N sphere. Localization can be identified as

h is approximately Gaussian in high dimensions. If we think of the components

e Gaussian) corresponds to a maximum entropy PDF.

f Wishart matrix across single-cell RNA-sequencing experiments.

otential biological signals. In red is the non-parametric Marchenko-Pastur (MP)

envalues in relation to the expected TW distribution.
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Figure 2. Sparse Random Matrices and Sparsity-Induced Eigenvector Localization

(A) Randomized sparse dataset, corresponding to PBMCs in Kang et al.,32 where there exist deviations fromMP distribution at the eigenvalue level, and presence

of localized eigenvectors.

(legend continued on next page)
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the effects of sparsity is to randomize the dataset (permuting the

cell labels for each gene independently) and observe that,

although the entire dataset is now uncorrelated, it still might

show localized eigenvectors and potentially also significant de-

viations in the eigenvalues from the MP prediction (Figure 2A)

due to sparsity. We can therefore conclude that single-cell

data can be thought of as decomposing into three parts: a

random matrix, a sparsity-induced non-biological signal, and a

biological signal. To distinguish the biological signal from the

sparsity-induced eigenvectors, we propose a feature selection

method that discards the features (genes) that are responsible

for the localized eigenvectors in the randomized case. This

method increases the power for identifying potentially interesting

biological signals (Figures 3, 4, and 5). Our approach leads

directly to an estimate of the latent space. We show that this pro-

cedure is better able than alternative techniques to capture

marked single-cell clusters across a variety of datasets

(Figure 6).

RESULTS

Quasi-Universality of Single-Cell Sequencing Data
We observed that the distribution of spacing between two

consecutive eigenvalues of the sample covariance matrix in

different single-cell RNA-sequencing experiments35–40 resem-

bles the Wigner surmise distribution conjectured by Wigner in

195518 in the study of the difference between resonant peaks

in slow neutron scattering (Figure 1D). This observation promp-

ted us to investigate the connection between RMT and the

spectra of single-cell data, guided by the hypothesis that

departures from RMT universality distributions indicate potential

biological signals (Figures 1A–1C). We observed that across sin-

gle-cell datasets these deviations amount to 5% of eigenvalues

(Figure 2E). We also demonstrate (Supplemental Experimental

Procedures) that the level of localization can be identified as

deviations from normality in the distribution of eigenvector com-

ponents (Figure 2A). Alternatively, localization can be detected

using Shannon entropy (Figures S3A–S3C) or by the inverse

participation ratio (IPR) (Figures S3D–S3F).

Sparsity-Induced Eigenvector Localization
Single-cell data are usually sparse. Thus, we investigated how

sparsity could induce deviations from RMT universality (Fig-

ure 2A). By introducing zeros in a random matrix with entries

generated with Gaussian or Poisson distributions, we observed

deviations in the fluctuations of the eigenvalues from the TW dis-

tribution (Figure 2D). A similar phenomenon has been reported in

the context of sparse randommatrix ensembles, a generalization

of RMT to the setting of random matrices with a significant frac-

tion of zero entries. It has been shown24,41–43 that for the case of
(B) The localization phenomenon due to sparsity can bias the lower-dimensional re

the randomized dataset generates a more homogeneous distribution in the lowe

(C) The effects of sparsity can also be appreciated in the classical elbow plots: s

(D) Deviations from TWdistributions can be easily seen in sparsematrices. In this c

delta at zero. Similar results are obtained with other sparse distributions.

