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THE BIGGER PICTURE Recent developments in super-resolution SMLM imaging techniques enable re-
searchers to study macromolecular structures at the nanometer scale. However, SMLM data quantifi-
cation and interpretationmethods have yet to keep pacewith the rapid advancement of SMLM imaging.
This article provides a balanced and comprehensive review of state-of-the-art SMLM image analysis
methods and ties disparate approaches together in a cohesive manner. Researchers are actively
exploring new computational methods to analyze SMLM data, including recent approaches to use
data-driven and machine-learning approaches. However, the validation of the SMLM clustering
methods remains an open challenge. Potential future directions using multi-modality imaging (e.g.,
SMLM and electron microscopy) might help validate quantitative SMLM image analysis methods.
Single-molecule localization microscopy (SMLM) is a relatively new imaging modality, winning the 2014 No-
bel Prize in Chemistry, and considered as one of the key super-resolution techniques. SMLM resolution goes
beyond the diffraction limit of light microscopy and achieves resolution on the order of 10–20 nm. SMLM thus
enables imaging single molecules and study of the low-level molecular interactions at the subcellular level. In
contrast to standard microscopy imaging that produces 2D pixel or 3D voxel grid data, SMLM generates big
data of 2D or 3D point clouds with millions of localizations and associated uncertainties. This unprecedented
breakthrough in imaging helps researchers employ SMLM in many fields within biology and medicine, such
as studying cancerous cells and cell-mediated immunity and accelerating drug discovery. However, SMLM
data quantification and interpretation methods have yet to keep pace with the rapid advancement of SMLM
imaging. Researchers have been actively exploring new computational methods for SMLM data analysis to
extract biosignatures of various biological structures and functions. In this survey, we describe the state-of-
the-art clustering methods adopted to analyze and quantify SMLM data and examine the capabilities and
shortcomings of the surveyed methods. We classify the methods according to (1) the biological application
(i.e., the imaged molecules/structures), (2) the data acquisition (such as imaging modality, dimension, reso-
lution, and number of localizations), and (3) the analysis details (2D versus 3D, field of view versus region of
interest, use of machine-learning andmulti-scale analysis, biosignature extraction, etc.). We observe that the
majority of methods that are based on second-order statistics are sensitive to noise and imaging artifacts,
have not been applied to 3D data, do not leverage machine-learning formulations, and are not scalable for
big-data analysis. Finally, we summarize state-of-the-art methodology, discuss some key open challenges,
and identify future opportunities for better modeling and design of an integrated computational pipeline to
address the key challenges.
Introduction
Cells are the structural and functional units of living organisms.

Studying the cell requires an understanding of its different com-

partments and their relationship to one other inside and outside

the cell. With the aid of microscopes, researchers can visualize,
This is an open access article under the CC BY-N
identify, and study cell organelles and molecular components,

which is critical to understanding cell function in health and mal-

function in different diseases. The recent advent of super-resolu-

tion microscopy, which provides an order-of-magnitude

improvement in resolution compared with light microscopy,
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Figure 1. Classification of Super-Resolution Nanoscopy Methods
All SMLM methods generate localizations as 2D or 3D point clouds.
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allows visualization and quantification of the organization of pro-

teins to form macromolecular complexes in situ in intact cells,

facilitating our understanding of molecular interactions in

different biological structures that drive cell behavior. This revo-

lutionary discovery advances science to better understand

cellular function and the machinery of its subcellular com-

partments.

Resolution Limit

Optical microscopy (also known as a light microscopy) uses

visible light and a series of lenses to image and magnify cell

and tissue samples. Light is usually used in non-invasive im-

aging of cells in vitro and in vivo for various imaging applica-

tions, which helps researchers magnify and visualize biolog-

ical structures within the optical resolution of the imaging

system. The resolution of the imaging system is affected by

physical phenomena such as lens misalignment and the

diffraction of light, known as the diffraction limit of the imaging

system (i.e., the microscope). The diffraction limit of the light

microscope, which was theoretically described by Abbe in

1873,1 is proportional to the wavelength of the light (l) being

observed and inversely proportional to the numerical aperture

(NA) of the objective lens. The formulation of Abbe’s diffrac-

tion limit is given in Equation 1:2,3

d =
l

2NAobj

: (Equation 1)

For example, if we use visible light with awavelength of 500 nm

(green light) and an objective lens with NAobj of 1.0, the minimum

theoretical distance d will be 250 nm that defines two separable

objects.2 However, practically, the resolution can be less than

that due to various experimental reasons. Abbe’s diffraction limit

of light microscopy (i.e., 250 nm) is a major barrier that has pre-

vented researchers from studying multiple biological structures

and macromolecular complexes below the diffraction barrier.

Breaking this barrier has been achieved finally with development

of super-resolutionmicroscopy (next section) and improvements

in fluorescent probes and labeling techniques for super-resolu-

tion microscopy.4
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Super-Resolution Nanoscopy Methods
The invaluable contribution of super-resolution microscopy was

acknowledged by the 2014 Nobel Prize in Chemistry awarded

jointly to three scholars for their contribution to bringing light mi-

croscopy into the nanometer scale (i.e., nanoscopy). Eric Betzig,

William E. Moerner, and Stefan W. Hell shared the prize.3,5,6 Bet-

zig and Moerner developed the principles of single-molecule

localization microscopy (SMLM)7,8 and Hell worked on stimu-

lated emission depletion (STED) microscopy.9 Another micro-

scopy method, structured illumination microscopy (SIM),10

developed by Mats Gustafsson, lately gained rapid popularity.6

Another super-resolution method, super-resolution optical fluc-

tuation imaging (SOFI),11 has been developed to overcome the

diffraction limit of light. SOFI is faster than SMLM but has lower

resolution. Schidorsky et al.12 combined SOFI and SMLM to

improve the overall imaging performance. They showed that by

rejecting common background sources, SOFI-assisted SMLM

can be used to improve image reconstruction. Figure 1 depicts

the various super-resolution methods developed to break the

diffraction limit barrier of light microscopy.

SMLM methods include photoactivated localization micro-

scopy (PALM),7,13 stochastic optical reconstruction microscopy

(STORM),14 direct STORM (dSTORM),15 ground state depletion

(GSD),16 DNA-based point accumulation for imaging in nano-

scale topography (DNA-PAINT),17 and MINFLUX.18 SMLM

achieved the highest resolution among the super-resolution

methods (Figure 1). The lateral resolution of SMLM could be

from 10 to 30 nm (MINFLUX achieves 2 nm resolution). The

STED lateral resolution reaches 60–100 nm, while it is about

100–120 nm for SIM. On the other hand, the analysis

complexity of SMLM is ranked as the most complex according

to Owen and Gaus,19 followed by SIM as intermediate in the

analysis complexity and, finally, STED as the simplest.

Wegel et al.20 experimentally studied the super-resolution

methods, including SMLM, and applied them to image various

subcellular structures. They showed the weakness and

strength of each method on the studied structures (e.g., vesi-

cles and filaments).

Super-resolution microscopy has allowed for unprecedented

high-resolution visualization of various biological structures

such as microtubules, actin, clathrin-coated pits, mitochondria,

chromatin complexes, neurons, ER, and focal adhesion com-

plexes.21 However, the initial demand for high-resolution images

of biological structures has been replaced by a need for quanti-

tative methods and analysis.22 SMLM imagingmethods produce

spatial coordinates of molecular localizations, called ‘‘point

clouds’’ in this survey, that are ideally suited for the application

of cluster analysis algorithms and tools. We focus this survey

on state-of-the-art super-resolution SMLM cluster analysis

methods and their capabilities and shortcomings. Note that we

do not intend to survey all possible data-clustering methods

but rather limit the presented works to those methods that

have been applied to SMLM data clustering.

From Imaging to Quantification

Figure 2 gives an overview of the imaging-to-quantification pipe-

line for SMLM, which starts with fluorescent labeling of the target

molecule, then determining molecular localization from the ac-

quired SMLM images, and ends with post-processing and quan-

tification of the imaged and localized proteins. Our focus in this
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Figure 2. Overview of SMLM Quantification Pipeline
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survey will be on cluster analysis and quantification of

SMLM data.

Acquisition and Localization

The first step in imaging or tracking a protein is to label the target

protein with a fluorescent dye. The labeling process varies de-

pending on the SMLM imaging technique. For example, for

STORM imaging the target molecule is labeled via antibodies
conjugated to organic dyes (e.g., Alexa 647molecules) (Figure 2).

In PALM, genetically modified fluorescent proteins (FPs) are

used in the labeling of the target proteins (e.g., mEos2). Also,

the labeling strategy may depend on the binding proteins/anti-

bodies used in the labeling. We show the primary-secondary la-

beling strategy in Figure 2A as an example. Other labeling strate-

gies, including using fragment antigen-binding (Fab) antibodies
PATTER 1, June 12, 2020 3
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(that can be obtained for both primary and secondary labeling)

and nanobody labeling, might be used to reduce the size of the

fluorescent probe and improve the resolution.25–28

Although the exact implementation may vary, all SMLM

methods fundamentally rely on temporal separation of the emis-

sions of the excited fluorophores,4,29 where the fluorophores are

sparsely activated and forced to switch between on ‘‘bright

state’’ and off ‘‘dark state’’ stochastically during the imaging

session. Stochastic ‘‘blinking’’ of non-overlapping point spread

functions (PSFs), formed due to diffraction of light, are recorded

by the imaging system. Positional localization of individual fluo-

rophores is approximated to be at the center of a Gaussian fitting

of the PSF, as shown in Figure 3, resulting in significantly

improved (~103) resolution. By repeating this process thou-

sands of times and compiling the fluorophore localizations

from all the acquired frames, we obtain a high-resolution image.

