Table 2. Describes the four models that were used to train and test the ML tool.
Table legend | AUROC (%) | ||
---|---|---|---|
Actual Good Outcome | Actual Good Outcome | Training model: % | |
Actual Good Outcome | TN | FP | |
Test model: % | |||
Actual Bad Outcome | FN | TP | |
Model 1 –Only signs and symptoms, 31 variables | Model 1 | ||
Actual Good Outcome | Actual Good Outcome | Training model: 89% | |
Actual Good Outcome | 74—TN | 42 FP | |
Test model: 69% | |||
Actual Bad Outcome | 56 FN | 95 TP | |
Model 2 –Laboratory biomarkers, 39 variables | Model 2 | ||
Predicted Good Outcome | Predicted Bad Outcome | Training model: 97% | |
Actual Good Outcome | 89 | 27 | |
Test model: 83% | |||
Actual Bad Outcome | 39 | 112 | |
Model 3 –Extended mixed model, 91 variables | Model 3 | ||
Predicted Good Outcome | Predicted Bad Outcome | Training model: 99% | |
Actual Good Outcome | 95 | 21 | |
Test model: 85% | |||
Actual Bad Outcome | 40 | 111 | |
Model 4 –Boosted mixed model, 20 variables | Model 4 | ||
Predicted Good Outcome | Predicted Bad Outcome | Training model: 98% | |
Actual Good Outcome | 87 | 29 | |
Test model: 84% | |||
Actual Bad Outcome | 40 | 111 |