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However, current methods do not

address the multi-dimensionality of

networks and their inherent biases. Here,

we present a novel method, the

Integrated Value of Influence (IVI), that

effectively handles such challenges and

accurately calculates the influence of

each individual within a network.
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THE BIGGER PICTURE Decoding the information buried within the interconnection of components could
have several benefits for the smart control of a complex system. One of the major challenges in this regard
is the identification of the most influential individuals that have the potential to cause the highest impact on
the entire network. This knowledge could provide the ability to increase network efficiency and reduce
costs. In this article, we present a novel algorithm termed the Integrated Value of Influence (IVI) that com-
bines the most important topological characteristics of the network to identify the key individuals within it.
The IVI is a versatile method that could benefit several fields such as sociology, economics, transportation,
biology, andmedicine. In biomedical research, for instance, identification of the true influential nodeswithin
a disease-associated network could lead to the discovery of novel biomarkers and/or drug targets, a pro-
cess that could have a considerable impact on society.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Biological systems are composed of highly complex networks, and decoding the functional significance of
individual network components is critical for understanding healthy and diseased states. Several algorithms
have been designed to identify the most influential regulatory points within a network. However, current
methods do not address all the topological dimensions of a network or correct for inherent positional biases,
which limits their applicability. To overcome this computational deficit, we undertook a statistical assess-
ment of 200 real-world and simulated networks to decipher associations between centrality measures and
developed an algorithm termed Integrated Value of Influence (IVI), which integrates the most important
and commonly used network centrality measures in an unbiased way. When compared against 12 other
contemporary influential node identification methods on ten different networks, the IVI algorithm outper-
formed all other assessed methods. Using this versatile method, network researchers can now identify the
most influential network nodes.
INTRODUCTION

The computational theory of complex systems aims to provide a

holistic, top-down view of network interactions with the purpose

of identifying critical network properties that reductionist ap-

proaches are incapable of identifying. Network science has
This is an open access article under the CC BY-N
been used for the investigation of complex networks within a

broad variety of scientific fields, including social networks,

road traffic, telecommunications, cartography, chemistry,

biochemistry, and biology in general.1–4 In the age of high-

throughput biological assays, systems biology techniques are

being used extensively for the analysis of a variety of biological
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networks, including gene regulatory networks, protein-protein

interactions (PPI), and neural signals.5 In these approaches,

the topology of a network is analyzed, and its different centrality

measures (metrics demonstrating the influence of each node

within a network) are calculated to find deeper biological mean-

ings and identify the most influential regulatory molecules. While

hub nodes have high connections with other nodes within a

network, the spreader nodes are predicted to have the greatest

impact on the flow of information throughout the network.6 Also,

both of these features (i.e., hubness and spreading potential) are

commonly, but independently, used to identify network influen-

tial nodes. Nodes with a simultaneously large number of connec-

tions and high spreading potential are the most influential or vital

nodes in a network.

Most influential nodes can be identified by measurements of

the centralities of a network, which themselves are calculated

by analyzing the overall topology of the network. Network basic

features and centrality measures are general and apply to all

network domains, including biological ones. A network (graph)

can be formulated as N = ðn; eÞ, where n and e are indicative

of nodes (also known as vertices) and edges, respectively. No-

des are parts of a network that are connected to each other by

edges. To date, more than 100 centrality measures have been

identified during the assessment of different network nodes,

and several tools, plugins, and packages have been developed

for the calculation of these measures.7,8 Furthermore, some

tools have been developed for the identification of themost influ-

ential nodes of a network based on its centrality measures.9,10

The simplest local centrality measure of a graph is the degree

centrality (DC) DCi =
P

jsiAij, where A is representative of the

adjacency matrix of the corresponding network and Aij = 1 if no-

des i and j are connected and Aij = 0 otherwise.11 ClusterRank is

another local centrality measure that makes an intermediation

between local and semi-local characteristics of a node by

removing the negative effects of local clustering. The Cluster-

Rank for node i is mathematically defined as si =

fðciÞ
P

j˛Gi
ðkoutj + 1Þ, where the term fðciÞ accounts for the effect

of i’s local clustering, Gi is the set of neighbors of vertex i and the

term + 1 results from the contribution of j itself. The ClusterRank,

although it considers the degree of first neighbors of each node

as well, as explained in its corresponding paper, is a local cen-

trality index due to its multiplication by fðcÞ, which accounts for

the local clustering of each node.12 Betweenness centrality

and collective influence are two global centrality measures and

among the most widely adopted for the identification of network

influencers.13,14 Betweenness is defined as the tendency of a

node to be on the shortest path between nodes in a graph.1 No-

des with high betweenness are considered as influencers of in-

formation flow within a network. If Smn is the number of shortest

paths between nodesm and n, and SmnðiÞ is the number of short-

est paths between nodes m and n that pass through node i,

then the betweenness centrality of node i is BCi =P
msi;msn;nsiðSmnðiÞ =SmnÞ .11 Collective influence is a novel

global centrality metric that measures the collective number of

nodes that can be reached from a given node i and is mathemat-

ically defined as CI[ðiÞ = ðki � 1ÞPj˛dBði;[Þðkj � 1Þ, where ki is

defined as the degree of node i and dBði; [Þ represents the set

of nodes at distance [ from node i. Neighborhood connectivity

is a semi-local centrality measure of a network that deals with
2 Patterns 1, 100052, August 14, 2020
the connectivity (number of neighbors) of nodes. It is defined

as a semi-local metric because it is not restricted to only first

neighbors of a node and encompasses a broader environment.