(E) Departures from universality amount to near 5% of eigenvalues. However, m

Random Matric Theory can provide a better model to understand single-cell seq

values.
sparse Wishart random matrices, the density distribution of ei-

genvalues deviates from MP and some eigenvectors become

localized. We show that this phenomenon can be observed in

sparse single-cell data. To this end, we randomized a 95%

sparse cell-gene expression matrix corresponding to 6,573 hu-

man peripheral blood mononuclear cells (PBMCs) from Kang

et al.32 and analyzed the statistics of its eigenvalues and eigen-

vectors. Although the bulk of the eigenvalue density seems to

follow an MP distribution, it is easily seen that deviations on

the upper edge appear. Using a normality test we detected local-

ization in the corresponding eigenvectors (Figures 2A, 4A, and

5A). Eigenvector localization due to sparsity generates artifacts

that could potentially be interpreted as true signal in standard

application of principal component analysis (PCA). For instance,

the highest components of sparse random data show a bias to-

ward the first component (Figure 2B). Another effect of sparsity is

the generation of an artifactual ‘‘elbow’’ in randomized sparse

data (Figure 2C). Therefore, the first step in our algorithm is to

suppress these effects by removing genes that introduce

spurious effects due to sparsity. We identify such genes in terms

of deviation from normality after random projection (Supple-

mental Experimental Procedures).
Feature Selection and Application to Single-Cell
Transcriptomic Datasets
In this section we explain the application of the RMT analysis to

two marked single-cell datasets: 6,573 human PBMCs from

Kang et al.32 (Figure 4) and 3,005 mouse cortex cells from Zeisel

et al.34 (Figure 5). The first step is to remove the sparsity-induced

signal. Figures 4A and 5A show the normality test for the eigen-

vectors before (blue line) and after (red line) removing the spar-

sity-induced signal. There is a substantial number of eigenvec-

tors that become delocalized once the genes responsible for

the sparsity are trimmed out (Supplemental Experimental Pro-

cedures). Once the sparsity-induced signal has been removed,

the second step in the algorithm is to detect the part of the data-

set that corresponds to a random matrix. We first compute the

Wishart matrix and then use gradient descent to find the MP dis-

tribution in the eigenvalue distribution (Figures 4B and 5B; Sup-

plemental Experimental Procedures). At the same time, the anal-

ysis of the normality of the eigenvectors (red line in Figures 4A

and 5A) provides an estimate of the amount of information con-

tained in each eigenvector. As mentioned before, the compo-

nents of delocalized eigenvectors follow a Gaussian distribution;

Figures 4A and 5A show theGaussian profile of each eigenvector

through a normality test (Shapiro-Wilk). Interestingly, even some

of the eigenvectors corresponding to eigenvalues outside the

MP distribution are delocalized and hence do not carry informa-

tion. A similar argument can be made in terms of other eigen-

vector features, such as Shannon entropy or IPR (Figure S3).
presentations (up). Eliminating the genes that cause eigenvector localization in

r-dimensional representation (down), reflecting the random nature of the data.

parsity can introduce an artifactual elbow in randomized data.

ase, 100-by-100 randommatrices are drawn amixture of a normal and a Dirac-

ost of these can be explained by the sparsity of data, suggesting that Sparse

uencing data. Truly potential biological signal amounts to only ~2% of eigen-
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Figure 3. Application to Simulations of Single-Cell and Comparison with Standard PCA

(A) t-SNE representation of a six-cell population single-cell simulation using Splatter33 for the cases with and without noise associated with dropout effects, and

for different selection of principal components after applying a standard PCA technique. The colors correspond to the label of each group of cells simulated, and

no clustering has been performed.

(B) MP prediction and identification of the relevant components.

(C) Selection of features (genes) responsible for signal.

(D) t-SNE representation after results after processing through the RMT.

ll
OPEN ACCESS Article
The strategy of our analysis is to detect and remove these delo-

calized (non-informative) eigenvectors. Filtering the eigenvec-

tors complements and improves the analysis based only on

the eigenvalues.

The third step consists in projecting the dataset onto the ei-

genvectors that carry signal and also onto different subsets of

the eigenvectors that correspond to eigenvalues in theMP distri-

bution (Supplemental Experimental Procedures). Using a chi-

squared test for the variance of each gene projected onto the

signal and noise eigenvectors, we use a false discovery rate to

evaluate which genes are responsible for signal or noise (Figures

4C and 5C). The end result is a selection of features (genes) and a

projection of the dataset onto the signal directions. Finally, Fig-
6 Patterns 1, 100035, June 12, 2020
ures 4D and 5D (see also Figure S4) show t-distributed stochas-

tic neighbor embedding (t-SNE) representations to visualize in

two dimensions the latent space after denoising using our

approach. The colors represent the cell populations described

in Kang et al.32 and Butler et al.11 for human PBMCs, and for

marked mouse cortex cell populations described in Zeisel

et al.34 In the same figures we also show a comparison with other

methods used to denoise single-cell datasets based on imputa-

tion and zero-inflated dimensionality reduction.