This is in contrast to diffraction-limited fluorescence microscopy

in which, due to the single-shot approach, the PSFs ofmolecules

at distances below the diffraction limit overlap (Figure 3), result-

ing in reduced resolution of the image.

dSTORM is based on the use of standard fluorophores that are

commercially available conjugated to awide range of antibodies,

and are therefore applicable to common immunofluorescent la-

beling of multiple cellular constituents. For dSTORM, fluoro-

phores are induced to enter a weakly emissive or dark state by

high-powered laser illumination from which fluorophores will

spontaneously return to the ground state and emit fluores-

cence.2 Choice of fluorophore is based on photon output, as

higher photon output improves localization accuracy as well as

the relative time the fluorophore spends in the dark and bright

states (duty cycle) and how many times the fluorophore can cy-

cle between the dark and bright states (switching cycle). Fluoro-

phore blinking is enhanced using buffers containing thiol

reducing agents and oxygen scavengers. The dSTORM dye of

choice is Alexa 647, which exhibits high levels of blinking and

photon yield that are critical for analysis approaches described

later in this review.

In addition to localizing the photon events of the excited fluo-

rophores in the plane, i.e., x and y coordinates, introducing a cy-

lindrical lens in the light path of the imaging system will deform

the PSF according to the depth (i.e., z) of the molecule within

the imaged sample. Arriving at the depth value of a single mole-
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cule involves fitting a multi-variate

Gaussian PSF to the deformed shape of

PSF.23 Other three-dimensional (3D) local-

izationmethods include biplane,30 PSF en-
gineering as in (1) double-helix PSF,31 (2) phase ramp,32 and (3)

Zernike optimized localization approach in 3D (ZOLA-3D),33 and

dual opposed objective interferometry as in (1) iPALM34 and (2)

4Pi detection scheme,35 and supercritical-angle fluorescence

recovery.36

The imaging process is repeated thousands of times using a

Gaussian PSF fit to determine the localization of the individual

molecules at high resolution. Every molecular location might

have other information such as the localization uncertainty

(fitting error of the Gaussian PSF), frame number, and number

of photons. The final super-resolved image is formed by recom-

bining all the localizations from all of the imaged frames. A

number of methods have been designed for this purpose,

such as ThunderSTORM,37 QuickPALM,38 RapidSTORM,39

and RainSTORM40 (see EPFL SMLM Software Directory,

http://bigwww.epfl.ch/smlm/software/index.html). As shown in

Figure 2B, the localization of the molecules is obtained from

every frame image individually enabling the user to map loca-

tions in two-dimensional (2D) or 3D coordinate space. The set

of molecular localizations and their associated metadata are

known as point clouds, events-list, pointillist, and so forth.

The point clouds representation is used as input to the

cluster analysis and quantification as shown in Figure 2C. We

guide the reader’s attention to many of the excellent references

and reviews on super-resolution microscopy, especially the

SMLM imaging techniques.2,7,13,14,22,26 In Figure 2A, we

show 3D STORM imaging as an example of imaging a single

molecule.23

Imaging Artifacts

Quantification of super-resolution SMLM data might be biased

due to some imaging artifacts. Some of the artifacts are chal-

lenging41 and should be accounted for before analyzing the

data. There are common pitfalls in super-resolution microscopy

specimen preparation and imaging acquisition that should be

avoided and optimized to ensure data reproducibility.42 How-

ever, there are computational methods to address some of the

artifacts and mitigate their effects to produce artifact-free

super-resolution images. To enlighten readers about the super-

resolution imaging artifacts and challenges that facing the

cluster analysis and quantification, we guide them to further ref-

erences.41–47 We list here the main artifacts as they appear in

recent papers.41–43

http://bigwww.epfl.ch/smlm/software/index.html
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Labeling Errors. Labeling of the protein of interest in SMLM is

done primarily by expression of a photoactivatable FP directly

linked to the protein of interest or via an antibody-conjugated

fluorescent organic dye by means of immunolabeling. The pho-

toactivatable FP, used in PALM, has a large size and may alter

the localization and function of the protein of interest. For the im-

munolabeling approach adopted for STORM, the dye is conju-

gated to an antibody specific for the protein of interest. This

method might include unspecific labeling, and antibody speci-

ficity for the protein of interest should be validated.41 In both la-

beling methods, the location of the imaged dye/FP can differ

from the true location of the protein of interest and in a random

direction. These localization errors create limitations to the

quantification methods such that the protein clusters appear

enlarged.

Detection Efficiency. Several methods have been proposed to

quantify the percentage of proteins that are properly active. Not

all the photoconvertible FP and molecules/fluorophores used in

protein labeling aremature or successfully photoconvert. Hence,

no algorithm can count the proteins that never appear.43

Localization Uncertainty. Several methods48 have been used to

determine the position of the emitting molecule. The localization

algorithms estimate the localization of the formed PSF of the

fluorescent molecule. For example, in the Gaussian PSF model,

the localization uncertainty is inversely proportional to the square

root of the number of collected photons from the molecule.

Blinking. The blinking artifact, also known as multiple blinking

of a single fluorophore, is considered a serious artifact and has

been studied extensively.45,49–53 Multiple blinking affects molec-

ular counting and creates pseudoclusters. For example, in PALM

imaging, according to the four-state photokinetic model for pho-

toswitchable fluorescent protein (Figure 4), once the fluorescent

probe is activated, it can switch between non-fluorescent and

fluorescent state before photobleaching irreversibly occurs,50

resulting in overcounting.

Drift. Super-resolution SMLM images consist of thousands of

stacked frames collected over time. Changes in temperature,

the vibration of the microscope base, or air current, among

others, might cause sample drift in both lateral and axial direc-

tions.41 Hence, the consequent drift can introduce localization

(or spatial translation) errors by dozens of nanometers for

different molecules relative to each other during the data acqui-

sition.

Chromatic Aberrations. This occurs in multi-color imaging

whereby light undergoes wavelength-dependent distortions.

Motion artifacts (e.g., mechanical movements) and imperfec-
tions in the optical imaging system are the main sources of the

chromatic aberration artifacts that affect co-localization of fluo-

rophores of different colors.54 The chromatic aberration correc-

tion is thus required on top of the drift.

Cluster Analysis and Quantification

Using point-cloud representation for SMLM data analysis is not

trivial. Point-cloud representation is fundamentally different

from the intensity grid valued pixel or voxel image representa-

tion used in conventional microscopy. Consequently, the

computational tasks such as image processing, segmentation,

and registration applied for SMLM data analysis are different55

from the ones applied for conventional microscopy data anal-

ysis. Researchers have been working for decades to develop

computational methods designed for conventional microscopy

image analysis. However, these methods are not necessarily

applicable to the point-cloud data. Analysis of SMLM point-

cloud data is more complex19,55 and therefore requires new ap-

proaches. In particular, cluster analysis methods are most

appropriate for analysis of super-resolution SMLM data point

clouds generated by the localization methods that produce

the data.

The SMLM data analysis literature uses pre-processing and

post-processing terms interchangeably. We believe that a clear

distinction between the two terms should be made. Hence, in

Figure 2C, we have included the methods used to correct for im-

aging artifacts in a pre-processing sub-box and the analysis

methods used to quantify the biological clusters in a post-pro-

cessing sub-box. For better quantification and interpretation of

biological clusters, as opposed to artifactual pseudoclusters,

we believe that pre-processing should be applied first to obtain

artifact-free data. In this survey, we focus on the post-process-

ing methods used for SMLM cluster analysis as discussed in

the next section. Specifically, this work focuses on reviewing

the post-processing methods used to cluster and analyze

point-cloud SMLMdata. However, some other methods, i.e., im-

age-based cluster analysis, have been utilized to analyze the

SMLM data and do not utilize the intrinsic pointillist properties

of SMLM data. Examples of image-based cluster analysis

methods that include extracting statistical measures are pro-

vided by several studies.56–60

SMLM Cluster Analysis Methods
Protein-to-protein interactions produce heterogeneous and dy-

namic multi-molecular protein complexes.61 The complex ar-

rangements might consist of multiple molecules that vary in

sizes; ranging from few to tens of nanometers. Studying protein

cluster structure and organization is important to determine their

function in the cell. Figure 5 shows how the protein molecules

could cluster together in many ways to form more complex

structures. In this section, we focus on the cluster analysis

methods used to specifically understand the molecular clusters

in super-resolution SMLM data.

Not all the clusters in SMLM data are related to biological

structures. Some of the clusters in SMLM data are due to imag-

ing artifacts (i.e., pseudoclusters) caused by the uncertainty of

the photophysical properties of the fluorescent reporters27 as

mentioned in Imaging Artifacts, as well as labeling of the target

molecule by more than one antibody probe. Pseudoclusters

could bias the quantification and the interpretation of detected
PATTER 1, June 12, 2020 5



Figure 5. Illustration of How the Protein Molecules Cluster Together
to Form Complexes
Monomers aggregate to form dimers which aggregate to form the small olig-
omers. Monomers could also cluster directly to form the large mutants and
oligomers.
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molecular clusters. Hence, pre-processing analysis is required

to correct for multi-blinking artifacts.