The neighborhood connectivity of a vertex i is defined as the

average connectivity of all neighbors of i and could be formu-

lated as NCi = ðPk˛NðiÞNðkÞÞ=NðiÞ, where N is representative

of neighbors and NðiÞ is the set of neighbors of vertex i.15 It is

also reported that not only the number of first connections of a

node (degree centrality) but also the extent to which the immedi-

ate neighbors of the node are connected with each other and

other nodes (neighborhood connectivity) are determinants of

the importance of a node in the network.16 TheH index is another

semi-local centrality measure that was inspired by its application

in assessing the impact of scholars and was first introduced by

Korn et al.17 as a network centrality index; its superiority to

some other methods was further explained by L€u et al.18. The

H index of node i is defined as the maximum value h such that

there exist at least h neighbors of a degree larger than or equal

to h. Mathematically, the H index of node i is defined as

Hindexi = Hðkj1 ;kj2 ;.; kjki Þ, whereH is an operator that calculates

theH index of node i based on the degree of its immediate neigh-

bors, and ki and kj are the degrees of nodes i and j, respec-

tively.18 However, the H index has a resolution limit such that it

assigns the same value to too many nodes. To remove this prob-

lem, an improved version of the H index, named the local H in-

dex, was introduced; it is defined mathematically as LHindexi =

Hindexi +
P

y˛NðiÞHindexy , where NðiÞ is the set of neighbors of

node i.19 Contrary to its name, the local H index is a semi-local

centrality measure, because it leverages the H index centrality

to the second-order neighbors of a given node. All of the above

centrality metrics (i.e., degree centrality, ClusterRank, local H in-

dex, neighborhood connectivity, betweenness centrality, and

collective influence) are the most important metrics for the iden-

tification of a network’s most influential nodes. However, other

networkmetrics such as network density,20 size,20 path length,21

PageRank versatility,22 and modularity21 can also be used to

evaluate the topology of networks. For extensive review of

network measures and influential node identification methods,

the reader is referred to the following comprehensive review

and research articles.23–28

The simultaneous consideration of a set of centrality measures

has been previously used as a strategy to find themost influential

network nodes. del Rio et al.,29 by analyzing 16 well-known cen-

trality measures, demonstrated that while identification of

network vital nodes based on a single centrality measure is not

statistically significant, the combination of two centrality mea-

sures that involve both local and global features of the network

couldmore reliably predict themost influential nodes. In systems

biology studies, nodes with high degree and betweenness cen-

trality are usually represented as network influential nodes in the

context of defining both local significance and global network

flow.30,31 However, some novel influential node identification al-

gorithms, such as collective influence, local H index, and Clus-

terRank have been developed recently but are not so widely

adopted, particularly in biological-based studies. Furthermore,

no method or algorithm has been developed to date that inte-

grates these centrality measures with the purpose of synergizing

their effects. In addition, in many networks, there are nodes that

are topologically positioned in the center of the network and
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consequently have a high degree centrality but low betweenness

centrality due to their lack of connections to nodes outside the

main module.11 Specifically, nodes may exhibit a high local cen-

trality but low global centrality, or vice versa, depending on their

position in the network.32 Betweenness centrality measurement

is therefore biased by a node’s position in the network and

consequently should be carefully used for identification of

network spreaders or in developing new influential node identifi-

cation algorithms. Furthermore, the positional bias of between-

ness centrality has not been clearly addressed in previous

studies, and no solution has been proposed to correct for this

computationally.

To overcome these problems, we developed a novel formula

termed the Integrated Value of Influence (IVI) that integrates

the most significant network centrality measures in order to syn-

ergize their effects and simultaneously remove their biases to

identify the most essential regulatory molecules in a network.

The IVI is the first method that truly integrates the effect of six

important network centrality measures. To address the issue of

positional bias of betweenness centrality, we utilized one of the

other network centrality measures named neighborhood con-

nectivity. Also, precise assessment of the association of each

pair of the selected centrality measures helped to define the

proper functions needed for their integration. Considering all

centrality metrics represented in the literature, we selected six

metrics, including degree centrality, ClusterRank, neighborhood

connectivity, local H index, betweenness centrality, and collec-

tive influence, which are the most important ones for the identi-

fication of a network’s most influential nodes. Each of these cen-

tralitymeasures captures a different topological dimension of the

graph, including local, semi-local, and global topology. One of

the other advantages of these centrality measures is that none

of them require a fully connected graph or module to be calcu-

lated. In this study, we addressed the problems and gaps in inte-

gration of centrality measures and identification of true network

influential nodes. We first precisely interrogated the association

of each pair of these six centrality measures and determined that

neighborhood connectivity is an effective method for removing

positional bias in the context of betweenness centrality and col-

lective influence measurements. Next, we compared the IVI

method with 12 other current methods of influential node identi-

fication. Overall, our results reveal that the IVI algorithm outper-

forms all methods tested in the identification of the most influen-

tial network nodes.

RESULTS

We aimed to integrate the most commonly used local, semi-

local, and global measures of network centrality, namely de-

gree centrality and ClusterRank, neighborhood connectivity

and local H index, and betweenness centrality and collective

influence, respectively, and to synergize their effect for the

identification of influential nodes in the network in an unbiased

way. For this purpose, we recruited the Addition and Multipli-

cation functions, two mathematical operations of arithmetic.

Using the Addition function, the effect of two associated

indices is combined in a way that they compensate for each

other’s deficiencies. By contrast, when two indices are multi-

plied, this results in a synergistic product that reflects the ef-
fect of both indices. Taking Pair1 = fa;bg, Pair2 = fc;dg, and
Pair3 = fe; fg, where a, b, c, d, e, and f are 30, 30, 25, 35, 20,

and 40, respectively, as an example of three pairs of indices,

all of which their additive product equals 60. This indicates

that the indices involved in an additive product make up

each other’s deficits. By contrast, while the multiplicative

product of Pair1 equals 900, that of Pair2 and Pair3 equals

875 and 800, respectively. This demonstrates that the effect

of two indices is synergized when using the Multiplication

function for their integration, and the less the difference value

of a pair of indices with the same additive product, the more

the value of their multiplicative product. Although Addition

and Multiplication functions are not new methods, they have

been ignored for too long for scoring measurements in an inte-

grative manner. Furthermore, using the Multiplication method,

no normalization is required before the integration and, conse-

quently, the source of subjectivity concerning the use of the

appropriate normalization method is removed.33 However,

proper application of these arithmetic functions requires prior

knowledge on the nature of the association of the indices to be

integrated. Accordingly, we first inspected the association of

every possible pair of the selected centrality measures from

different aspects, including linearity, monotonicity, and

dependence, which together revealed the nature of their asso-

ciations and helped identify the proper functions to be used for

their integration.

