Skip to main content
. 2020 Nov 12;15(11):e0239172. doi: 10.1371/journal.pone.0239172

Table 2. Describes the four models that were used to train and test the ML tool.

Table legend AUROC (%)
Actual Good Outcome Actual Good Outcome Training model: %
Actual Good Outcome TN FP
Test model: %
Actual Bad Outcome FN TP
Model 1 –Only signs and symptoms, 31 variables Model 1
Actual Good Outcome Actual Good Outcome Training model: 89%
Actual Good Outcome 74—TN 42 FP
Test model: 69%
Actual Bad Outcome 56 FN 95 TP
Model 2 –Laboratory biomarkers, 39 variables Model 2
Predicted Good Outcome Predicted Bad Outcome Training model: 97%
Actual Good Outcome 89 27
Test model: 83%
Actual Bad Outcome 39 112
Model 3 –Extended mixed model, 91 variables Model 3
Predicted Good Outcome Predicted Bad Outcome Training model: 99%
Actual Good Outcome 95 21
Test model: 85%
Actual Bad Outcome 40 111
Model 4 –Boosted mixed model, 20 variables Model 4
Predicted Good Outcome Predicted Bad Outcome Training model: 98%
Actual Good Outcome 87 29
Test model: 84%
Actual Bad Outcome 40 111