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THE BIGGER PICTURE Citizen science and artificial intelligence (AI) are often used in isolation for ecological
monitoring, but their integration likely has emergent benefits for management and scientific inquiry. We
explore the complementarity of citizen science and AI for ecological monitoring, highlighting key opportu-
nities and challenges. We show that strategic integration of citizen science and AI can improve outcomes
for conservation activities. For example, coupling the public engagement benefits of citizen science with
the advanced analytical capabilities of AI can increase multi-stakeholder accord on issues of public and sci-
entific interest. Furthermore, both techniques speed up data collection and processing compared with con-
ventional scientific techniques, suggesting that their integration can fast-track monitoring and conservation
actions. We present key project attributes that will assist project managers in prioritizing the resources
needed to implement citizen science, AI, or preferably both.

Mainstream: Data science output is well understood
and (nearly) universally adopted
SUMMARY

The development and uptake of citizen science and artificial intelligence (AI) techniques for ecological
monitoring is increasing rapidly. Citizen science and AI allow scientists to create and process larger vol-
umes of data than possible with conventional methods. However, managers of large ecological monitoring
projects have little guidance on whether citizen science, AI, or both, best suit their resource capacity and
objectives. To highlight the benefits of integrating the two techniques and guide future implementation by
managers, we explore the opportunities, challenges, and complementarities of using citizen science and AI
for ecological monitoring. We identify project attributes to consider when implementing these techniques
and suggest that financial resources, engagement, participant training, technical expertise, and subject
charisma and identification are important project considerations. Ultimately, we highlight that integration
can supercharge outcomes for ecological monitoring, enhancing cost-efficiency, accuracy, and multi-
sector engagement.
INTRODUCTION

Ecological monitoring is integral to environmental management

and biological conservation.1,2 As the need for monitoring spe-

cies, habitats, and ecosystems increases, so too do the ways

in which scientists andmanagers involve personnel and technol-

ogy to collect, process, and analyze both samples and data.3,4

With advances in technology and the capacity to collect big da-

tasets, data processing has become a major bottleneck that re-

quires novel solutions.5–7 Under such circumstances, scientists

and managers may need access to large teams of people with

the skills to enable data processing, or computer intelligence
This is an open access article under the CC BY-N
may need to fill this gap. Both techniques are already being uti-

lized, by harnessing people power through citizen science and

computing power through artificial intelligence (AI).

Citizen science can be described as scientific projects that

engage volunteers of varying levels of expertise with scientific

research.8 These projects produce data usable by a range of

stakeholders,9 across spatial and temporal scales that are other-

wise unachievable by conventional means.6,10,11 AI refers,

broadly, to technology and software with the capacity to perform

tasks otherwise requiring human intelligence.12 There is a

gradient of complexity in AI available, from weak AI approaches,

such as smartphone applications that assist human-led data
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collection or species identification, to complex machine learning

algorithms that can learn tomake better predictions by detecting

patterns in data. Deep learning goes one step further than other

machine learning techniques by automatically learning and ex-

tracting features from data5 (Figure 1). Deep learning is thus

becoming sort-after in monitoring to process raw images,

videos, and audio, but we are yet to see its full potential. Integra-

tion of citizen science and AI has the potential to transformmoni-

toring by expediting manual processing and analysis of big data

sources,13,14 possibly catalyzing scientific breakthroughs.13

Ecological monitoring typically involves data collection and

data processing where AI and citizen science approaches can

be complementary and valuable, and data analysis, where scien-

tists can use machine learning to ask questions of processed

data (Figure 2). Throughout, we discuss ecological monitoring

in the context of data collection, data processing, and data anal-

ysis—and describe how citizen science, AI or the integration of

both can maximize outcomes for scientists and conservation

managers, in the context of data collection, data processing,

and data analysis.

We first describe how citizen science and AI are currently used

for data collection and processing. We then explore the opportu-

nities, challenges, and complementarities of citizen science and

AI for ecological monitoring. We identify key areas of overlap that

support integration of the techniques for data collection and pro-

cessing, and highlight key project attributes for managers and

conservation practitioners to consider when applying citizen sci-

ence, AI, or their integration for data processing.