All Selected Centrality Measures Were Variously
Correlated with Each Other
In order to examine the correlation of six selected centrality mea-

sures with each other and to investigate the nature of their asso-

ciations, we built a computational pipeline through which the

innate features of these metrics and their dependence were

carefully assessed (Figure 1). The normality assessments

demonstrated that all selected centrality measures were non-

normally distributed (p value y 0) in the majority of studied net-

works (Table 1). Also, non-linearity/monotonicity assessments

indicated that all six centrality measures were non-linearly/non-

monotonically correlated with each other (estimated degree of

freedom of smooth terms >2.29, p < 0.0395) in both of the inde-

pendent real-world biological networks analyzed. Similarly, non-

monotonicity evaluations revealed that the selected centrality

measures were more non-monotonically correlated (multiple R-

squared from rank-regression > squared Spearman’s rank cor-

relation coefficient) with each other rather than monotonically.

Accordingly, the non-linear non-parametric statistics (NNS)

were used for the correlation analyses between each pair of

the selected centrality measures. The NNS is a statistical method

for the assessment of dependence and correlation between two

variables based on higher-order partial moment matrices. Ac-

cording to the assessment of 200 networks (Figure 2A), most

of the centrality pairs had a considerable non-linear/non-mono-

tonic correlation with each other. Considering the positional bias

reduction and for index integration purposes, we focused on the

remarkable correlation between four pairs, including degree

centrality and local H index (Figure 2B), betweenness central-

ity/collective influence and neighborhood connectivity (Fig-

ure 2D), and betweenness centrality and collective influence

(Figure 2E). In addition, ClusterRank was the only centrality
Patterns 1, 100052, August 14, 2020 3



Conditional probability

assessment

Non-monotonicity

assessment

Non-linearity

assessment

Normality

assessment

Normally distributed: Pearson correlation

Non-normally distributed: Going to step 2

Less than 5000: Shapiro-Wilk test

Mode than 5000:Anderson-Darling test

NNS non-linear/-monotonic descriptive correlation

based on partial moments

Non-linear/-monotonic

dependence assessment

Non-linear/-monotonic

correlation assessment

01

02

04

05

03
Comparison of Multiple R-squared of rank-

regression analysis with squared

Spearman's rank correlation coefficient

Generalized additive model (GAM) with integrated

smoothness approximation

CANOVA, MIC, and Hoeffding's
independence tests

p-value > 0.05: Spearman correlation

DF > 1 & p-value < 0.05: Going to step 3

Multiple R-squared < squared Spearman's r:
Spearman correlation

Multiple R-squared > squared Spearman's r:
Going to step 4

Correlation < 0: Negatively correlated

Correlation > 0: Positively correlated

Conditional probability of deviation from mean

in opposite directions

Compare with the results of non-linear/-

monotonic correlation analysis
06

p-value > 0.05: Not dependent

p-value < 0.05: Significantly dependent

Figure 1. The Assessment Workflow of the Association of Two Network Centrality Measures

This workflow illustrates the stepwise assessment of innate characteristics and association/dependence of two centrality metrics of a network. CANOVA,

continuous analysis of variance; DF, degree of freedom; MIC, maximum information coefficient; NNS, non-linear non-parametric statistic.
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measure that was positively correlated with neighborhood con-

nectivity in the majority of networks (Figure 2B).

Betweenness Centrality and Collective Influence Were
Dependent on Neighborhood Connectivity
Betweenness centrality is biased by a node’s position in the

network.11,32 Also, betweenness centrality and collective influ-

ence are both global centrality metrics and remarkably positively

correlated with each other (Figure 2E). Considering the guilt-by-

association principle,35,36 which explains that correlated objects

share common features, we may conclude that collective influ-

ence has the same positional bias as betweenness centrality.

In other words, betweenness centrality and its associated other

global centrality measure, namely collective influence, are

biased by a node’s position in the network and the edge

numbers of its surrounding local environment. By contrast,

neighborhood connectivity represents the average number of

edges connected to immediate neighbors and consequently, is

a good candidate metric for removing the positional bias intro-

duced by betweenness centrality and collective influence mea-

sures. Also, looking at the correlation of these two global central-

ity measures with neighborhood connectivity (Figure 2D), we see

the same pattern in both pairs; both of these global indices are

notably negatively correlated with neighborhood connectivity.

As an example, the topological analysis of a PPI network of adre-

nocortical carcinoma (ACC) clearly depicted that there is a posi-

tional bias in the distribution of betweenness centrality and col-

lective influence scores between nodes in the network, which

is contrary to neighborhood connectivity distribution. While the

selected nodes in the center of the network (red nodes) with a

high number of connections have high neighborhood connectiv-

ity and low betweenness centrality and collective influence
4 Patterns 1, 100052, August 14, 2020
scores, this is exactly opposite for (green) nodes at the edge of

the network (Figure 3). Also, continuous analysis of variance (C-

ANOVA) and Hoeffding’s independence analyses indicated that

betweenness centrality (Figure 4A) and collective influence (Fig-

ure 4B) were significantly dependent on, and non-linearly/non-

monotonically correlated with, neighborhood connectivity in

the majority of networks (p < 0.05). Moreover, the maximal infor-

mation coefficient (MIC), NNS descriptive dependence, and

Hoeffding’s independence analyses demonstrated that

betweenness centrality (Figure 4C) and collective influence (Fig-

ure 4D) were dependent on neighborhood connectivity. In addi-

tion, conditional probability assessment has been proposed as a

complementary test to dependence analysis for the investigation

of causality.37 Accordingly, in order to further test if neighbor-

hood connectivity is a good candidate for removing the posi-

tional bias of betweenness centrality and collective influence,

we performed conditional probability assessments. As a result,

the measurements based on whole networks as well as their

split-half random samples determined that betweenness cen-

trality/collective influence and neighborhood connectivity

deviate from their corresponding means in opposite directions

(Figures 4E and 4F). Altogether, we concluded that neighbor-

hood connectivity has the ability to remove bias from between-

ness centrality and collective influence.