SMLM Molecular Localizations Clustering Task

SMLMdata are a point cloud in 2D or 3D coordinate spacewhere

fluorophore events, or localizations, of the labeled target protein

are output as an eventlist or pointillistP = fp1;p2;.;pLg, where L

is the total number of localizations. Each pirecords the recon-

structed spatial location of the event as a coordinate vector ðxi;
yiÞin 2D or ðxi; yi; ziÞin 3D. Additionally, metadata associated

with each fluorophore event are recorded, which can vary from

SMLM imaging technique to another (e.g., STORM, PALM,

GSD) or from one microscope to another. Examples of fluoro-

phore event pi metadata are photon� counti, frame� IDi,

error � in� xi, and error � in� yi. Thesemetadatamay be lever-

aged during the pre-processing of the eventlist. For example,

photon� count could be used as a confidence measure for an

event where events with low photon counts are discarded.

Following attempts to correct for imaging artifacts (e.g., dimin-

ishing the multiple blinking that causes pseudoclusters and the

offsets due to the length of antibody chain), one can obtain a re-

constructed point cloud that provides estimates of molecular

localizations. Each reconstructed molecular localization mi is

represented as a 2D or 3D spatial coordinate. Mathematically,

we writeM = RðPÞ, whereM is a set of reconstructed molecular

localizations, R represents the correction process, and mi˛ M;

i = 1; 2;/;N, where N is the total number of reconstructed mo-

lecular localizations (i.e., N = jMj; L = jPj). mi has coordinate

vector ðxi; yiÞ˛R2 for a 2D point or ðxi; yi; ziÞ˛R3 in 3D. Notice

that typically N % L.

The molecular cluster analysis task is to apply various mathe-

matical operators to find relations, patterns, curves (e.g., Ri-

pley’s H function that shows a cluster of molecular localizations)

over the entire setM to detect, segment, and classify the molec-

ular clusters that represent the different protein complexes in the

imaged SMLM data. Formally, a cluster of molecular localiza-

tions is a dense group of molecules that are, loosely speaking,

closer in someway to each other than to the localizations outside

the cluster. Clustering analysis is the task of decomposing a

given point cloud of molecular localizations M into smaller

disjoint (non-overlapping) subsets, such that their union covers
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the whole set M. Each subset (i.e., cluster/blob bi) implies

some underlying macromolecular biological structure. Some-

times the process of isolating a given set of point clouds of mo-

lecular localizationsM into smaller disjoint subsets is called seg-

mentation.

Formally, let C represent the clustering operation applied to the

set of localizations M. C takes every localization in M and bins

into one of K bins or clusters denoted bj; j = 1; 2;/; K. If the

set of K clusters or bins is denoted B, and when mi can only

belong to one cluster (i.e., disjoint, non-intersecting bins), we

write the mapping C : M/B as CðmiÞ = bj˛B; Wjbj = M;

bjXbk = 4;cj; k, where W and X are union and intersection,

respectively.

Sometimes, the cluster analysis is applied directly to the raw

SMLM data (i.e., P).

In this section, we dig deeper into the cluster analysis methods

used to quantify the molecular clusters (i.e., post-processing)

obtained through super-resolution SMLM. The methods include

statistical, Bayesian, density-based, Voronoi tessellation-based,

and graph-based approaches.

Statistical Methods

Over the past few years, researchers have started to apply sta-

tistical methods that are based on second-order statistics and

spatial point analysis methods to quantify the SMLM clusters.

The statistical methods have been applied to ecological spatial

data and adopted for SMLM analysis. In this section, we cover

the main statistical methods used in the literature to analyze su-

per-resolution SMLM data as listed in Table 2. Given its large

popularity in analyzing SMLM data, we describe Ripley’s func-

tions next as well as some of its variants. We then describe a

class of statistical methods that are based on correlation

techniques.

Ripley’s Functions. Ripley’s K, H, and L functions are gaining

popularity in cluster analysis of the SMLM membrane proteins.

These functions are used increasingly due to the point-cloud na-

ture of SMLM data (localization of molecules). Ripley62 studied

the stochastic models that have been proposed for spatial point

patterns. Ripley’s K function is a tool used for analyzing spatial

point process data.62,63 It is usually used for analyzing 2D

data, but may be used to analyze locations along a line (one

dimension) or may be extended to 3D spatial data.63,64

The density of points in an area (number of points per unit area)

is known as the first moment property.65 The second moment

property (also known as a bivariate or multi-variate generaliza-

tion) is used to describe the relationships between two or more

point patterns by finding the expected number of points Nwithin

a distance r of another point.63,65 Ripley’s K function62 is a sec-

ond moment property (second-order statistics). Theoretically,

the K function is given in Equation 2:63

KðrÞ = l�1E½number of points within distance r

of randomly chosen point�; (Equation 2)

where l is the density normalization of points (number of points

per area A, l = N=A). Formally, the K function is given in Equa-

tion 3:62,65

KðrÞ = 1

n

Xn

i = 1

Npi ðrÞ
�
l; (Equation 3)
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dispersed points (C). The generated data consist of 50 points for each one of the patterns shown in (A) to (C).
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where pi is the ith point in the data and the sum is taken over n

points. For a homogeneous Poisson process, which is known

as complete spatial randomness (CSR), the expected value of

function KðrÞ is given in Equation 4:63

KðrÞ = pr2: (Equation 4)

Note that deviation from the CSR expected value indicates

scales of clustering and dispersion. SoRipley’s K function is typi-

cally used to find the level of clustering by comparing a given dis-

tribution with a random distribution.

Other Ripley’s functions can be derived from the K function.

The complete derivation for all the other functions can be found

in other papers.63,65 The L function was proposed by Besag66 as

a normalization for the K function, as seen in Equation 5:

LðrÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðrÞ=p

p
: (Equation 5)

The L function and its derivative can be used to identify the

radius of the clusters.65 Normalizing the L function will produce

another function called the H function.67 Hence, the H function

is a further normalization of the original K function. The H function

is given in Equation 6:

HðrÞ = LðrÞ � r: (Equation 6)

Note that the H function may result in a positive value, which

indicates clustering over the spatial scale; on the other hand,

the negative value indicates dispersion. The value is zero when

we have CSR distributed points (not clustered or dispersed

points). This is because for a CSR distribution, LðrÞ= r for all

values of r. Figure 6 shows three cases of spatial point patterns

and the corresponding Ripley’s H-function behavior. The pattern

of the H function fluctuates around zero for uniformly distributed

points, above zero for clustered points, and below zero for

dispersed points.

To estimate KðrÞ, the numerator of Equation 3 can be written

as N�1
P

i

P
jsi Iðdij <rÞ,63,68 where dij is the distance between

the ith and jth points. Ið:Þ is an indicator function that is equal

to 1 if dij%r and is zero otherwise.
In its current formulation, the K function does not consider the

effect of the points close to the border of the study area. This

issue, which is called the edge effect of Ripley’s K function,

causes underestimation of K.63,68–70 Hence, Ripley’s K function

requires more elaborate methods for edge correction. Many

methods have been proposed to correct the edge effect of Ri-

pley’s K function.69–72 Generally, the corrected K function

( bKðrÞ) can be written as Equation 7:

bKðrÞ = A

N

X
i

X
jsi

Iðdij<rÞ
wij

; (Equation 7)

where wij is a weight function that provides the edge

correction.

Ripley’s functions are becoming increasingly popular in

analyzing SMLM data. The functions have been utilized in

many biological applications to find the level of molecular clus-

tering. They are used either alone or in combination with the

other cluster analysis methods.53,73–97 We summarize how the

methods are adopted for SMLM cluster analysis of the different

biological applications in Table 2.

Getis and Franklin’s Local Point Pattern. Getis and Franklin

published a paper and proposed a new LðrÞ function. Their func-
tion is a variant of Ripley’s K function, called second-order neigh-

borhood analysis. The goal of their LðrÞ function is to quantify the

clustering of the points (molecules in SMLM context) at various

spatial scales.98 The values of LðrÞ function are calculated for

each point as described in Equation 8:

LðrÞj =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A
Xn

i = 1

dij

n� 1

.
p

s
; (Equation 8)

where A is the region area (e.g., rectangular region) under study

and n is the total number of points in the region. The indicator

function delta dij = 1 if the distance between point i and point j

is <r and zero otherwise.
Pn

i = 1dij is the summation over all points

within distance r from point j (i.e., all points within a circle of

radius r centered at localization j). Thus, LðrÞ is another way of

normalizing Ripley’s K function by finding the local point patterns

normalized by the average point density in the whole analyzed
PATTER 1, June 12, 2020 7



Figure 7. An Example Illustrating the
Density-Based DBSCAN Clustering Method
Applied to SMLM Data
For instance, DBSCAN algorithm is applied when
using ε and MinPts= 3 parameters. Sometimes the
subjectivity of selecting the parameters might
change the clustering results dramatically. For
example, pseudoclusters in SMLM complicate the
selection of the algorithm parameters.
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region. The property of LðrÞ= r for all values of r when having a

CSR distribution still holds.

The Getis and Franklin (G&F) function could be used to find the

local descriptor (patterns) of every localization, while Ripley’s

function is used to describe all the points in the region globally.