Biological Interpretation
We have performed a gene set enrichment analysis on the genes

that the algorithm selects as responsible for the biological signal.



(legend on next page)
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Using a hypergeometric test on reported biological processes in

our mouse brain dataset, the top pathways in the signal gene list

correspond to specific brain functions (transmission across

chemical synapses, q value = 1.4 3 10�23, Neural system q

value = 2.83 10�23) while in the PBMC dataset the top pathways

correspond to immune-system-related processes (immune sys-

tem q value = 1.9 3 10�32, cytokine signaling in immune system

q value = 2.0 3 10�21). On the other hand, taking the genes that

were not selected by our algorithm, the most significant path-

ways are associated with generic biological processes (S-phase

q value = 4.1 3 10�12; cell-cycle q value = 2.0 3 10�11). These

results support the contention that eigenvector localization can

be used to identify biological processes that are specific to inde-

pendent cell populations within each experiment.

Simulations and Comparison of Alternative Approaches
We now proceed to evaluate the performance of the algorithm

for the identification of potential relevant biological signals. We

first perform a single-cell RNA-sequencing simulation of six

cell populations using Splatter33 (Supplemental Experimental

Procedures). Figure 3A shows a t-SNE representation of a simu-

lation without and with noise associated with dropout effects.

Here, 25 and 7 principal components have been selected. The

colors correspond to each cell group simulated (no clustering

has been performed). Figure 3D shows the result after our algo-

rithm, and Figures 3B and 3C the associated MP statistics. The

first example illustrates the challenge of identifying structures

based on t-SNE plots before performing the algorithm (Fig-

ure 3A); in contrast, after the algorithm has been applied, we

see clearly separated clusters (Figure 3D).

We now perform a comparison with some published algo-

rithms in terms of cell-phenotype cluster resolution. We again

use the datasets from Kang et al.32 (human PBMCs) and Zeisel

et al.34 (mouse cortex) described in the previous section. As ex-

plained in the previous sections, these references together with

Butler et al.11 have cells already labeled by phenotype. We

claimed in previous sections that our method is able to remove

system noise such that the cell-phenotype clusters are better

resolved. This noise is partially generated due to the missing

values in single-cell experiments. For this reason, we compare

the two main approaches in the field that address this: imputa-

tion (MAGIC8 and scImpute10) and zero-inflated dimensionality

reduction (ZIFA13 and ZIMB-WaVE9).We also perform a compar-

ison with non-linear neural networks methods: scVI44 and

DCA.45 For completeness, we also compare the raw data with

a selection of genes based on higher variance (top 300 genes)

and with Seurat.46 The comparison is performed using the
Figure 4. Application to PBMC Single-Cell Expression

(A) Localization properties of the eigenvectors in a single-cell dataset of PBMCs.

corresponds to the system after removing sparsity. This figure also shows how

delocalized (red line) and therefore do not carry any information.

(B) MP prediction and identification of relevant components.

(C) Study of the chi-squared test for the variance (normalized sample variance) in s

to a projection of genes into the 83 signal eigenvectors (corresponding to the 83

genvectors. There is also a projection into 83 random vectors. Finally, the lines s

shows the number of relevant genes in terms of the test discussed above, togethe

indicate that the genes are less responsible for the signal.

(D) Comparison of the t-SNE representation for different public algorithms. This c

and described in Butler et al.11

8 Patterns 1, 100035, June 12, 2020
knowledge of cell phenotypes in the studies by Butler et al.,

Kang et al., and Zeisel et al.11,32,34 and by computing the mean

silhouette score in the reduced space, whereby higher values

would indicate a better (less noisy) cell-phenotype cluster reso-

lution. In Figures 6A–6D we represent the mean silhouette score

as a function of the latent space number of dimensions for 13

PBMC phenotypes described in Butler et al.11(Figure 6A) and

for 7 (Figure 6B), 15 (Figure 6C), and 26 (Figure 6D) marked

mouse cortex cell populations described in Zeisel et al.34 We

have selected the 1,500 most signal-like genes using RMT and

we can observe how RMT outperforms other methods in the

identification of known marked populations. Notice also how

this becomes more dramatic as we increase the number of pop-

ulations. Although this exercise is done with known populations

in order to give a comparative quantitative measure, from Fig-

ures 6A–6D we can also conclude that RMTmethod is a suitable

one to better disentangle cell populations by noise removal and

hence to find new potential cell populations. Moreover, the per-

formance advantage of the RMT method increases with the

dimension of the latent space. This last feature is particularly

interesting since in the future, the number of required dimensions

in the latent space for an accurate analysis is expected to grow

due to continuing improvements in resolution and the number of

cells that can be measured.