Spreading Score Emerged as the Product of Four
Centrality Measures
Although neighborhood connectivity is a goodmeans for unbias-

ing the selected global centrality measures, its association with

other metrics should also be interrogated. As mentioned above,

ClusterRank is the only centrality measure among all the indices

under investigation in this study that was positively correlated



Table 1. List of Selected Centrality Measures and Their

Characteristics

Centrality Measure Topological Scale % Normalitya

Degree centrality Local 100% non-normally

distributed

ClusterRank local 95% non-normally

distributed

LH index semi-local 96% non-normally

distributed

Neighborhood connectivity semi-local 84.5% non-normally

distributed

Betweenness centrality global 97% non-normally

distributed

Collective influence global 97% non-normally

distributed
aThe normality percentage of each centrality measure among 200 net-

works studied.
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with neighborhood connectivity in the majority of networks (Fig-

ure 2B). Furthermore, the dependence analysis of ClusterRank

and neighborhood connectivity using four statistical methods,

including CANOVA, Hoeffding, MIC, and NNS, demonstrated

that these two indices were dependent on each other in a

considerable proportion of networks (Figures 5A and 5B). In

addition, betweenness centrality and collective influence are

negatively correlated with ClusterRank in a significant number

of networks (Figure 2C). Thus, based on the mathematical rules

explained above, we considered recruiting the additive product

of ClusterRank and neighborhood connectivity as a tool for

removing the bias of the additive product of betweenness cen-

trality and collective influence. Also, as different centrality mea-

sures have different scales, their integration without any normal-

ization would result in a biased product inclined toward the index

with the wider range. Accordingly, we used the Min-Max feature

scaling method to bring all the centrality measures in the same

range while keeping their relative weight ratio intact.39 Also, con-

cerning the basis of these four measurements, highlighted in the

introduction, and the topological dimensions they capture, we

named their final product as the Spreading score, which could

be reflective of the potential of vertices in spreading of informa-

tion within a network.

Spreadingscorei
=
�
NC0

i + CR0
i

��
BC0

i + CI0i
�
;

where NC0
i , CR

0
i , BC

0
i , and CI0i are range normalized neighborhood

connectivity, ClusterRank, betweenness centrality, and collec-

tive influence of node i, respectively.
Hubness Score Was Achieved by the Integration of
Degree Centrality and Local H Index
Among six selected centrality measures, the local H index was

remarkably positively correlated with degree centrality in all

200 networks analyzed (Figure 2B). The association between

local H index and degree centrality was further demonstrated

by dependence analyses. According to the significance analysis

of the dependence of local H index and degree centrality using

CANOVA and Hoeffding’s independence tests, these two
centrality indices were significantly dependent on each other in

the majority of the networks studied (Figure 5C). Likewise, the

analysis of dependence level using Hoeffding, MIC, and NNS

indicated that local H index and degree centrality were depen-

dent on each other with a noticeably high dependence value

across the majority of networks (Figure 5D). Altogether, using

the same mathematical rules and normalization methods ex-

plained above, the Addition function was used to combine the ef-

fect of local H index and degree centrality. Moreover, consid-

ering the same rationale used for the denomination of

Spreading score, the additive product of local H index and de-

gree centrality was named as the Hubness score, which could

be reflective of the sovereignty of a vertex in it surrounding local

territory.

Hubnessscorei = DC0
i + LH0

indexi ;

where DC0
i and LH0

indexi are range normalized degree centrality

and local H index of node i, respectively.

IVI Synergized the Effect of Hubness and Spreading
Scores
Each of the scores described above, namely Spreading and

Hubness scores, represent an important but different character-

istic of each node.While the Hubness score reflects the power of

each vertex in its surrounding environment, the Spreading score

is indicative of the spreading potential. Evidently, according to

the same mathematical rules explained in this paper, the higher

the multiplicative product of Spreading and Hubness scores, the

more influential the vertex is in the entire network. Thus, in order

to integrate Spreading and Hubness scores and calculate their

synergistic effect, the Multiplication function was used and the

IVI was produced. In other words, IVI is the synergistic product

of the most important local (i.e., degree centrality and Cluster-

Rank), semi-local (i.e., neighborhood connectivity and localH in-

dex), and global (i.e., betweenness centrality and collective influ-

ence) centrality measures in a way that simultaneously removes

positional biases.

IVIi =
�
Hubnessscorei

��
Spreadingscorei

�
;

which could be mathematically expanded as

IVIi[ =

 X
jsi

Aij + H
�
kj1 ; kj2 ;.; kjki

�
+
X
y˛NðiÞ

H
�
ky1 ; ky2 ;.; kyky

�!

�
  P

y˛NðiÞNðyÞ
NðiÞ + fðciÞ

X
j˛NðiÞ

�
koutj + 1

�!

�
 X

msi;msn;nsi

SmnðiÞ
Smn

+ ðki � 1Þ
X

j˛dBði;[ Þ
ðkj � 1Þ

!!

where A is representative of the adjacency matrix of the corre-

sponding network, and Aij = 1 if nodes i and j are connected

and Aij = 0 otherwise. k and N are two operators for measuring

the degree and set of first-order neighbors of a node, respec-

tively. H is an operator that calculates the H index of node i

based on the degree of its immediate neighbors. The term fðciÞ
accounts for the effect of i’s local clustering. Smn is the number
Patterns 1, 100052, August 14, 2020 5
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Figure 2. The Non-linear/-monotonic Correlation of Selected Centrality Measures across 200 Networks

(A) The proportion of network domains among 200 networks. See also Table S2.