Therefore, the G&F function has been used in combination with

Ripley’s K function to analyze the localization of molecules

from SMLM data.75,80,83,85,87–93,99 For example, a G&F point

pattern was used in double protein-labeling analysis99 to inves-

tigate the co-clustering of membrane proteins. It was also

used for generating a topographic map of the level of clustering

to determine the heights of peaks in the map across a region90

and then using the relative heights of the peaks to determine

the clustering characteristics and avoid inaccurate thresholding.

Correlation-Based Methods. Correlation-based analysis

methods (pair correlation, autocorrelation, cross-correlation,

co-localization) have been applied to super-resolution SMLM

data for both pre-processing and post-processing quantification

(Figure 2C). Pre-processing methods53,100–102 address imaging

artifacts such as the multiple blinking of a single fluorophore

that may cause molecular overcounting. Overcounting, as well

as the other implications of imaging artifacts, might bias SMLM

cluster analysis and should be corrected before post-processing

the SMLM data for quantifying the biological clusters. For

example, Malkusch et al.101 used a correlation coefficient frame-

work, coordinate-based co-localization, to analyze every single

localization within a certain radial distance and assign to it a

score ranging from –1 to 1. In their formulation, –1 is assigned

to perfectly segregated localizations, 0 for uncorrelated

(randomly distributed), and +1 for perfect co-localization. The

same coordinate-based co-localization idea has also been

used to analyze the protein localizations of biological clus-

ters.82,88,96 Many other correlation functions have been used to

quantify the localization clustering for post-processing SMLM

data.82,88,96,99,102–104 The proposed correlation functions are

used to analyze biological clusters rather than the biologically

irrelevant pseudoclusters (also known as nanoclusters). For

example, Schnitzbauer et al.102 derived a cross-correlation func-

tion for the localization coordinates inspired by the translational

cross-correlation function in pixel-based image representation.

They mathematically showed that the point-to-point distance

distribution in super-resolution SMLM is equivalent to the

pixel-based correlation function. They then extended cross-cor-

relation to quantify the spatial relationship between complicated

structures by considering the point-to-set distance.

Bayesian Methods

The SMLM cluster analysis methods usually depend on a set of

user-defined parameters. Sometimes, the subjectivity and the
8 PATTER 1, June 12, 2020
ambiguity of selecting the parameters affect the performance

of the SMLM clustering task. The main goal of the Bayesian

approach for super-resolution SMLM data is to design a clus-

tering method that alleviates the need for arbitrary user-

selected analysis parameters. A well-defined prior Bayesian

will replace the arbitrary user-selected parameters. Bayesian

is a model-based approach which is used for spatial point clus-

tering generated by SMLM. The model is used to evaluate the

assignment of every molecule to clusters by its marginal poste-

rior probability. The posterior probability is computed based on

a specified model for the molecular data and their uncer-

tainties.78 Therefore, the mechanism is to select clusters from

a set of generated clustering proposals. Usually, clustering pro-

posals are generated with variable spatial scale and threshold

using statistical methods such as Ripley’s K function83 or the

G&F function.78 After generating thousands of candidate pro-

posals per region of interest (ROI), the optimum number of pro-

posals is then selected by scoring them against the Bayesian

model.55,78,83,105 For example, in their generative model, Griffié

et al.83, considered an ROI containing clustered and non-clus-

tered localizations. The user sets the probability that localiza-

tion is non-clustered, and this is the prior parameter for the

model. They also assume that the molecular positions in the

cluster are following spherical Gaussian distribution. The radius

(Gaussian standard deviation) of the cluster is drawn from a

user-specified histogram of sizes. They claim that the afore-

mentioned model reflects the a priori knowledge of the molec-

ular distribution. The Bayesian approach is not limited to quan-

tifying 2D, and it was extended by Griffié et al. to analyze 3D

SMLM data.83

Density-Based Methods

Density-based clustering methods are popular in data mining

and spatial data clustering. Ester et al. proposed density-based

spatial clustering of applications with noise (DBSCAN),106 a den-

sity-based clustering algorithm that is capable of discovering

clusters of arbitrary shapes. This can be used to filter out noisy

events from the SMLM data when its parameters are set

correctly.

DBSCAN is based on two parameters for detecting and seg-

menting the clusters in SMLM data. It requires a neighborhood

radius ε and the minimum number of localizations/points

(MinPts) within ε to qualify as a cluster (Figure 7). The algorithm

can start from any molecular localization that has not been

visited. The connectivity of themolecules of the qualified clusters

should maintain the MinPts condition within ε while propagating

from onemolecule to another within the same cluster until reach-

ing the boundary molecules, where the MinPts condition no

longer holds. Otherwise, the cluster is considered an outlier. It
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Figure 8. Voronoi Tessellation-Based Method Used to Segment the Clustered SMLM Molecular Localizations
(A) The input space of molecular localization. It has two clusters and noisy/background localizations.
(B) Voronoi tessellation and partitioning the space into polygonal regions (Voronoi cells) in red. The Delaunay triangulation (dual of Voronoi) is shown by gray
dashed connections.
(C) The Voronoi cells colored with different colors. The white regions are the Voronoi cells with open regions.
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is clear that the clustering is conditioned on theminimum density

of molecules within neighborhood radius ε. Figure 7 shows an

example of how the DBSCAN clustering method works and the

required parameters to cluster the localizations.

According to Mazouchi and Milstein,107 leveraging DBSCAN

to analyze super-resolution SMLM data has certain limitations.

The algorithm is slow scaling with the number of localizations

and it has OðnlogðnÞÞ at best. The ambiguity and subjectivity

in selecting the algorithm parameters affect its performance

and makes the algorithm general. The imaging artifacts and

the multiple blinking of a single fluorophore cause the formation

of pseudoclusters. DBSCAN may not be sufficient to differen-

tiate between protein clusters (i.e., biologically relevant clus-

ters) and the non-biologically relevant pseudoclusters.107 To

address the limitations of DBSCAN, Mazouchi and Milstein107

propose a density-based clustering algorithm, fast optimized

cluster algorithm for localizations (FOCAL). FOCAL is a grid-

based method optimized for fast analysis of SMLM data. It

has one parameter that needs to be optimized, density

threshold (minL). It has a linear time complexity (OðnÞ). FOCAL

has limitations in dealing with small clusters and requires the

setting of fine grids. The problem becomes more severe with

high levels of noise. Moreover, FOCAL has issues with high-

density SMLM data and the overlapped clusters. FOCAL3D108

is an extension for the FOCAL method that is capable of

analyzing 3D SMLM data.

In SMLM data cluster analysis, DBSCAN is used either

alone107,109–111 or in combination with other clustering

algorithms82,95,96,102,112,113 to quantify the SMLM clusters.

Voronoi Tessellation-Based Methods

The Voronoi diagram, or tessellation of point clouds, has been

used in many applications for various goals, including computa-

tional geometry, computational physics, astrophysics, computa-

tional chemistry, and biology. In SMLM, a Voronoi diagram is a

method used to partition the input space of molecular localiza-

tions into regions according to the Euclidean distance between

the seed points (i.e., molecules). The resultant polygonal regions

are called Voronoi cells, where each cell is centered around one
of the molecules. Figure 8A shows a set of points in 2D space,

where each point might represent a molecular localization.

Figure 8B depicts the Voronoi diagram for themolecular localiza-

tions shown in Figure 8A. The Voronoi cells are shown in different

colors in Figure 8C. Notice that the Voronoi edges are equidistant

from the two nearest molecules. Specifically, the projected

perpendicular line from every molecule to any one of its Voronoi

cell edges is the shortest distance between every neighboring

pair of molecules. Hence, there is no intersection between any

Voronoi cells. To learn more about the methods used to find

the Voronoi polygons, we draw the reader’s attention to the

work of Okabe et al.114

Segmenting SMLM molecular clusters using geometric prop-

erties (e.g., area, shape) of the Voronoi cell was done by Levet

et al. andAndronov et al.115,116 TheVoronoi geometric character-

istics could be used to describe the neighborhood of the mole-

cules. The Voronoi geometric characteristics for every molecule

might be different based on the density and data organization.

Both of these studies115,116 depended on the Voronoi cell area

to segment the SMLM molecular clusters, where the Voronoi

cell area is inversely proportional to the density of the molecules

(regions with high molecular densities are composed of Voronoi

cells with smaller areas). Both works designed a method to clus-

ter SMLM localizations by comparing their Voronoi cell areaswith

a reference distribution chosen to be either a spatially uniform115

or CSR distribution.116 Figure 8 explains the concept of the Vor-

onoi diagrammethodwhenapplied topoint-clouddata.Note that

the clustered points (Figure 8A) have Voronoi cell areas

(Figure 8C) that are smaller than the non-clustered points.

