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Abstract

The emergence and rapid worldwide spread of a novel pandemic of acute respiratory disease – eventually named coronavirus 
disease 2019 (COVID-19) by the World Health Organization (WHO) – across the human population has raised great concerns. 
It prompted a mobilization around the globe to study the underlying pathogen, a close relative of severe acute respiratory 
syndrome coronavirus (SARS-CoV) called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Numerous genome 
sequences of SARS-CoV-2 are now available and in-depth analyses are advancing. These will allow detailed characterization 
of sequence and protein functions, including comparative studies. Care should be taken when inferring function from sequence 
information alone, and reverse genetics systems can be used to unequivocally identify key features. For example, the molecu-
lar markers of virulence, host range and transmissibility of SARS-CoV-2 can be compared to those of related viruses in order 
to shed light on the biology of this emerging pathogen. Here, we summarize some recent insights from genomic studies and 
strategies for reverse genetics systems to generate recombinant viruses, which will be useful to investigate viral genome 
properties and evolution.

Coronavirus disease 2019 (COVID-19) [1] is caused by 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), a recently identified virus (December 2019, Wuhan, 
Hubei Province, China) [2, 3] belonging to the family Coro-
naviridae, subfamily Coronavirinae, genus Betacoronavirus, 
in the species severe acute respiratory syndrome-related 
coronavirus [4]. This pandemic has led to disease and mor-
tality in populations across the globe [1, 5]. On 11 March 
2020, the World Health Organization (WHO) declared a 
SARS-CoV-2 pandemic. As of 31 May 2020, more than 6 
million COVID-19 cases have been reported in 188 coun-
tries, resulting in 370 000 deaths worldwide. In addition to 
the genus Betacoronavirus, the subfamily Coronavirinae is 
composed of the genera Alphacoronavirus, Gammacorona-
virus and Deltacoronavirus. Seven types of CoVs are known 
to cause human disease. Several alphacoronaviruses (HC 
229E and HC NL63) and betacoronaviruses (HC OC43 and 

HC HKU1) are endemic and cause mild respiratory tract 
infections [6, 7]. Previous to SARS-CoV-2, two betacoro-
naviruses had already emerged in the 21st century causing 
severe respiratory disease: SARS-CoV (same species as 
SARS-CoV-2) and Middle East respiratory syndrome CoV 
(MERS-CoV), allowing comparisons to be made between 
these three viruses and their respective diseases [8–10]. In 
January 2020 the complete viral genome sequences from 
five patients in Wuhan during an early stage of the outbreak 
were published and SARS-CoV-2 was found to be a novel 
CoV, with just under 80 % sequence identity to SARS-CoV 
[2]. The viruses most closely related to SARS-CoV-2 were 
coronaviruses isolated from bats, in particular RaTG13 
[2, 11]. Therefore, it was hypothesized that bats – a known 
reservoir of coronaviruses – could serve as a reservoir for 
this novel coronavirus. However, it is not clear whether 
transmission of SARS-CoV-2 to humans occurred directly 
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from bats or through an intermediate host [11–16]. The 
genome sequences of numerous SARS-CoV-2 strains from 
across the globe are now publicly available.

Viral replication takes place in the cytoplasm. The genome 
organization of the virus is summarized in Fig. 1 (alongside 
descriptions of reverse genetics systems; see below), with 
the overall structure and key elements of the genome being 
comparable to those of related coronaviruses. Viral repli-
case activities are directed by 16 non-structural proteins 
that are produced following the proteolytic cleavage of 2 
replicase polyproteins [open reading frames (ORFs) 1a/b]. 
The genome also encodes the structural proteins N, S, E 
and M, as well as accessory proteins [17–24]. The genome 
termini play critical roles in replication and transcription; 
ORFs 1a/b are translated from the genome, but subgenomic 
mRNAs mediate the expression of the remaining viral 
proteins [25, 26].

Clearly COVID-19 is different from the disease caused by 
SARS-CoV-2’s close relative, SARS-CoV. Indeed the case 
fatality rates for COVID-19 are lower, and the disease can 
be mild or asymptomatic [27]. Investigating the differ-
ences between the two related viruses is thus of critical 
importance for future investigations. Analysis of SARS-
CoV-2 sequences showed that the spike protein (S) has a 
furin(-like) cleavage site that is absent in related corona-
viruses, and this was experimentally confirmed [28, 29]. 
Intriguingly, the loss of this cleavage site was shown upon 
passaging the virus in cell culture [30]. Processing by 
furin cleavage could have implications for virulence and/
or adaptation. Moreover, roles for nonstructural proteins 
nsp2, nsp3, ns7b and ns8 in the pathogenesis of SARS-
CoV-2 have been proposed following analysis of selective 
pressure on ORFs [31, 32]. Recent analysis of over 200 
SARS-CoV-2 sequences classified the virus into 5 main 
groups based on high-frequency mutations (mutant allele 