(B) The correlation of local versus semi-local centrality measures.

(C) The correlation of local versus global centrality measures.

(D) The correlation of semi-local versus global centrality measures.

(E) The correlation of centrality measures of each topological dimension with each other.

The correlation analyses were done using the non-linear non-parametric statistics (NNS), and the data was illustrated using the Raincloud method.34 BC,

betweenness centrality; CI, collective influence; CR, ClusterRank; DC, degree centrality; LH index, local H index; NC, neighborhood connectivity.
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Figure 3. The Positional Bias of Between-

ness Centrality and Collective Influence

This network has been reconstructed using the in-

teractions presented by the STRING database and

based on genes in the blue module provided by Xia

et al.38 according to the weighted gene co-expres-

sion network analysis (WGCNA) as seed proteins.

Red nodes are three examples of nodes with a high

number of connections positioned in the center of

the network; green nodes are representative of no-

des with a lower number of connections at the

edges of the network. A module of interacting no-

des, including all red and green ones, was extracted

from the entire network for the visualization of (B)–

(D) in the spiral layout. Also, for simplicity and clear

visualization, node connections are not shown in

(B)–(D).

(A) The entire protein-protein interaction network of

adrenocortical carcinoma. The nodes were auto-

matically organized using the Inverted Self-Orga-

nizing Map Layout with some slight alterations to

make the selected nodes visible.

(B) The vertices of extracted module ordered based

on their betweenness centrality values.

(C) The vertices of extracted module ordered based

on their collective influence values.

(D) The vertices of extracted module ordered based

on their neighborhood connectivity values.

The network was analyzed by the influential R

package and illustrated using the Cytoscape soft-

ware. BC, CI, and NC represent betweenness cen-

trality, collective influence, and neighborhood con-

nectivity, respectively.
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of shortest paths between nodesm and n, and SmnðiÞ is the num-

ber of shortest paths between nodes m and n that pass through

node i. The term dBði; [Þ represents the set of nodes at distance [

from node i.

It should also be recalled that all of the centrality measures

used in the above formula should be normalized using the Min-

Max feature scaling method to bring them all in the same range

and remove weight biases while maintaining their relative weight

ratio. In short,

IVIi =
�
DC0

i + LH0
indexi

���
NC0

i + CR0
i

��
BC0

i + CI0i
��
:

IVI OutperformedOtherMethods in Detecting Influential
Network Nodes
To assess the performance of IVI, we calculated the IVI value and

the Spreading and Hubness scores involved in the generation of

IVI, as well as 12 other contemporary centrality measures in ten

networks, including two real-world biological networks, which

were also used in association analyses of centrality measures,

and eight randomly simulated networks with different number

of vertices and edges (Table S1). The 12 influential node identifi-

cation methods used for evaluation purposes in this paper

included degree centrality, Kleinberg’s hub centrality score,40

ClusterRank, collective influence, K core (coreness41), H index,

PageRank, closeness centrality,42 eigenvector centrality,43

Katz centrality,44 eccentricity centrality,45 and maximal clique

centrality (MCC46). Then, in order to assess the performance of
IVI in comparison with other methods in an unsupervised

manner, we developed a novel ranking method we termed SIRIR

(SIR-based influence ranking), which is the combination of the

conventional susceptible-infected-recovered (SIR47) model

with the leave-one-out cross-validation technique. In the SIR

model, the nodes or individuals within a network can adopt three

states, including susceptible (S), infected (I), and recovered (R).

For each single experiment, we assumed that one random indi-

vidual was initially infected and all the other individuals were sus-

ceptible to the disease. Each infected individual can transmit the

disease to any of its susceptible neighbors, with probability b at

each time step (infection rate) and at the same time, it can

recover from the disease and become immune, with probability

g (recovery rate). In this paper, without lack of generality, we

set b = 0.5 and g = 1. In the SIRIR method, the spread of the dis-

ease in the original network is measured using the SIRmodel, the

network is perturbed by removing one of its nodes, the SIR

model is run for the perturbed network, and finally the spread

of the disease in the perturbed network is subtracted from that

of the original network. This process is repeated until all of the

nodes have been removed from, and involved in, the network

one time and k � 1 times, respectively, where k is the number

of nodes within the original network. In the end, all of the nodes

of the network are ranked based on their difference values; the

higher the difference value, the higher (more significant) the

node’s rank. As the transmission from an infected node to its

susceptible neighbors and the overall spread of the disease

within the network is a random process, simulation should be
Patterns 1, 100052, August 14, 2020 7
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Figure 4. The Association of Betweenness Centrality/Collective Influence, and Neighborhood Connectivity in 200 Networks

(A) Statistical significance of the dependence of betweenness centrality on neighborhood connectivity based on two different dependence tests, including

CANOVA and Hoeffding across all networks.

(legend continued on next page)
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done to increase the accuracy of the model, and the higher the

number of simulations, the more accurate the estimation of

spread. In all of our experiments, on both the original and per-

turbed networks, we simulated the SIRmodel 100N times, where

N is the number of nodes in the network under investigation, and

averaged the measured spread of all simulations. This means

that all of the nodeswithin a network have an equal chance of be-

ing selected as the seed (starter) for 100 times. Also, using the

SIRIR method, not only the spreading potential but also the

true influence of each node on the overall topology and structure

of the network as well as its probable role in inter-modular con-

nectivities were considered. Altogether, the SIRIR model-based

ranking was considered as the ‘‘ground truth’’ and the top 50%

ranked nodes in each network were selected as real positives

and the bottom 50% as real negatives. Subsequently, the sensi-

tivity and specificity of each of 15 influential node identification

methodswas assessed and plotted as a receiver operating char-

acteristic (ROC) curve, and the average area under the curve

(AUC) of each metric across all ten networks was calculated.