Voronoi tessellation for clustering molecular localization has

been applied to structures with various shapes, such as

tubular-shaped structures (e.g., microtubules, filamentous,

fibrous).115,116 Voronoi tessellation was also adopted in other su-

per-resolution SMLM cluster analysis applications.84,86,97

Delaunay triangulation is the companion of the Voronoi tessel-

lation (Figure 8B). It has also been used for analyzing and quan-

tifying super-resolution SMLM data.86,117 However, Voronoi

tessellation methods are different from the Delaunay
PATTER 1, June 12, 2020 9



CBA

3-NN

Figure 9. Network/Graph-Based Method
Used to Model the SMLM Molecular
Localizations for Cluster Analysis
(A) The input space of molecular localization. It has
two clusters and noisy/background localizations.
(B) The ε-graph used to construct the network,
where every node is connected to all the other no-
des within the proximity distance ε.
(C) The kNN graph used to construct the network,
where every node is connected to only the k closest
neighboring nodes. We constructed the 3-NN graph
for illustration.
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triangulation with respect to the former’s ability to provide a

direct estimation of the region of influence,118 and hence is pref-

erable for analyzing SMLM data. Recently, a 3D extension of the

Voronoi tessellation method has been proposed by Andronov

et al.,118 who used Voronoi volumes as a characteristic of 3D

Voronoi cells to segment 3D SMLM clusters. Andronov et al.118

claim that the Voronoi-based methods are able to handle the

edge effect (see Ripley’s Functions). This is because the border

molecules have larger or infinite Voronoi cell areas that prevent

them from contributing to the clustering.

Clustering molecular localizations is therefore based on the

geometrical properties of the Voronoi cells such as the cell

area. Some molecules are considered as part of a cluster based

on their individual Voronoi cell areas. This leads to crude seg-

mentation of the clusters. Moreover, some of the border mole-

cules might be excluded from being part of a cluster as they

might have very large Voronoi cell areas (e.g., white cells in

Figure 8C) compared with inner molecules. In addition, the Vor-

onoi tessellation-based methods might fail in extracting the true

molecular clusters from SMLM data with multiple blinking of sin-

gle fluorophore artifact. Leveraging Voronoi cell area for seg-

menting clusters from SMLM data with varying cluster densities

might be another problem in such methods because the cell

areas hugely depend on the underlying molecular densities

and the closeness of the nearby clusters.

Graph-Based Methods

Graphs are strong mathematical structures employed to model

the interaction between objects or entities of a system. The en-

tities are represented as graph nodes and their interactions are

represented as edges.119 Hence, the graphs are considered

powerful and rich data structures that encode the connectivity

relationships between the different entities of a system. In real-

world problems, graphs are frequently complex networks

because they have many properties that make them different

from other types of graphs such as random graphs.120 For

example, real-world networks have many subgraphs, modules,

patterns, and small-worldness that are not frequent in other

types of graphs. Networks are ubiquitous and they are used to

study and model many real-world problems effectively.

Recently, network analysis methods have been successfully

adopted in many fields of study such as the brain, social, com-

puter, road, metabolic, and Internet.121–125

Leveraging graph theory to analyze SMLMdata is infrequent in

the surveyed literature. Few recent works have been proposed to

utilize complex networks and graphs for cluster analysis of su-

per-resolution SMLM data. Various neighborhood networks/

graphs can be constructed from the spatial SMLM data. Figure 9
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shows two types of neighborhood graphs that can be adopted

for analyzing the SMLM data.

Networks have been adopted to analyze large datasets of

prostate cancer data as well as cardiac data from various

SMLM modalities.126,127 A graph-based network method has

been proposed by Khater et al. to model SMLM data,126 where

the nodes represent the molecules and the molecular interac-

tions are represented as edges connecting the nodes. Various

network features have been leveraged to pre-process the

SMLM data (e.g., correcting for multiple blinking of a single fluo-

rophore artifact) as well as post-processing (e.g., denoising the

SMLM data and extracting its constituent molecular clusters).

A combination of network analysis and the mean-shift algorithm

are leveraged to segment the clusters and obtain 3D representa-

tion of molecular localization of diffraction-limited cellular struc-

tures, in this case plasma membrane invagination called caveo-

lae. Khater et al.128 also proposed a graph-based method to

extract graphlet features from SMLM molecular clusters for

automatic identification and quantification of various biological

structures. Network community detection and modularity anal-

ysis have been proposed to decipher the architecture of the mo-

lecular clusters.129 Communities represent subclusters of mole-

cules within a larger cluster. An example of modular detection

within caveolae is shown in Figure 10.

Some other very recent graph-based methods to analyze and

quantify SMLM data are posted as preprints and are still unpub-

lished. We cover them briefly in this survey and categorize them

under the graph-basedmethods. Researchers are exploring new

computational methods to analyze the SMLMdata. For example,

community detection has also been exploited for extracting

SMLM clusters.130 A segmentation protocol based on persis-

tence homology and DBSCAN has been employed to segment

and quantify the topological structure within SMLM data.131 In

this persistence homology method, the density modes were

constructed from a graph that connects all the localizations

within the same search radius.

Machine-Learning-Based Methods

Machine-learning algorithms (including deep learning) are data-

driven approaches. Deep-learning approaches typically require

relatively large data that could capture the variations in the data-

set. Supervised machine-learning approaches require ground-

truth data for training the different learning models, which is diffi-

cult to obtain in SMLM data. Machine-learning models can be

trained to perform various computational tasks such as predict-

ing, segmenting, and classifying the molecular complexes.

We have not witnessed a large amount of work leveraging ma-

chine learning for super-resolution SMLM data for the



Figure 10. Graph-Based Network Analysis Methods for SMLM Data Proposed by Khater et al.
(A) Khater et al.126,129 proposed the 3D SMLM Network Analysis pipeline126 to correct for multiple blinking of a single fluorophore, filter out noisy localizations,
segment the biological structures into clusters/blobs, and identify the cluster/blob classes.
(B) Network community/modularity analysis129 detecting the modules within caveola and S2 scaffold domains.
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aforementioned computational tasks. However, some works

have applied deep learning for the localization and data acquisi-

tion132–134 but not for cluster analysis.

Khater et al.126,128 designed a graph-based machine-learning

method to automatically identify the class of the molecular com-

plexes from super-resolution SMLM data. They leveraged ma-

chine learning for many computational tasks such as deter-

mining the scale of clustering, finding the biosignatures for

several biological structures, and identifying patterns of the iso-

lated and multiple antibody proteins. They also leveraged deep

learning for the biological structures classification task135

applied to several SMLM data representations. Sieben et al.110

used machine learning to identify the class of the biological

structures from SMLM data. Another recent work that utilized

machine learning to detect clustered and unclustered (back-

ground) molecules was proposed by Tobin et al.103 Williamson

et al.136 proposed a supervised machine-learning method that

is capable of classifying all the localizations frommicroscopy da-

tasets into clustered or non-clustered classes. Their model is

trained on several simulated clustered datasets.

Validation

Validation of the cluster analysis method is critical when

applying the various algorithms to find the biological clusters

from SMLM data. There is no publicly available dataset with

ground-truth class labels for the membership of the localiza-

tions to the various cluster types. Hence, most of the methods

are unsupervised approaches whereby the ground truth is not

provided along with the data. The ground truth might include in-

formation such as the number of clusters and their features

(e.g., sizes and densities). Also, comparing the different clus-

tering methods requires having benchmark SMLM data with

known cluster features. We summarize the main methods

used to validate the super-resolution SMLM clustering

methods in the following subsections.

Computer Simulations (In Silico). Synthetic Data. Generating

synthetic data with known cluster features (e.g., density, size/

volume, shape) has been widely used to mimic SMLM data.

Background and noise signals with known distributions are

also generated along with the synthetic clusters. Some methods

generate synthetic data that is based on specific assumptions,

such as generating Gaussian clusters, and the minimum dis-

tance between the generated clusters should be greater than

some threshold value.65,118

Given synthetic data, a clustering method is tested on extract-

ing the synthetic clusters first. It could then be used for cluster

analysis in experimental SMLM data. To assess the quality of

a clustering method, the extracted clusters and their features

are compared with the known clusters used in the data gen-

eration.

Simulated Data. Simulation could be used to mimic super-

resolution SMLM imaging for known biological structures. Simu-

lators have the ability to imitate the SMLM imaging by varying

several parameters (e.g., labeling strategy, labeling efficiency,

epitope length, number of frames, imaging time, density, back-

ground) that might be useful for optimizing the imaging of the

experimental sample. Hence, simulation gives more control to

study all the possible scenarios that might lead to less imaging

artifacts in the data. Moreover, simulation could help in assess-

ing the quality of the adopted clustering analysis methods.
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Recently, many SMLM simulators have been developed and

posted as publicly available software tools. The simulators facil-

itate the generation of data for use in cluster analysis applied to

various biological structures. Popular SMLMsimulators software

includes SuReSim,137 TestSTORM,138 and SMeagol.139 Syn-

thetic data generation offers controlled creation of clusters and

background with known density distributions (e.g., Gaussian,

uniform) and cluster shapes (e.g., circular, tubular). For example,

Levet et al.140 generated synthetic two-color 2D and 3D clusters

of circular and square shapes. They also simulated multiple sce-

narios by varying the number of clusters, their relative positions,

their diameters, their density ratios, and background/noise

levels.

Data simulators, on the other hand, are designed to mimic

realistic labeling and imaging conditions.46,47 SMLM data

simulation considers the inner workings of the SMLM imaging

technique and labeling parameters (e.g., epitope length, label-

ing efficiency, localization precision, number of frames, blink-

ing events per frame) in the data generation, but does not give

direct control of the resulting data. For example, Spahn

et al.141 used the SuReSim simulator137 with specific SMLM

imaging parameters (e.g., cluster diameter of 100 nm and

various numbers of epitopes per cluster) to generate an image

with a field of view of 15 3 15 mm2, of some biological struc-

tures (e.g., clathrin-coated pits). Sieben et al.110 also used

simulation to validate their work. They mimicked their real

experimental conditions to generate ground-truth models by

controlling the labeling efficiency, localization positions, noise

molecules, and fluorophore parameters (e.g., distributions for

photon count, localization precision). To evaluate their ERGO

emitter density estimation method, Cardoen et al.134 used the

in silico sequence of 2,500 frames (each 64 3 64 grayscale

pixels corresponding to a 2D view of 100 3 100 nm2) from

Sage et al.,48 which simulates a realistic acquisition of micro-

tubules labeled with the commonly used Alexa 647 fluoro-

phore. They verified their approach on real-world data142

with a markedly different microscope configuration whereby

they showed that aligning the intensity distribution between

training and real-world data is sufficient to obtain consistent

results without retraining.