EXISTING USES OF CITIZEN SCIENCE AND AI IN DATA
COLLECTION AND PROCESSING

Citizen science and AI support the collection of big data. Citizen

science monitoring projects involving accessible locations and

charismatic species receive the lion’s share of participation,15–17

but projects collect data on a diverse range of topics, including

pollution and climate change as well as habitats and species.17

Keen volunteers can, for example, monitor water quality

(FreshWater Watch18), seagrass (e.g., SeagrassSpotter19), man-
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groves (e.g., Mangrove Watch20), coral

reefs (e.g., Coral Watch21 and Reef

Check22), marine fishes (e.g., Redmap8

and Reef Life Survey23), bumblebees (e.g.,

BeeWatch24), and birds (e.g., eBird25).

Involving citizen scientists in data collection

can enhance the spatial and temporal scale

of projects beyond what is considered

practical for traditional ecological moni-

toring where all work is conducted by a

small team of scientists.6,10,11,17 The scale

of human data collection can be further

increased with sensors (e.g., cameras and

acoustics) and smartphones. AI is being
incorporated into devices for ecological monitoring with

increasing complexity and application. For example, citizen

science smartphone applications can include AI algorithms to

recognize geographic locations where scientific data needs

have not been met, incentivizing participants to increase moni-

toring effort at those locations through competition.26 Acoustic

loggerscanbeprogrammed to identify and recordanimal calls us-

ing classification algorithms, with such technology becoming

cheaper, smaller, and more user friendly (e.g., AudioMoth).4

Autonomous robots and unmanned aerial vehicles can be equip-

ped with smart sensors to allow for wildlife surveillance in remote

or difficult to access places,27,28 while in the oceans automated

monitoring buoys can collect data on algal blooms.29

Citizen science and AI supercharge the processing of big

data. AI can be faster and equally or more accurate than hu-

mans in identifying subjects of interest, as demonstrated in

acoustic classification of environmental sounds4 and image

classification of African megafauna,30 coastal fishes,31 birds,32

and plant diseases.33 Automated classification of visual, acous-

tic, and spatial data using deep learning allows us to provide

larger datasets for use in models of complex ecosystems, or

automatically monitor text-based platforms, such as online

monitoring of the illegal wildlife trade.34 Using newer deep

learning techniques, footage of animals can be rapidly and

accurately processed after algorithms are trained to recognize

species from labeled images.30,35,36 This ‘‘supervised’’ deep

learning requires manual image labeling,5 thus integration with

citizen science can vastly accelerate processing time by har-

nessing large-scale citizen science communities to capture

and label images used to train deep learning models.30,36

Although AI could theoretically replace the need for manual pro-

cessing by humans (see Christin and colleagues5 and LeCun

and colleagues37), the integration of people power and com-

puter power can create hyper-efficient and complex social ma-

chines, provided image labeling accuracy is high13 (see section

on Accuracy below). This integrated capability is beginning to be

realized through online citizen science databases, such as Wild-

book,38 Zooniverse (zooniverse.org), and iNaturalist (inaturalist.

org) (see Ceccaroni and colleagues12).

http://zooniverse.org
http://inaturalist.org
http://inaturalist.org
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Figure 2. Typical Roles of Citizen Science
and Artificial Intelligence in Data Collection,
Processing, and Analysis
Note, there is a growingmovement to involve citizen
scientists at all stages of the scientific workflow,
including data analysis.
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THE OPPORTUNITIES, CHALLENGES, AND
COMPLEMENTARITY OF CITIZEN SCIENCE AND AI FOR
ECOLOGICAL MONITORING

Here, we summarize the opportunities and challenges of

using citizen science and AI techniques for ecological moni-

toring under six key categories, while highlighting opportunities

arising from citizen science-AI integration (Figure 3). The cate-

gories are efficiency (opportunities only), accuracy, discovery,

engagement, resources, and ethics (challenges only). It is worth

noting that not all projects utilizing citizen science, AI, or inte-

gration will be successful, and unsuccessful attempts are

unlikely to be published. Our findings, based on the published

literature, are thus likely more representative of successful,

well-supported projects, and could be considered exemplars

of such projects.