Interestingly, the results illustrated that the IVI generally outper-

formed other methods in detecting the most influential nodes

(Figures 6 and S1). The Spreading and Hubness scores, the

components of the IVI formula, were the second- and third-

ranked metrics, respectively.

DISCUSSION

Identification of the most influential nodes is a necessity in all

network analyses across all fields, and different centrality mea-

sures are being used for this purpose. Several methods and al-

gorithms have also been proposed for the identification of

network hubs in previous decades. However, these methods

could be further improved by (1) integrating more centrality mea-

sures to capture all topological dimensions of the network and (2)

by addressing the positional biases of global centrality mea-

sures. Thus, integration of common centrality measures in a

way that captures all topological dimensions of a network and

synergizes their impacts could be a big step toward identification

of the most influential nodes. However, some centrality mea-

sures, including betweenness centrality and collective influence,

two of the most common global centrality metrics, are biased by

their positions (the edge numbers of their surrounding local envi-

ronment) in the network. Freeman42 has proposed a formula for

the normalization of betweenness centrality; however, this for-

mula adjusts the betweenness centrality for the network size,

not its positional bias. This issue is also properly addressed in

the IVI formula. Firstly, neighborhood connectivity is highly repre-
(B) Statistical significance of the dependence of collective influence on neighborh

and Hoeffding across all networks.

(C) Descriptive dependence of betweenness centrality on neighborhood connectiv

networks.

(D) Descriptive dependence of collective influence on neighborhood connectivity

networks.

(E) The conditional probability of deviation of betweenness centrality from its me

mean in the opposite direction based on both original networks as well as their s

(F) The conditional probability of deviation of collective influence from its mean giv

the opposite direction based on both original networks as well as their split-half

BC, CI, NC, Canova, NNS, and MIC represent betweenness centrality, collectiv

linear non-parametric statistic, and maximum information coefficient, respective
sentative of the size of surrounding local environment. In addi-

tion, according to the methodology applied for the assessment

of dependence and correlation of betweenness centrality/collec-

tive influence and neighborhood connectivity, these two global

centrality measures are dependent on, and negatively correlate

with, neighborhood connectivity. Therefore, the additive product

of neighborhood connectivity and its associated index, namely

ClusterRank, which showed the same but a milder association

with betweenness centrality and collective influence, performs

better in removing the positional bias introduced by the afore-

mentioned global centrality measures and consequently was

used in the Spreading score and IVI formula. By contrast, the as-

sociation and dependence analyses of degree centrality and

local H index demonstrate that these two centrality measures

are highly positively correlated with and dependent on each

other, and accordingly, these indices could be combined to

generate the Hubness score.

The concept of IVI, while being very simple, represents an un-

supervised method that generates the synergistic product of the

most important local, semi-local, and global centrality measures

in a way that simultaneously removes the positional biases for

the identification of most influential nodes in the whole network

as well as its functional modules. This is achieved by synergizing

the effect of Spreading and Hubness scores. Moreover, the IVI is

not dependent on an arbitrary threshold selection. On the con-

trary, a list of the most influential nodes of a particular network

can be identified by sorting the set of nodes based on their IVI

values. We also developed an R package named ‘‘influential’’

(https://cran.r-project.org/package=influential) to calculate the

required centrality measures and the IVI of each node in the R

environment. The ‘‘influential’’ package is the first R package

that can calculate neighborhood connectivity, H index, local H

index, and collective influence in the R environment. In addition,

the centrality measures calculated by other tools such as Cyto-

scape software could be imported into the R environment for

the calculation of IVI of nodes.

Comparison of the IVI formula with 12 other influential node

identification methods, as well as the Spreading and Hubness

scores using the SIRIR method, confirmed that the IVI method

outperforms all other algorithms. Interestingly, the Spreading

and Hubness scores, the two components of the IVI, had the

second and third highest average AUC values, respectively,

across all networks assessed. This is further confirmation of

the fact that IVI synergizes the impact of Spreading and Hubness

scores. The superiority of the IVI method to other contemporary

influential node identification methods is due to its characteris-

tics, including its network-wide dimensionality and inherent
ood connectivity based on two different dependence tests, including CANOVA

ity based on three different tests, including Hoeffding, MIC, and NNS across all

based on three different tests, including Hoeffding, MIC, and NNS across all

an given that neighborhood connectivity has deviated from its corresponding

plit-half random samples.

en that neighborhood connectivity has deviated from its corresponding mean in

random samples.

e influence, neighborhood connectivity, continuous analysis of variance, non-

ly.
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Figure 5. The Association of ClusterRank and Degree Centrality with Neighborhood Connectivity and Local H Index, Respectively, in 200

Networks

(A) Statistical significance of the dependence of ClusterRank and neighborhood connectivity on each other based on two different dependence tests, including

CANOVA and Hoeffding, across all networks.

(B) Descriptive dependence of ClusterRank and neighborhood connectivity on each other based on three different tests, including Hoeffding, MIC, and NNS,

across all networks.

(C) Statistical significance of the dependence of degree centrality and local H index on each other based on two different dependence tests including CANOVA

and Hoeffding, across all networks.

(D) Descriptive dependence of degree centrality and local H index on each other based on three different tests, including Hoeffding, MIC, and NNS, across all

networks.

Canova, continuous analysis of variance; CR, ClusterRank; DC, degree centrality; LH index, local H index; MIC, maximum information coefficient; NC, neigh-

borhood connectivity; NNS, non-linear non-parametric statistic.
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Figure 6. Performance of IVI in Comparison

with 14 Other Current Methods in Practice

The average area under the curve (AUC) of 15

different influential node identification methods

across ten interrogated networks. The size of the

points on the top of the bars corresponds to the

ranking of the influential node identification

methods based on their average AUC values; the

higher (first) ranked methods have larger point sizes

and vice versa. CC, closeness centrality; CR,

ClusterRank; CI, collective influence; DC, degree

centrality; EC, eccentricity centrality; Eg, eigen-

vector centrality; IVI, Integrated Value of Influence;

KC, Katz centrality; Kl, Kleinberg’s hub centrality

score; MCC, maximal clique centrality; PR, Pag-

eRank; ROC, receiver operating characteristics.