DISCUSSION

In this paper, we demonstrate the effectiveness of (sparse) RMT

for studying the spectrum of the covariance matrix of single-cell

genomic data. We have shown that single-cell data shows a 3-

fold structure: a random matrix, a sparsity-induced signal, and

a biological signal. We also show that while most of the spectrum

follows the expectations from RMT (95%), there exist deviations

due to artifacts generated by a sparsity-induced signal (�3%)

and due to a biological signal (�2%). The large contribution of

the random component to the spectral properties of the covari-

ance matrix of single-cell expression data could be due to the

stochastic nature of gene expression at single-cell level, as has

been studied in a variety of biological contexts.14,47

We have introduced a method to denoise single-cell

sequencing data studying eigenvalue and eigenvector proper-

ties based on RMT. This method uses RMT universality proper-

ties of eigenvalue distributions, e.g., the TW and MP distribu-

tions, and extends it to the study of the eigenvector properties,

based on the localization/delocalization phase transition. This

method is also able to select genes responsible for potentially

interesting biological signals. The algorithm provides a powerful
32 The blue line represents the system dominated by sparsity and the red line

some eigenvectors corresponding to eigenvalues out of MP distribution are

ignal and noise gene projections. In the left panel, the distributions correspond

eigenvalues of A) and the projection into the 83 lowest and 83 largest MP ei-

how how gamma functions can fit the distributions discussed. The right panel

r with a false discovery rate. Higher values for the chi-squared test for variance

ase corresponds to 13 different PBMC phenotypes sequenced in Kang et al.32
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Figure 6. Comparison of Alternative Approaches for Single-Cell Analysis

(A) Mean silhouette score for different methods as a function of the number of dimensions of the latent space for the case of 13 PBMC cell phenotypes described

in Butler et al.11

(B–D) Mean silhouette score for different methods as a function of the reduced space number of dimensions for the case of 7 (B), 15 (C), and 26 (D) mouse cortex

cell phenotypes described in Zeisel et al.34

ll
OPEN ACCESS Article
tool to identify this signal and produce a low-rank representation

of single-cell data that may be used for further interpretation.

Additionally, we should point out that the universality we
Figure 5. Application to Mouse Cortex Single-Cell Expression
(A) Localization properties of the eigenvectors in a single-cell dataset of PBMCs.

corresponds to the system after removing sparsity. This figure also shows how

delocalized (red line) and therefore do not carry any information.

(B) MP prediction and identification of relevant components.

(C) Study of the chi-squared test for the variance (normalized sample variance) in s

to a projection of genes into the 103 signal eigenvectors (corresponding to the 10

eigenvectors. There is also a projection into 103 random vectors. Finally, the lines

shows the number of relevant genes in terms of the test discussed above togethe

indicate that the genes are less responsible for the signal.

(D) Comparison of the t-SNE representation for different methods and algorithms.

in Zeisel et al.34

10 Patterns 1, 100035, June 12, 2020
observed in Wishart/covariance matrices is also observable in

the spectra of graph Laplacians (including sparse graphs48)

and kernel random matrices,49 which are used in other single-
32 The blue line represents the system dominated by sparsity and the red line

some eigenvectors corresponding to eigenvalues out of MP distribution are

ignal and noise gene projections. In the left panel, the distributions correspond

3 eigenvalues of A) and the projection into the 103 lowest and 103 largest MP

show how gamma functions can fit the distributions discussed. The right panel

r with a false discovery rate. Higher values for the chi-squared test for variance

This case corresponds to 15 different mouse cortex cell phenotypes described
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cell analytic techniques, suggesting that the approach followed

here could be applied more broadly. The code for the algorithm

is publicly available on https://rabadan.c2b2.columbia.edu/

html/randomly/.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100035.
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