Efficiency
Citizen science can expand the spatial and temporal scale of

projects beyond what is possible in traditional ecology. Such

large-scale, long-term data collection projects are critical for

tracking global change impacts on biodiversity.8,17 Further-

more, citizen scientists can expedite the often rate-limiting

step of processing data, for example, by processing camera

trap or aerial images and other repetitive tasks.13,30 There is

also great potential for AI to efficiently automate laborious

tasks (e.g., video analysis) through machine learning (and

particularly deep learning30), allowing researchers to focus

their expertise on ecological questions.34 Given its speed,

deep learning is useful in proactive conservation interventions,

such as averting human-wildlife conflicts or detecting

poachers in real time,34 and providing rapid wildlife population

estimates.30 But better still may be the creation of complex

social machines that integrate human and computer-based

data processing.13,14,35 One such example is the Human/

Computer Learning Network established by eBird, which

allows for the exchange of feedback and active learning be-

tween humans and machines.25 Such integration can produce

results superior to either one alone, while allowing for seren-

dipitous discovery.13 Thus, humans can be seen as a part of

greater automation, not simply as an alternative to auto-

mation.13,14
Accuracy
Traditional science has sometimes

considered data collected by citizen sci-

entists as too biased to be usable.9,17

The inclusive nature of many citizen sci-

ence projects means there is often little

discrimination of participants based on

low literacy, training, continued enthu-

siasm, or sense of moral obligation.39
Despite some mistrust of citizen science data, high accuracy

is attainable with participant training8 or quality control,5

including through the use of AI techniques. Furthermore,

many citizen science participants are enthusiasts and already

knowledgeable of the subject matter, such as in the case of rec-

reational fishers and divers (e.g., Redmap8) and birders (e.g.,

eBird25). eBird even ranks user’s data quality based on an

algorithm that detects discrepancies between users’ bird lists

provided by a user and other users.25 Given appropriate safe-

guards, citizen scientists can label and train large datasets

that are subsequently processed using deep learning algo-

rithms. The result is AI-citizen science integration that can be

as or more accurate than humans in the classification of im-

ages36 and sounds.43 Irrespective of who collects or labels

data, there is a need for redundancies in deep learning systems

to safeguard against false detections, particularly false nega-

tives, for which consequences can be great (e.g., failure to auto-

matically detect poachers near animals, or dangerous animals

near people).34

Discovery
Citizen science projects have assisted scientists in a number

of important discoveries in ecology.17,39 For example, citizen

scientists helped scientists uncover poleward range shifts of

butterflies,44 and marine fish8 and invertebrates45 in response

to a changing climate. Citizen science projects may also in-

crease the likelihood of serendipitous discovery by having

more eyes on the ground to notice the unexpected,40 through

high social interactivity of participants and the ability of the hu-

man brain to notice anomalies in pictures and patterns.13,39 An

example is the chance astronomic discovery of ‘‘Green Pea’’

galaxies, where a number of volunteers noticed unusual green

blobs while classifying images in a million-galaxy dataset.46

While AI in isolation is not yet renowned for serendipitous dis-

covery in ecology, unsupervised AI may hold potential in this

field.37 In unsupervised AI, the algorithm learns directly from

raw data without a labeled training dataset.5 Furthermore,

there is much potential for deep learning to go beyond the

classification of large datasets, to prediction and online moni-

toring of text.34 Thus, the integration of citizen science and AI

could lead to future discoveries and predictions that we are

yet to fully appreciate.
PATTER 1, October 9, 2020 3



Figure 3. The Opportunities (Top) and
Challenges (Bottom) of Citizen Science (Left)
and Artificial Intelligence (Right) for
Ecological Monitoring, Including Integration
Opportunities (Top Center Overlap) and
Challenges Common to Both
Categories are efficiency (opportunities only), ac-
curacy, discovery, engagement, resources, and
ethics (challenges only) across each row of text.
Superscripts refer to the following supporting ref-
erences: 1,11,30 2,34 3,34,35 4,6,8,30 5,31,33 6,13,39,40