See also Figure S1 and Table S3.
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unbiasing potential. Also, we believe that the SIRIR model is a

precise and powerful method for ranking the true influence of no-

des within a network. The SIRIR method is based on the SIR

model, which assesses the spread of information or disease

within a network. In contrast, the SIRIR method utilizes the

leave-one-out cross-validation technique to remove each node

of a network and interrogates its impact on the whole network

and the spread of disease within it. Removing a vertex not only

eliminates a point of information diffusion from a network but

also couldmake varying levels of structural and topological alter-

ations depending on its original position and topological charac-

teristics. In addition, elimination of a node that resides in the

interconnection between twomodules would weaken their asso-

ciation. Altogether, these alterations have significant impacts on

the flow of information and could help assess the true influence

of vertices within a network.

In conclusion, the IVI methodwe describe here is based on the

accurate evaluation of the association of the most important

network centrality measures in order to integrate them in such

a way that their strengths are synergized and positional biases

are removed. Furthermore, the workflow depicted in Figure 1

could be used as a reference for the assessment of association

and dependence of network centrality measures as well as any

other two continuous variables. Our results demonstrate that

the IVI formula outperforms other algorithms in identifying the

most influential nodes in terms of both accuracy and specificity.

Moreover, IVI is an unbiased synergistic product of six centrality

measures, some of which could involve the weight of vertices

and direction of edges in their measurements. Accordingly, IVI

is very general and is not dependent on either directedness or

weightedness of the network and can be calculated for directed

and weighted networks as well. This broadness of applicability is

a further advantage of the IVI method in comparison with other

influential node identification methods that are not applicable

to all network types and cannot simultaneously involve all of

the features of vertices and edges. In addition, the IVI method

is applicable to both the statistically inferred networks as well

as the experimental real-world ones. All in all, the IVI is an unbi-

ased synergistic product of the most important centrality mea-

sures that together cover all topological dimensions of the

network and according to our results, we believe that the IVI

could accurately identify the most influential nodes in a network,
which could be a great benefit for all future network analyses,

including systems biology studies.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information and requests for resources should be directed to and will

be fulfilled by the Lead Contact, Peter D. Currie (peter.currie@monash.edu).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

All datasets generated/analyzed for this study are included in the manuscript

and the Supplemental Information files. The ‘‘influential’’ R packagewas devel-

oped for calculating the Spreading and Hubness scores, IVI value, and all

required centrality metrics and is available on CRAN (https://cran.r-project.

org/package=influential). Moreover, some functions have been provided for

the assessment of dependence and correlation of two network centrality mea-

sures as well as the conditional probability of deviation from their correspond-

ing means in opposite directions. In addition, a function has been included in

the ‘‘influential’’ R package for running the SIRIR model on a network, which

outputs the unsupervised influence ranking of vertices. Collectively, assess-

ment of the basic statistics of centrality measures as well as their association

and dependence, measurement of the Hubness and Spreading scores, and

identification and ranking of the most influential nodes can be accomplished

in the same environment using the ‘‘influential’’ R package.

Method Details

Data Preparation

A total of 200 connectivity tables including 198 real adjacency matrices as well

as two random ones generated via the igraph R package48 were gathered for

the analysis of the topology of networks and the association of their selected

centrality measures. The real-world networks included 196 adjacency

matrices compiled by Ghasemian et al.49 from the Index of Complex Networks

(ICON) (https://icon.colorado.edu) and two of them were downloaded from in-

dependent biological studies, which included a PPI from Xia et al.38 and an

miRNA expression dataset from Yepes et al.50 The connectivity matrices

were retrieved from different domains to ensure the reliability of our analyses.

A list of all networks is provided in Table S2. In addition, ten networks,

including the same two independent biological networks used for the assess-

ment of centrality measures associations, as well as eight simulated networks

with different number of vertices and edges, generated by the igraph R pack-

age, were gathered to compare and assess the applicability of our method in

comparison with other available methods in identification of nodes with the

highest impact in the network. A list of all networks used for the evaluation

of the IVI method and their characteristics are provided in Table S3. The key

resources used for the statistical assessment and visualization purposes are

provided in Table S4.
Patterns 1, 100052, August 14, 2020 11

mailto:peter.currie@monash.edu
https://cran.r-project.org/package=influential
https://cran.r-project.org/package=influential
https://icon.colorado.edu


ll
OPEN ACCESS Article
Network Reconstruction and Analysis

A correlation analysis was done based on the Pearson algorithm for the iden-

tification of co-expressed genes in an miRNA dataset. Next, an undirected

network was reconstructed for each of the co-expression/PPI datasets, all

other real-world connectivity matrices retrieved from ICON, as well as the

random adjacency matrices via the igraph R package. Then, the topology of

each network and its centrality measures, including degree centrality, Cluster-

Rank, neighborhood connectivity, local H index, betweenness centrality, and

collective influence were analyzed using the igraph, centiserve,7 and influential

R packages (https://cran.r-project.org/package=influential). Cytoscape soft-

ware v3.7.1 was also used for network visualization purposes.51 All the down-

stream quantifications and statistical analyses and assessments were done

independently for each network.