Validation via Physical Phantoms. DNA Origami and Nanoru-

lers. DNA origami and nanorulers have been developed to vali-

date many of the SMLM imaging and analysis methods. They are

used in super-resolution imaging and microscope calibration.47

The DNA origami is designed to allow placing of a known number

of fluorescent molecules to nanostructures in defined geome-

tries.143 In addition, DNA origami has been used to quantify the

protein copy number in the cells using super-resolution mi-

croscopy.144

Validation via Knowledge of Biology and Other Imaging Modal-

ities. Real experimental super-resolution SMLM data can be

used in clustering methods validation if the studied clusters of

biological complexes have been studied before with other imag-

ing modalities. Biological structures, imaged using electron mi-

croscopy (EM), with known size and number of molecules, can

be used as ground truths for super-resolution cluster analysis

methods. Generally, researchers use simulation or synthetic

data to validate their methods and then apply their methods to

real experimental data. For example, Sieben et al.110,145 used



Table 1. Summary of the Main Categories of the Super-Resolution Cluster Analysis and Quantification Methods

Method Pros (+) Cons (–)

Statistical simple and easy to implement; could be used to detect

the level of clustering; could be used for both pre- and

post-processing

restricted to analyze homogeneous clusters; edge

effect; some normalization based on Poisson point

process assumption

Bayesian can handle SMLM localizations and their associated

uncertainties; parameter-free model

very slow; sensitive to the prior settings; used in

combination with other methods; requires generation of

thousands of cluster proposals; very sensitive to

imaging artifacts

Density-based efficient in noise removal; could be used to discover

clusters with various shapes

clustering is conditioned on the minimum density of

molecules within neighborhood radius; slow scaling

with the number of localizations; ambiguity and

subjectivity in selecting the algorithm parameters

affect its performance; cannot deal with varying cluster

densities and hollow clusters

Voronoi-based fast and scalable to handle big data; efficient in noise

removal; sensitive to clusters of specific geometry

(e.g., tubular-like structures).

might cause problems in segmenting data with non-

isotropic distribution; limited multi-scale capabilities;

might not be good for segmenting hollow clusters

Graph-based fast and scalable to handle big data; easy to be

integrated with machine/deep learning; robust to

noise; capable to extract per-point and per-cluster

features; topological graph is invariant to the

dimensionality of the data; extracting heterogeneous

clusters capability; can be used for both pre- and post-

processing; all the other methods can be derived from

the graph-based method

graph construction is not straightforward for big data;

might cause problems in segmenting data with

non-isotropic distribution; clustering results are highly

dependent on the graph construction method

The cons (+) and pros (–) for each of the clustering analysis methods are also shown for comparison.
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EM imaging to validate their multi-color 3D SMLM reconstruction

and analysis method. They used dual-color SMLM to image

around 300 centrioles per field of view. They then used masking

to segment the localizations and DBSCAN to separate adjacent

particles. The 3D volumes were reconstructed by EM routines

and classified by applying 2D clustering. Khater et al.126,129

used known information about the cell surface invagination, cav-

eolae, to validate their work. For example, they compared their

findings with known topology, size, and number of predicted

proteins per segmented structure.
Summary and Discussion
In this paper, we surveyed the state-of-the-art cluster analysis

and quantification works applied to super-resolution SMLM.

We depended on various criteria to study the papers and tabu-

late them in Table 2 according to: (1) the biological application

of the study; (2) the data acquisition; and (3) the data analysis

technique adopted. We then categorized the different clustering

methods for easy reference and comparison and identified the

pros and cons of these categories in Table 1. Looking at the

various methods/algorithms listed in Table 2, we note the

following:

d 2D or 3D analysis. Some algorithms have been used only

for 2D super-resolution SMLM data analysis, while some

other algorithms were used for 2D and then extended to

3D. Dealing with 3D SMLM data is challenging because

the axial resolution is usually poorer than the lateral resolu-

tion. Also, some biological structures depict structural

properties evident in 3D (e.g., hollow structures), so the

analysis methods should be designed with care to handle
such 3D structures in the denoising, clustering, and identi-

fication stages.

d Pre-processing. Few methods could effectively handle

some of the imaging artifacts, such as the multiple blinking

of a single fluorophore artifact (e.g., graph-based, statisti-

cal methods), while some other methods could not (e.g.,

Voronoi tessellation-based, density-based methods).

d Localization uncertainties. Few methods utilized the local-

ization uncertainties (e.g., Bayesian methods) in the anal-

ysis, while the majority of the methods did not.

d Parameterization. The majority of the methods have pa-

rameters, while the Bayesian methods are claimed to be

parameter-free models. However, Bayesian methods are

relatively much slower (e.g., Griffié et al.105 reported that

the processing time for one dataset consisting of 30 small

2D ROIs is ~19 h with user input). Voronoi tessellation-

based clustering is parameter-free method if the segmen-

tation threshold is determined by Monte Carlo simu-

lations.116

d Intra-cluster analysis. The intra-cluster features (features

of molecular interaction within a cluster and its subclusters

such as network analysis of the molecules, modularity

analysis, and subnetworks) lead to understanding the ar-

chitecture of the biological complexes. Very few methods

are equipped with capabilities to extract the intra-cluster

features (e.g., graph-based), while the majority of the

methods do not have this capability.

d Machine-learning integration. Most of the methods are not

equipped to be integrated with machine-learning ap-

proaches for further analysis. Machine-learning ap-

proaches require associating features with samples/
PATTER 1, June 12, 2020 13



Table 2. Super-Resolution SMLM Cluster Analysis and Quantification Methods (Post Processing)

Study Acquisition Analysis

Ref Year App ImgMeth Dim

Res

(nm) #FPI #Loc DataSz CAM

A/V (mm2/

mm3) WAV SRIC CP ICA

ML &

CC MSA SW

Owen et al.73 2010 Lck and Src in

T cells

PALM

dSTORM

2D ~20 15K 1,500/mm2 NR Ripley 2 3 2 U 2–5 U

Lillemeier

et al.74
2010 TCR and Lat in

T cells

hsPALM 2D ~25 1K 140–

150/mm2

5–10 cells per

exp. (3 exp.)

Ripley NR U 2–5 U

Williamson

et al.93
2011 Lat in T cells PALM

dSTORM

2D NR 150–

200K

NR 3–25 exp. Ripley,

G&F

3 3 3 3–4 U

Pereira

et al.75
2012 HIV-1 amtrix

in HIV-1 virus

dSTORM 2D 15–20 20K NR 5–6 cells per

exp. (2 exp.)

Ripley,

G&F

10 3 10 U 2–5 U

Owen

et al.92
2012 LAT in T; HeLa

cells

PALM 2D NR 15K NR 7 cells per

cond. (4 cond.)

Ripley,

G&F

3 3 3 2 U

Pageon

et al.76
2013 NKG2D in

NK T cells

PALM

GSD

2D 20–30 20–25K 1,140–

1,920/mm2

16–23 cells

(2–4 exp.)

Ripley 2 3 2

3 3 3

U 2–5 U

Rossy

et al.77
2013 Lck and

CD45 in T cells

PALM

dSTORM

2D 21 15–20K NR 10–13 cells

(3 exp.)

Ripley 3 3 3

4 3 4

U 2–5 U

Owen

et al.80
2013 DiI, Lat vesicles

in T cells

HIV-1 Gag

HILO-

PALM

3D NR NR NR NR Ripley,

G&F

2 3 2 U U 3–5

Malkusch

et al.81
2013 polyprotein in

T cells

dSTORM 2Da ~20 4–10K NR NR Ripley,

NN

2 3 2 U 2–3 U

Rossy

et al.99
2014 Lck and CD45

in T cells

PALM

dSTORM

2D 20–30 NR NR NR G&F 2 3 2b U 2 U

Wee et al.89 2015 CD37,b2-integrin

in HL-60 cells

dSTORM 2D NR 8K NR 20 cells Ripley,

G&F

3 3 3 U

Stone and

Veatch104
2015 Lyn kinase, BCR

in CH27 cells

STORM 2D NR NR NR 5 cells steady-

state

cross-

correlation

NR U U MATLAB

func.

Gao et al.85 2016 STAT1, STAT3

in HeLa cells;

CENP-A in

U2OS cells

dSTORM 2D 29 5K NR 20 cells per

cond. (5 exp.)

Ripley,

G&F

4 3 4 U 2–3 U

Oszmiana

et al.91
2016 KIR, KIR2DL1,

KIR2DS1 in NKL

cells

GSD 2D NR 20K NR 14–35 cells per

exp. (24 exp.)

Ripley,

G&F

3 3 3 U 8

Kr€uger

et al.149
2017 TLR4 in HEK

293 cells

PALM 2D 50 NR NR 9–10 cells

per cond.