7,34 8,8,18,40 9,14,34 10,40 11,17,18,40 12,13 13,16

14,18,39 15,34 16,15,17 17,13 18,13 19,17,39 20,34

21,18,39,41,42 and 22.34
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Engagement
Public engagement is fundamental to citizen science.8 Through

engagement, citizen science projects increase public trust in sci-

entific enterprise, build communities of interested participants,

involve the public in policies and debates, such as those

regarding action on climate change and environmental sustain-

ability, and foster education, literacy, and awareness of science

in the general public (see Lukyanenko and colleagues39). From

more-informed and empowered communities come benefits to

researchers, monitoring agencies, and policymakers, through

increased environmental data and support for land-use and

resource decision-making.18 Citizen science has enhanced the

relationship between ecologists and the public,11 and indeed

the relationship between the public and the natural world.47

For example, as people migrate to cities and lose touch with

nature, citizen science can increase emotional and cognitive

connections to nature and make participants more supportive

of conservation efforts.47 However, rigorous science needs to

underpin citizen science to ensure trust in data and encourage

peer reviewed publication of findings.6,8,9,17,48 There is great po-

tential to strengthen the public’s engagement in the scientific
4 PATTER 1, October 9, 2020
process through citizen science, enabling

large data resources to be better utilized

to understand and address global change

impacts.17 AI too provides opportunities

for interdisciplinary collaboration between

ecologists and computer scientists,3,5,14

but public engagement is arguably lower

when using AI approaches alone.

Resources
The greatest financial savings for research

involving citizen scientists come with data

collection and data processing. In 2015,

the in-kind contributions of data collection

and processing fromover onemillion volun-

teers from 388 English-speaking citizen sci-

ence biodiversity projects was estimated to

be between USD 667 million and 2.5 billion

annually, with projects covering compara-

ble spatial scales and running for longer

than most government-funded projects.17

The cost of collecting similar data via tradi-

tional means is often greater. For example,

one study found the ~V4 million annual

cost of 395 monitoring projects across Eu-
rope would have been 3-fold greater had no volunteers been

involved.49 Nevertheless, the time and financial costs of training

and managing citizen scientists can be considerable, and funding

acquisition for citizen science projects challenging,50 potentially

because of assumptions that using volunteers make projects

cost-effective. Furthermore, the opportunity cost of failed citizen

science projects is not typically reported.

The greatest financial benefits from AI come with data pro-

cessing and data analysis, where automation frees up scientists’

time and funding, and computing power helps explore and

analyze big data. However, the cost to invest in the specialist

staff and computing power required to design, train, test, use,

and maintain AI algorithms can be substantial, and thus may

be impractical or inaccessible for one-off applications. Improved

understanding of the potential benefit of collaboration across

disciplines may help overcome uncertainty of use. Increasingly,

ready-made browser-based tools requiring little modeling

expertise are available at a fraction of the cost. For instance,

the Automated Remote Biodiversity Monitoring Network pro-

vides tools for scientists to identify species from audio record-

ings using automated sound identification,51 while Wildbook
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allows users to train AI algorithms to automatically identify spe-

cies from images collected by citizen scientists, with costs for

project setup ranging from USD 10,000–20,000.16,38 The Zooni-

verse Project Builder saves considerable time and money by

providing a free, user-friendly platform to set up online projects

for citizen scientists to classify data that can be used to train

AI algorithms.13 Alternatively, complete outsourcing of AI data

processing and analysis is now possible, with costs charged

per unit of data (e.g., minute of audio).16 For data analysis, utiliz-

ing AI machine learning can power analysis when few data exist

for a species, such as all species listed as Data Deficient under

the International Union for Conservation of Nature (IUCN) Red

List. Here, the use of models could save 68% of the USD 323

million required to collect additional data by filling in data gaps

by learning from data already available.52 Regardless of the

application, the costs required to process and analyze big

ecological datasets using AI continue to diminish with increased

technological capacity and demand.34

Ethics
As with any scientific technique, there is a need for citizen sci-

ence and AI to collect and process data and apply analytical

tools responsibly. For example, it can be difficult to avoid sam-

pling bias in citizen science projects, as participants may collect

or process data based on personal preferences for desirable lo-

cations, weather, seasons, or study subjects.18,40,42 These

biases can be discouraged as part of participant engagement,

and should be accounted for during analysis to produce results

that aremeaningful, and notmisleading.41,42 Citizen science pro-

jects often make data publicly available,17 bringing potential

risks to data sharing if protocols are not put in place, such as inci-

dental increases in poaching or habitat disturbance by visitors.