Interrogation of the Non-monotonic Association of Selected

Centrality Measures

Although a single regression line does not fit all models with a certain degree of

freedom and consequently is not applicable in high-throughput assessments,

regression analysis was used to precisely evaluate non-linearity and non-

monotonicity of the association of each possible pair of selected centrality

measures of two real-world independent biological networks. For this pur-

pose, the non-linear correlation between each pair of metrics was interrogated

by fitting a generalized additive model (GAM), with integrated smoothness

approximation using the mgcv R package,52 which estimates non-parametric

functions of the predictor (independent) variable. GAM is a technique for

regression analysis of non-linear/non-monotonic associations.53 Subse-

quently, the most squares strategy was used to decipher if the association

of selected centrality measures is more of a monotonic or a non-monotonic

form. Accordingly, squared coefficients of the correlation of each pair of cen-

trality measures based on Spearman’s rank correlation analysis and ranked

regression test with non-linear splines were compared, and the correlation

was designated as monotonic if the squared coefficient of Spearman’s rank

correlation was higher compared with the other test and was identified as

non-monotonic if the argument was inverse. For the ranked regression anal-

ysis, the splines R package was used to generate a basis matrix for natural cu-

bic splines of the predictor variable.

Assessment of the Association of Selected Centrality Measures

From a statistical viewpoint, the intrinsic features of variables should be in-

spected before association analyses. Similar to real-world networks that

have interdependent parts and follow non-linear associations,54,55 their cen-

trality measures might also be non-linearly/non-monotonically correlated to

each other. Thus, although previously done by other researchers,11,56

ranking-based monotonic correlation tests such as Spearman’s rank correla-

tion test does not produce correct and reliable enough results. On the other

hand, assessment of local associations of two continuous variableswith a sub-

sequent global assessment of all local correlations would more reliably and

correctly assess non-linear non-monotonic correlations. However, the correla-

tion between two variables is not enough for proving causality. While correla-

tion analysis could indicate a desired predictive relationship, dependence

analysis, which is one of the sub-branches of correlation tests, could reveal

the statistical relationship between two variables.57 Also, conditional probabil-

ity assessment is a complementary test to dependence analysis for proving

causality.37 Accordingly, subsequent to the interrogation of the innate charac-

teristics of selected centrality measures and the nature of their associations,

we considered assessing their correlation, dependence, and the conditional

probability of their opposite behaviors in order to reach more reliable conclu-

sions. A schematic workflow of the methods implemented for the assessment

of innate features and association of selected network centrality measures is

shown in Figure 1.

First, Gaussian distribution of selected centrality measures was assessed

using the Shapiro-Wilk test or Anderson-Darling test for variables with less

than or more than 5,000 objects, respectively. Next, the following association

analyses was done for every possible pair of the selected centrality measures.

Firstly, based on the NNS statistics, descriptive correlation and dependence of

the selected centrality measures were analyzed using the NNS R package

(https://cran.r-project.org/package=NNS). The NNS is a robust method for

the assessment of dependence and correlation of two variables with non-

linear/non-monotonic association and uses higher-order partial moment

matrices instead of global measurements. In other words, the NNS method
12 Patterns 1, 100052, August 14, 2020
calculates the correlation coefficient by combining linear segments resulting

from ordered partitions without the need to perform a linear transformation.

Subsequently, the statistical significance of dependence of each pair of cen-

trality metrics and the non-linear/non-monotonic correlation between them

was assessed by three methods, including CANOVA, MIC, and Hoeffding’s in-

dependence tests using CANOVA,57 Minerva,58 and Hmisc (https://CRAN.R-

project.org/package=Hmisc) R packages, respectively. The CANOVA test is

able to detect dependence and non-linear/non-monotonic correlation be-

tween two continuous variables.59 Furthermore, CANOVA works well and is

robust in non-linear correlation cases, especially when the association be-

tween two continuous variables is non-monotonic.57 Hoeffding is a non-para-

metric test for the independence of two random variables with continuous dis-

tribution.60 MIC is a maximal information-based nonparametric statistics for

identifying relationships and measuring dependence, especially in many-

dimensional datasets.61 Also, as a complementary test, the conditional prob-

ability of deviation of betweenness centrality/collective influence and neigh-

borhood connectivity from their corresponding means in opposite directions

was calculated in each network. In addition, the split-half random sampling

method was used for each network for reliability assessment of conditional

probability assessments. Finally, the 95% confidence interval of all conditional

probability assessments was calculated using the Rmisc R package (https://

cran.r-project.org/package=Rmisc).

Evaluation of the Performance of the IVI Formula in Comparisonwith

Other Methods

To evaluate the functioning of the IVI formula in comparisonwith other contem-

porary influential node identification indices, ten networks, including two real-

world biological networks and eight randomly simulated ones generated by the

igraph R package with varying number of edges and vertices (Table S3), were

assessed. Next, the IVI and Hubness and Spreading scores as well as 12 other

influential node identificationmethods, including degree centrality, Kleinberg’s

hub centrality score, ClusterRank, collective influence, K core (coreness),H in-

dex, PageRank, closeness centrality, eigenvector centrality, Katz centrality,

eccentricity centrality, and MCC (the recommended method by the authors

of the cytoHubba plugin46) were calculated for all of the vertices of each

network. Degree centrality, Kleinberg’s hub centrality scores, K core, Pag-

eRank, closeness centrality, eigenvector centrality, Katz centrality, and eccen-

tricity centrality were calculated by the igraph R package; IVI, Hubness score,

Spreading score, collective influence, andH index were measured by the influ-

ential R package; ClusterRank was calculated using the centiserve R package;

and MCC was calculated by the cytoHubba plugin of Cytoscape software.

Subsequently, the SIRIR model, which is achieved by applying the leave-

one-out cross-validation technique on the conventional SIRmodel, was devel-

oped to generate a ‘‘ground truth’’ ranking for all of the vertices within a

network. The SIRIR model was run on each network using the influential R

package. In the end, considering the top and bottom 50% of SIRIR model-

based ranked nodes as real positives and real negatives, respectively, an

ROC analysis was done using the plotROC R package62 to assess the perfor-

mance of all 15 influential node identification algorithmsmentioned above in an

unsupervised manner. Also, the AUC of each influential node identification

method across all ten networks was averaged to compare the overall perfor-

mance of the indices.
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