Fig. 1. Reverse genetics systems for SARS-CoV-2. Viral genome and organization are shown at the top of each panel. (a) Description 
of yeast-based assembly and rescue system. Twelve viral subgenomic cDNA fragments were assembled in Saccharomyces cerevisiae 
using transformation-associated recombination (TAR) cloning to maintain the genome as a yeast artificial chromosome (YAC). In vitro-
transcribed (by T7 RNA polymerase) viral genome RNAs were electroporated into BHK-21 cells (or BHK-SARS-N) together with an mRNA 
encoding the SARS-CoV-2 N protein to rescue viable virus. (b) Description of in vitro ligation system. In this approach, seven contiguous 
cDNA fragments covering the entire viral genome were isolated from plasmid vectors and directionally ligated to assemble the full-
length viral genome. In vitro-transcribed (by T7 RNA polymerase) genome RNA was transfected into Vero E6 cells along with mRNA 
encoding N protein to recover infectious SARS-CoV-2. A schematic representation of the SARS-CoV-2 genome organization is shown in 
the upper part of the panels. T7, T7 RNA polymerase promoter; UTR, untranslated region; pA, poly (A) tail. Created with Biorender.com
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frequency >5 %), with group 4 most frequently being found 
outside mainland China. Intriguingly, analysis of group 4 
SARS-CoV-2 genome data from France showed that viruses 
carrying a mutation in 3a also often have a mutation in 
S (ORF3a:c.752gGt>gTt and S:c.1099Gtc>Ttc), although 
the biological relevance of this is not clear [33]. Moreover, 
comparative analysis between SARS-CoV-2 and RaTG13 
has suggested some evidence of limited positive selection, 
although this cannot be interpreted as evidence for adapta-
tion to humans [11]. More recently, it has been proposed 
that the D614G mutation in the S glycoprotein increases the 
transmissibility of SARS-CoV-2, as evidenced by sequence 
analysis [34]. However, care should be taken when inferring 
function from sequence information alone. In the context 
of another respiratory virus, influenza A virus (IAV), the 
PB1-F2 protein was identified as an important virulence 
factor and the N66S mutation in this protein was associ-
ated with the high lethality of the 1918 and other IAVs. 
However, reverse genetics studies found that the role of 
PB1-F2 (and the N66S polymorphism) in the virulence 
of different IAVs was host- and strain-dependent, ranging 
from increased virulence to no effect and even attenuation 
[35, 36]. Together, these examples illustrate how phenotype 
inference from sequence information needs experimental 
confirmation – importantly, in relevant systems.

Reverse genetics is a powerful technique for the generation 
of an infectious virus from the cloned full-length cDNA/
synthetized DNA of a given virus. Manipulation of the 
DNA by well-established molecular biology methods allows 
modification of the sequence before virus production, 
if this is desired. It allows unequivocal identification of 
molecular markers for a given virus, including the genome 
features, virulence, host range, etc. of a given virus, and as 
such it is a key component in the study of coronaviruses 
[37]. Ultimately, such systems will be required to answer 
questions on various aspects of SARS-CoV-2 biology and 
genomics. The generation of coronaviruses entirely from 
full-length DNA can be challenging. This is mainly because 
of the large genome size of coronaviruses (~30 Kb) as well 
as the instability of genome sequences during cloning. 
However, such systems, as well as minireplicons (replica-
tion/transcription active, propagation-incompetent viral 
RNAs), have been developed successfully in the past for 
coronaviruses, including SARS-CoV. This was achieved 
through the use of bacterial artificial chromosomes, in 
vitro ligation of DNA fragments covering the full-length 
genome, or vaccinia virus-based expression vectors [38]. 
The systems included reverse genetics for SARS-CoV as 
well as MERS-CoV [39–43]. A ligation-based method-
ology combining individual stretches of DNA covering the 
SARS-CoV-2 genome (originally cloned into plasmids), 
followed by T7 RNA polymerase-based transcription to 
produce viral RNA, was used successfully to recover this 
virus [44]. Similarly, a yeast artificial chromosome-based 
system was developed recently to propagate the full-length 
SARS-CoV-2 genome assembled from DNA. Again, viral 
RNA was transcribed by T7 RNA polymerase before 

transfection [45]. Both of these recent methodologies are 
summarized in Fig.  1. An mRNA encoding the SARS-
CoV-2 N protein was co-transfected in both approaches 
to enhance the infectivity of viral RNA transcripts. Both 
approaches allowed the successful generation of fluorescent 
protein-expressing recombinant viruses. The availability of 
SARS-CoV-2 reverse genetics systems will allow effective 
manipulation of its genome and unravel questions over 
entry, gene expression, replication, tropism, etc highlighted 
by genomic analysis as discussed above. These technologies 
can also be applied to the generation of vaccine candidates 
and the discovery of antivirals against this devastating 
human pathogen. The rapid development of such systems 
for SARS-CoV-2 using different approaches is testimony 
to the pioneering work carried out with related viruses and 
underlines the need for continuous research on these and 
other pathogens. They will greatly enhance our ability to 
investigate this novel pathogen, as well as coronaviruses 
that may emerge in the future.
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