But not sharing such data can also unnecessarily impede con-

servation actions.40,53 Poachers using online information to

exploit vulnerable species is a possible drawback of sharing

data collected using either technique, but AI could also be

used to detect poachers in real time, both in the field34 and online

through text recognition.54 Indeed, using AI tools for data

processing and analysis can lead to a greater and faster under-

standing of ecosystems if used correctly, with appropriate proto-

cols, and in an ethical framework.55 Public data sharing and pre-

sentation fosters project ownership and social capital with flow-

on benefits to data collection and conservation outcomes, while

AI facilitates rapid analysis and presentation of data. While user-

friendly AI software is becoming more readily available, part of

the difficultly in non-experts using these tools is that the me-

chanics behind the software can be hidden, creating a black

box that makes trouble-shooting difficult.34 Furthermore, if and

when citizen science data are integrated with AI techniques, it

is important that citizens understand how their contributions

are used,12 such as the transparency adopted by eBird inmaking

information on their integrated Human/Computer Learning

Network species identification system available.25,56

ATTRIBUTES TO CONSIDER FOR CITIZEN SCIENCE, AI,
AND INTEGRATED PROJECTS

We define and describe eight key project attributes that may

differ in relative importance when considering the implementa-
tion of citizen science or AI for ecological data processing

(Figure 4). The balance between one or both methods offers a

preliminary guide to project managers but need not be a deter-

rent. We suggest that most conceivable issues are surmount-

able. Managers of integrated projects should assess where their

project sits in relation to these considerations.

Financial Resources
One of the biggest considerations for any ecological moni-

toring project is financial resources (Figure 4). While partici-

pants in citizen science contribute to financial overheads by

volunteering their time and other personal resources, the

cost to engage, train, and potentially equip numerous partici-

pants can be significant. For projects seeking to implement

AI, the need for potentially costly hardware, software, and

paid expertise for utilizing AI (see section on Resources above)

are a consideration. However, as computing power and AI

techniques become more financially accessible, AI uptake

and the integration of citizen science and AI in ecological

monitoring will likely become available for even modestly

funded projects.

Public Engagement
Public engagement is a critical aspect of projects involving

citizen scientists (Figure 4; see section on Engagement above).

Citizen science projects have great capacity to authentically

engage the public with science, the project, and the natural envi-

ronment.47,57 This statement is less true, in general, for AI-only

projects. However, through integration, AI technology can help

ecological findings be more rapidly accessible to the public,

increasing levels of understanding, interest, and engagement

in the scientific process.

Subject Charisma
Charismatic species can be important for encouraging citizen

participation and enthusiasm,16 much like how charismatic

species or ‘‘flagships’’ often attract the most conservation

funding.58 However, there are successful citizen science pro-

jects that focus on typically non-charismatic subjects, such

as those on plants, worms, and ice (see Conrad and Hilchey50),

and even the least charismatic species can attract conserva-

tion funding with targeted marketing campaigns.59 Unique so-

lutions to projects on such species can also overcome any

perceived lack of interest by utilizing games to both attract

and sustain citizen science engagement.60 Therefore, we sug-

gest that, although subject charisma is more important for

citizen science relative to AI (Figure 4), it need not prevent

implementation of successful citizen science, or integrated

projects. Projects focused on less charismatic species may

benefit from integration as automated data processing means

fewer volunteers are needed.

Subject Identification
Subject identification relates to the difficulty for humans to iden-

tify subjects in terms of taxonomy (e.g., identifying species of

birds) or enumerating very small animals (e.g., counting

plankton). Both may need specialist training to develop an in-

depth knowledge of the subjects and other technical skills to

achieve the task. Citizen science projects benefit from easily
PATTER 1, October 9, 2020 5