NN

histogram

NR U

Lopes

et al.88
2017 FcgRI, FcgRII,

SIRPa in T,

B cells

dSTORM 2D 25 5K NR 10–30 cells Ripley,

G&F,

CBC

5 3 5 U 2–3 U

(Continued on next page)
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Table 2. Continued

Study Acquisition Analysis

Ref Year App ImgMeth Dim

Res

(nm) #FPI #Loc DataSz CAM

A/V (mm2/

mm3) WAV SRIC CP ICA

ML &

CC MSA SW

Bálint

et al.87
2018 NKG2D in

T cells

dSTORM 2D NR 5K NR 12–500 cells Ripley,

G&F

5 3 5 U 2–3 U

Peters

et al.94
2018 actin

cytoskeleton

in T cells

iPALM

dSTORM

2D, 3D NR 50–

100K

NR NR angular

Ripley

3 3 3 2–3 U MATLAB

func.

Rubin-

Delanchy

et al.78

2015 CD3 in T cells PALM

dSTORM

2D 10–30 20K 2 3 2b 30 ROIs

(per cond.)

Bayesian;

Ripley

3 3 3 U 4 U R func.

Griffié

et al.90
2015 LFA-1 in T cells dSTORM 2D NR NR NR 10 cells Ripley,

G&F,

Bayesian

2 3 2b 4

Griffié

et al.105
2016 ZAP-70 in T cells PALM

dSTORM

2D 20–30 NR 15–20K 12 cells Bayesian 2 3 2

3 3 3

3 U MATLAB, R

Griffié

et al.83
2017 LAT vesicles

in T cells

iPALM 3D 10–30 30K 2 3 2b 5 cells per

cond.

Ripley,

Bayesian

2 3 2b 5 U

Griffié

et al.55
2018 CD4 in T cells Live-cell

PALM

2D NR NR 4K 6 cells Ripley,

Bayesian

2 3 2b 3

Pengo

et al.109
2014 GaG data HIV,

Nef

PALM 2D NR NR NR NR DBSCAN NR U U PALMsiever

Caetano

et al.79
2015 PACS-1, LAMP1,

etc. in HeLa cells

GSD 2D 20 5–30K NR 5 cells per

exp. (3 exp.)

density–

based;

Ripley

1.5 3 1.5

3.5 3 3.5

4 3 4

U 4 U MIiSR

Mazouchi

and

Milstein107

2015 RNAP II in cortex

cells; H-NS in

E. coli

PALM

dSTORM

2D ~10 NR NR NR density-

based;

DBSCAN

2 3 2b U 2 U FOCAL

Pageon

et al.82
2016 TCR, VD45 in

T cells

dSTORM 2D 20–30 20K NR NR Ripley,

DBSCAN

4 3 4 U 13 U Clus-DoC

Malkusch

and

Heilemann96

2016 HIV, gag, env in

T cells

SMLM 2D NR NR NR 1 cell DBSCAN,

Ripley,

OPTICS

NR 5 U LAMA

Barna

et al.111
2016 mitochondrial

protein Tom20

in neuroblast brain

cells

STORM 3D 40 20K NR NR DBSCAN NR U 3 VividSTORM

Mollazade

et al.112
2017 RGD peptides dSTORM 2D 16 20K NR NR DBSCAN,

NND

2 3 2b U 3 U
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Table 2. Continued

Study Acquisition Analysis

Ref Year App ImgMeth Dim

Res

(nm) #FPI #Loc DataSz CAM

A/V (mm2/

mm3) WAV SRIC CP ICA

ML &

CC MSA SW

Zhang

et al.113
2017 Salmonella

typhimurium

mutants in

bacterial cells

FPALM 2D, 3D ~35 6–18K NR 58–600 cells DBSCAN

wavelet

NR U 3 U

Luke�s

et al.150
2017 CD4 glycoprotein

mutants in T cells

SOFI;

simulated

PALM

2D NR 5K NR 20 cells per

cond.

SOFI

density

analysis

3 3 3 U 3 codec

Schnitzbauer

et al.102
2018 cis-Golgi,

GRASP65,

GM130, trans-

Golgi, TGN46 in

RPE cells

STORM 2D NR NR NR NR DBSCAN,

histogram

correlation

NR U 2–3 Python

func.

Lagache

et al.95
2018 synapsin, VGLUT

in primary

hippocampal

neurons

SIM STORM 3D NR 30K 0.5M NR DBSCAN,

Ripley,

SODA

20 3

20 3 2

U 3–5 Icy Plugin

Sieben

et al.110
2018 proteins within

centrioles and

procentrioles

in KE37

cells

STORM 3D 32–65 30–60K NR NR DBSCAN 2 3 2 U U 8 U SPARTAN

Tobin et al.103 2018 trastuzumab

(HER2 receptor)

in breast

cancer cell lines

(BT-474, SK-BR-3,

MDA-MB-468)

dSTORM 2D NR 20–40K 230–360

locs/mm2

17–23 cells density pair

correlation

20 3 20 U 6 U Cluster

Occupancy

Nino et al.108 2019 nuclear pore

complex in U-2

human OS cells

dSTORM 3D NR NR 2 3 2b NR density-

based;

DBSCAN

2 3 2b U 2 U FOCAL3D

Paul et al.151 2019 DSB foci in

human (U2Os)

cells

dSTORM 2D NR NR NR NR KDE

DBSCAN,

Voronoi

NR 3 SMoLR

Levet et al.115 2015 microtubules in

COS7 cells;

GluA1, tubulin,

integrin-b3 in

neuronal cells

PALM

dSTORM

2D 33.9 NR 0.024–

0.277M

3 cells per

cond.

Voronoi 2 3 2b U 4 SR-Tesseler

Andronov

et al.116
2016 microtubules,

chromatin in

HeLa cells

GSD 2D NR NR 0.230M NR Voronoi 2 3 2b U 5 ClusterVisu

(Continued on next page)
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Table 2. Continued

Study Acquisition Analysis

Ref Year App ImgMeth Dim

Res

(nm) #FPI #Loc DataSz CAM

A/V (mm2/

mm3) WAV SRIC CP ICA

ML &

CC MSA SW

Andronov

et al.84
2016 b-tubulin in

HeLa cells

TPR

GSD 2D 20 NR NR NR Ripley,

Voronoi

1.5 3 1.5 U U SharpViSu

Andronov

et al.118
2018 b-tubulin in

HeLa cells;

CENP-A in

U2OS cells

dSTORM 3D NR 28–50K NR 3 exp. Voronoi ROIs from

18 3 18

U U 2–4 3DClusterViSu

Haas et al.86 2018 RAD51, RPA

in HeLa

cells; HPNE, LN9,

EUFA423

dSTORM 2Da ~30–40 25K NR 5 exp. Ripley,

Delaunay,

Voronoi

NR U 2–5 Grafeo

Peters et al.97 2018 F-actin in T cells;

microtubule

network

in fixed HeLa cell

dSTORM 2D 60 100K NR 3–5 cells Voronoi;

angular

Ripley

3 3 3 U 4

Levet et al.140 2019 nuclear pore

complex;

microtubules;

actin

cytoskeleton

regulators

DNA-PAINT

dSTORM

PALM

2D, 3D 20–60 40K 20K-8.3M 3–18

cells per

cond.

Voronoi NR U 4 Coloc-

Tesseler

Khater

et al.126
2018 Cav1, Cavin-1 in

PC3 cells

GSD 3D 20–50 32–40K 0.45–1.2M 9–11 cells

per cond. 2

cond.

(4 exp.)

network

graph

mean-shift

18 3

18 3 0.8

U U 28 U U U

Khater

et al.128
2019 Cav1, Cavin-1 in

PC3 cells

GSD 3D 20–50 32–40K 1.17–1.43M 10 cells per

cond.

(2 cond.)

network

graph

mean-shift

graphlet

18 3

18 3 0.8

U 11–47 U U U

The nomenclature used in this table is as follows. Ref, reference to themethod; App, application; ImgMeth, imagingmethod; Dim, dimensionality; Res, resolution; #FPI, number of frames per image;

#Loc, number of localizations; DataSz, dataset size; CAM, cluster analysis method; A/V, area/volume; WAV, whole-area visualization; SRIC, surface reconstruction for individual clusters; CP, cluster

properties; ICA, intra-cluster analysis; ML & CC, machine learning and cluster classification; MSA, multi-scale analysis; SW, software; NR, information not reported.
aData acquisition is 3D but the analysis is applied to the projected 2D data.
bInformation is reported for simulated data.
cCode available upon request.
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BA
Super-resolution SMLM Imaging 

Technique Used in the Publication
Super-resolution SMLM Cluster

Analysis Methods

Figure 11. SMLM Imaging Techniques and
Dimensionality Used in Various Publications
(A) The distribution of the publications based on the
super-resolution SMLM imaging technique used in
the study.
(B) The distribution of the publications based on the
dimensionality of the super-resolution SMLM clus-
ter analysis method.
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clusters to train a model. Subtle features could be ex-

tracted from graph-based methods (e.g., network mea-

sures) and used to train a machine-learning model. Also,

some recent deep-learning approaches for graphs146,147

could be leveraged for analysis of SMLM data.

d Big-data analysis. The majority of the methods do not

scale well to handle the big data generated from the su-

per-resolution SMLM imaging techniques, while some

methods are highly efficient and scale up efficiently with

big data (e.g., graph-based and Voronoi tessellation-

based methods).