Figure 4. Important Project Considerations
when Implementing Citizen Science or
Artificial Intelligence for Ecological
Monitoring
Project attributes placed toward either citizen sci-
ence (CS) or artificial intelligence (AI) indicate rela-
tively higher importance for that technique, but not a
lack of importance for the other technique. Project
attributes placed in the middle indicate equally high
importance for both CS and AI. All project attributes
would be important to consider for integrated ap-
proaches. Placement of attributes is guided by the
literature and may change over time.
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identifiable and distinguishable species (when participants are

not already enthusiasts of the topic, for example, see Kelling

and colleagues25). AI accuracy outputs rely on accuracy of

labeled data inputs34 (unless using unsupervised methods),

thus making species identification an important consideration,

even for expert researchers, assistants, and students who train

models (Figure 4). The integration of citizen science and AI

thus also benefits from ease of subject identification because,

typically, citizens are collecting data and potentially training AI

models (e.g., annotating images). In studies involving the identi-

fication of multiple species, a combination of citizen and expert

identification may be necessary. For example, it may be possible

to rely on citizen science to identify individuals that are easily

distinguishable, while those that are more difficult may need to

be referred (possibly automatically) to experts for clarification

(see Kelling and colleagues25). This approach may be of great

benefit in reducing the expert time required in large-scale pro-

jects assessing whole ecosystems or taxonomic groups (e.g.,

nudibranchs, birds).
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Volunteer Involvement
Volunteer involvement is pertinent to citi-

zen science projects (Figure 4; see section

on Engagement), and thus to the success

of integrated projects that process large

data sources. Opportunities to engage vol-

unteers in AI for ecological monitoring

could carry benefits for both fields. Howev-

er, it is expected that fewer volunteers

would be needed for integrated projects

than for citizen science projects of the

same scale, because AI capabilities can

take over once a citizen science-led

training dataset is established. Thus, to

maintain the benefits of volunteer engage-

ment, care should be taken to keep volun-

teers informed and involved.13,25

Participant Training
Projects that utilize citizen scientists typi-

cally need to train the participants, adding

to the cost and time commitment of

managers. However, when participants

are enthusiasts of the subject area, less

ongoing training is needed on behalf of

the scientist (see section on Accuracy

above). In AI-only projects, data collection,
processing, and analyses are primarily conducted by experts.

Where students and assistants are involved in AI, participant

training is important to ensure quality. In some citizen science

platforms, a level of automated feedback is beginning to emerge

to assist training participants.24,25 For example, the use of a nat-

ural language generator in the bumblebee identification tool

BeeWatch gives feedback to participants when they misclassify

bumblebees based on morphology, in a bid to improve training

through engagement, in turn improving results and participant

retention.24

Technical Expertise
In general, utilizing AI for data processing requires a higher level

of user expertise than utilizing citizen scientists (Figure 4). How-

ever, outsourcing AI for data processing is now possible, circum-

venting the need for in-house user expertise (see Kwok16), while

accessibility and usability of algorithms is rapidly improving.5

When integrating citizen science and AI, the level of user exper-

tise is dependent on a range of variables and can be controlled
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by decisions about how to utilize either technique in the early

stages of project development (e.g., who will develop and

use AI).

Data Sensitivity
Data can be sensitive; for instance, if it reports on the locations of

rare or highly valuable species (see section on Ethics above). It is

important to consider the ramifications of both collecting and

processing sensitive data regardless of whether using citizen

science or AI, or both (Figure 4). However, the issue of data

sensitivity can largely be controlled for with a suite of protocols

and guidelines available that can ensure the sensitivity of data

does not inhibit successful integration of citizen science

and AI.53

CONCLUSIONS

The complementarity of AI with citizen science means that ‘‘the

whole is greater than the sum of its parts.’’ The strategic integra-

tion of citizen science and AI can produce synergistic outcomes

to enhance ecological monitoring by providing rapid, accurate,

and comparably cheap data collection and processing, thus

supercharging conservation outcomes and management

decisions.36,42,56 However, there are complexities to combining

citizen science and AI approaches. A range of attributes should

be considered by project managers, and we argue these consid-

erations are largely surmountable for most integrated citizen sci-

ence-AI projects. Furthermore, coupling the public engagement

strategies of citizen science with advanced scientific techniques

of AI increases the likelihood of multi-stakeholder and multi-

sector accord on issues of public and scientific interest. There

is a real need for greater recognition of the benefits of citizen sci-

ence, AI, and particularly their integration, for improvingmethods

in ecological monitoring, enhancing understanding of the natural

world by scientists and citizens, and promoting positive out-

comes for environmental management.
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