d Cluster shape variation. Some of the methods could

discover the clusters with various shapes (e.g., density-

based methods). Some methods are more suitable for

identifying tubular-like shapes (e.g., Voronoi tessellation-

based methods).

d FOV/ROI analysis. The majority of the surveyed methods

were used to analyze small ROIs rather than the whole field

of view (FOV). Also, in most methods the ROIs were either

selected manually or randomly from the whole FOV. We

believe that selecting a small ROI is not a good strategy

and will bias the cluster analysis. Analyzing ROI is depen-

dent on its location in the cell. For example, selecting an

ROI very close to the periphery of the cell could reveal

structures that are different to those in an ROI in the middle

of the cell, because the structures at the periphery might

have different functions (e.g., focal adhesion) than the

structures in the middle of the cell.

d Software. Some published software is designed to visu-

alize SMLM data with very limited analysis capabilities,

such as ViSP.148 Some published software is limited to

analyzing 2D regions of the SMLM data, is unstable,

cannot handle the whole FOV but is limited to small

ROIs, and is not robust to noise. Some software packages

implement more than one method for analyzing SMLM

data. In general, we noted limited work on automatic quan-

tification and analysis methods applied to super-resolution

SMLM data.

d 2Dmethods for 3D data. We noted that somemethods ac-

quire 3D super-resolution SMLM images; then, in order to

leverage existing 2D super-resolution SMLM cluster anal-

ysis methods, they project the 3D data to 2D.81,86 Projec-

ting 3D data to 2D for analysis is not a good idea. Process-

ing data in its 3D native format is much better to (1) avoid

artifacts and (2) filter the noisy background localizations.

About 78% of the super-resolution SMLM cluster analysis
PATTER 1, June 12, 2020
methods are 2D, as shown in

Figure 11B. Around 49% of the SMLM

imaging used STORM-based tech-

niques as depicted in Figure 11A.
d Validation. Various ways to validate the methods were used,

such as using DNA origami and nanorulers, synthetic

data generation, SMLM simulators, and, finally, using real

experimental cellular data with known biosignatures. Vali-

dation and evaluation of the different methods remains a

challenging task for all surveyedmethods, as no public da-

taset is available for benchmarking and assessing the per-

formance of different (post-localization) analysis methods.

We summarize the number of publications (listed in Table 2)

per year categorized according to super-resolution SMLM clus-

ter analysis methods used in the study in Figure 12. Our survey

shows that before 2014, only a couple of methods (i.e., statisti-

cal) and few studies addressed analysis of SMLM data. After

2014, researchers started exploring new clustering methods

and, at the same time, the number of publications per year

started growing, except for 2017. Graph-based cluster analysis

methods applied to super-resolution SMLM data started ap-

pearing in 2018. We expect that more clustering methods based

on graphs will appear in 2020 and onward. Ripley’s functions are

the most popular methods used for super-resolution SMLM

cluster analysis over the years, as depicted in Figure 12. Further-

more, given their successes in analyzing other imaging modal-

ities, we anticipate growth in the number of methods that

leverage and adapt machine-learning (and particularly deep-

learning) methods for SMLM analysis.

Conclusions
The SMLM imaging modality is relatively new and is creating

exciting opportunities to help us understand the structure

and function of many macromolecular complexes below the

diffraction limit of fluorescence microscopy. The data it pro-

vides can enable discoveries, but we note that there is still a

need and an opportunity to develop methods and tools that

can (1) read data from different super-resolution microscopes

and pre-process the data to handle image-acquisition arti-

facts, (2) provide different visualization alternatives, (3) analyze

a large number of datasets in 3D, (4) extract and quantitatively

describe the structural geometry and interaction of the under-

lying biological structures, and (5) do so in a way that is either

robust to parameter settings or provide intuitive descriptions

of parameters easily communicated to and understandable

by the end user.

Our observations from conducting this review revealed that

studying the various methods adopted for cluster analysis and

quantification requires a benchmarking dataset and evaluation
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measures for the assessment of the quality of clusters. The

benchmark dataset should be available to validate both 2D

and 3D cluster analysis methods. It should have several types

of clusters with various densities, shapes, sizes, and noise levels.

Our review also motivated us to highlight the importance of

strong interdisciplinary collaborations between computational

scientists, biophysicists, biochemists, and biologists for novel

breakthrough discoveries. Furthermore, artificial intelligence al-

gorithms (e.g., machine learning) need to be incorporated in

the analysis to (1) get rid of the subjectivity and bias, (2) robustly

analyze the generated big data, and (3) automatically identify the

distinct biological structures and their constituent biosignatures.

In this Review, we have summarized and compared the

various computational methods for SMLM cluster analysis and

quantification. We note that network/graph-based methods

have more capabilities such that they could be used for pre-pro-

cessing (e.g., correcting for multiple blinking of a single fluoro-

phore artifact) and post-processing (e.g., filtering, segmenting,

and identifying the biological structures) of the SMLM data.

Graph-based methods could be applied to extract per-point

and per-cluster features for analyzing 3D SMLM data, analyze

the whole FOV, process big data (millions of localizations), and

extract heterogeneous clusters. Graph-based methods are

well suited to extract intra-cluster features and could be inte-

grated with the machine-learning algorithms for automatic anal-

ysis and quantification of the underlying clusters.

In the end, we believe that synergy and harmony across

research disciplines such as biophysics, biology, imaging,

biochemistry, and artificial intelligence, among others, are

required to improve our understanding of the underlying protein

cluster structure and function. The extraordinary SMLM imaging

modality and elegant computational methods will lead to a better

understanding of protein interactions in several subcellular

structures, consequently enhancing the modeling of antibodies

and drug design to obtain better disease therapies.

Details of the criteria used in Table 2 are as follows:

d Application: the main biological application of the related

studies. The imaged protein and biological model

d Imaging method: imaging technique applied in the study

(the study may apply more than one imaging method; we

are here focusing on the SMLM super-resolution methods

only)
– PALM: photoactivated localization microscopy

– hsPALM: high-speed version of PALM

– iPALM: interferometric PALM

– FPALM: fluorescence PALM

– STORM: stochastic optical reconstruction microscopy

– dSTORM: direct STORM

– GSD: ground state depletion

– GSDIM: GSD followed by individual molecule return

– HILO: highly inclined and laminated optical sheet

– SOFI: super-resolution optical fluctuation imaging

– SIM: structured illumination microscopy

d Dimensionality: is either 2D data analysis (for 2D acquisi-

tion) or 3D data analysis (for 3D acquisition) applied for

the provided method?

d Resolution/localization precision: the resolution of the im-

ages on which the reported analysis is applied. (We report

the localization precision if the resolution is missing.) The

localization precision is much smaller than the spatial im-

age resolution

d Area/volume: the total area or volume where the analysis is

applied

d #frames per image: number of frames per super-resolution

image (in thousands [K]).

d #localizations (blinks, events, pointillist, etc.): the total

number or density of acquired blinks/molecules (in

PALM-based methods)/localization events as described

in the study

d Dataset size: dataset size (how many cells, how many ex-

periments used in the work)

d Cluster analysis method: the clustering analysis method(s)

used in the work

d Whole-area visualization: is cluster visualization of the

whole analyzed area provided (after cluster analysis)?

d Surface reconstruction for individual clusters: is surface

reconstruction for individual clusters provided?

d Cluster properties/descriptors: does the study provide

analysis on any cluster properties? Yes or no. If yes, how

many features have been used in the analysis?

d Intra-cluster analysis: does the study provide detailed

analysis at intra-cluster levels (network analysis of the mol-

ecules, modularity analysis, subnetworks, etc.)?

d Machine learning and cluster classification: is machine

learning used to automatically classify the clusters?

d Multi-scale analysis: is multi-scale analysis supported and

used by the method?

d Software: is software available for the method/algorithm?

Yes (software name) or no.
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55. Griffié, J., Burn, G.L., Williamson, D.J., Peters, R., Rubin-Delanchy, P.,
and Owen, D.M. (2018). Dynamic Bayesian cluster analysis of live-cell
single molecule localization microscopy datasets. Small Methods.
https://doi.org/10.1002/smtd.201800008.
56. Lelek, M., Di Nunzio, F., Henriques, R., Charneau, P., Arhel, N., and Zim-
mer, C. (2012). Superresolution imaging of HIV in infected cells with flash-
palm. Proc. Natl. Acad. Sci. U S A 109, 8564–8569.

57. Szymborska, A., De Marco, A., Daigle, N., Cordes, V.C., Briggs, J.A.G.,
and Ellenberg, J. (2013). Nuclear pore scaffold structure analyzed by su-
per-resolution microscopy and particle averaging. Science 341,
655–658.

58. Salvador-Gallego, R., Mund, M., Cosentino, K., Schneider, J., Unsay, J.,
Schraermeyer, U., Engelhardt, J., Ries, J., and Garcı́a-Sáez, A.J. (2016).
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D.M., and Owen, D.M. (2020). Machine learning for cluster analysis of
localization microscopy data. Nat. Commun. 11, 1493.

137. Venkataramani, V., Herrmannsdörfer, F., Heilemann, M., and Kuner, T.
(2016). SuReSim: simulating localization microscopy experiments from
ground truth models. Nat. Methods 13, 319.

138. Novák, T., Gajdos, T., Sinkó, J., Szabó, G., and Erdélyi, M. (2017). Test-
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