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Abstract

Glucuronidation is a well-recognized phase II metabolic pathway for a variety of chemicals 

including drugs and endogenous substances. Although it is usually the secondary metabolic 

pathway for a compound preceded by phase I hydroxylation, glucuronidation alone could serve as 

the dominant metabolic pathway compounds, including some with high aqueous solubility. 

Glucuronidation involves the metabolism of parent compound by UDP-glucuronosyltransferases 

(UGTs) into hydrophilic and negatively charged glucuronides that cannot exit the cell without the 

aid of efflux transporters. Therefore, elimination of parent compound via glucuronidation in a 

metabolic active cell is controlled by two driving forces; the formation of glucuronides by UGT 

enzymes and the (polarized) excretion of these glucuronides by efflux transporters located on the 

cell surfaces in various drug disposition organs.

Contrary to the common assumption that the glucuronides reaching the systemic circulation were 

destined for urinary excretion, recent evidences suggest that hepatocytes are capable of highly 

efficient biliary clearance of the gut-generated glucuronides. Furthermore, the biliary- and enteric-
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eliminated glucuronides participate into recycling schemes involving intestinal microbes, which 

often prolong their local and systemic exposure, albeit at low systemic concentrations. Taken 

together, these recent research advances indicate that though UGT determines the rate and extent 

of glucuronide generation, the efflux and uptake transporters determine the distribution of these 

glucuronides into blood and then to various organs for elimination. Recycling schemes impact the 

apparent plasma half-life of parent compounds and their glucuronides that reach intestinal lumen, 

in addition to prolonging their gut and colon exposure.
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1. Introduction

Glucuronidation Process.

Glucuronidation is an enzyme reaction process catalyzed by UDP-glucuronosyltransferases 

(i.e., UGTs) in different animals including humans, as well as plants and bacteria 

(Mackenzie et al., 2003) (Nagar and Blanchard, 2006; Nagar and Remmel, 2006). 

Glucuronidation process attaches a glucuronide moiety to a substrate making a product that 

is highly hydrophilic (Radominska-Pandya et al., 1998; Tukey and Strassburg, 2000; 

Mackenzie et al., 2003; Nagar and Blanchard, 2006; Nagar and Remmel, 2006; Perera et al., 

2008). The glucuronides are then often eliminated via bile or urine. Therefore, 

glucuronidation is considered to be a detoxification process or a defense mechanism that 

helps humans remove unwanted substances including endogenous substances (e.g., 

bilirubin), drugs (e.g., SN-38) and other xenobiotics (e.g., environmental toxins) from the 

body. For example, genetic deficiency related to UGT1A1 could result in 

hyperbilirubinemia, a disease called Gilbert’s syndrome (Radominska-Pandya et al., 1998; 

Tukey and Strassburg, 2000; Mackenzie et al., 2003; Nagar and Blanchard, 2006; Nagar and 

Remmel, 2006; Perera et al., 2008). Hence, glucuronidation is an essential biological process 

in humans, protecting us from excessive accumulation of toxic substances in the body.

Study of the glucuronidation processes started about the same time as the study of 

cytochrome P450 (or CYP). Initial report of human cytochrome P450 was in 1960s 

(Reynolds, 1966) and the first human CYP isoform was cloned in 1985 (actually a partial 

cloning of human CYP2A6) (Phillips et al., 1985). Similarly, human UGT catalyzed reaction 

was also first reported in the 1960s (Pogell and Leloir, 1961) and the first human UGT was 

cloned in 1988 (Harding et al., 1988). However, there are major differences between these 

two enzyme superfamilies (UGTs and CYPs) with respect to the volume of research. A 

PubMed search, conducted on July 16 of 2016, using the keyword combination of “human 

cytochrome P450” generated 46,604 hits, whereas the same search using the keyword 

combination of “human glucuronide” only generated 7257 hits (a keyword combination of 

“human glucuronidation” only generated 2984 hits). Therefore, we often and quite 

accurately believe that we collectively know more about CYPs than UGTs.
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Glucuronidation of Drugs and Endogenous Substances.

Despite apparent limitations relative to CYP studies, significant amount of information 

exists on glucuronidation, especially glucuronidation of drugs by UGTs. Specifically, these 

enzymes are broadly but unevenly distributed throughout various cells, tissues and organs 

with heavy concentrations in the first-pass metabolism organs (i.e., liver and intestine) as 

well as the major elimination organ (i.e., kidney). Glucuronidation serves as the primary 

elimination pathway for a variety of drugs on the market (Table 1). However, in contrast to a 

relatively small number of drugs with glucuronidation as primary elimination pathway, for a 

vast majority of drugs, glucuronidation often occurs as a secondary step after the primary 

metabolites are produced by phase I reaction such as hydrolysis, hydroxylation, 

dealkylation, etc. As shown in Table 2, the range of chemical structure that undergoes 

glucuronidation as secondary step is quite diverse.

Majority of the glucuronides are pharmacologically inactive, however, in certain incidences 

glucuronides have been shown to be equally or more effective than the parent drug. For 

example, morphine-6-glucuronide is reported to be 45–61 folds more potent (Frances et al., 

1990; Stone et al., 2003) and ezetimibe-glucuronide is reported to be 2–11 folds more potent 

(Ghosal et al., 2004; Kosoglou et al., 2005; Oswald et al., 2007) than their respective parent 

compounds. Additionally, some glucuronides can be toxic. For example, many acyl 

glucuronides have been shown to have high potential toxicities in vitro and in vivo 
(Shipkova et al., 2003).

Although not frequently reported, hydrophilic molecules are sometimes also glucuronidated. 

These molecules are often conjugated with a highly hydrophilic group (e.g., sugar or sulfate) 

but that did not appear to prevent them from getting glucuronidated. Several flavonoid 

glycosides are conjugated into glucuronides as reported in Table 3. Furthermore, it is 

difficult to separate the highly hydrophilic glycosides from their glucuronides in the reverse-

phase chromatographic column, which is frequently used to separate drug from its 

glucuronide(s) during sample analysis. Therefore, mass spectrophotometry is usually 

employed to analyze glycoside and their glucuronides in the in vitro and in vivo 
experimental studies. This need for LC-MS/MS might have been the reason why hydrophilic 

UGT substrates are more difficult to identify, especially when the hydrophilic moiety is a 

sugar that is often deconjugated in the ion source of mass spectrometer.

When compared to CYP-catalyzed reactions, an important distinction of glucuronidation is 

that the metabolites produced are highly hydrophilic molecules that cannot penetrate the cell 

membrane via passive permeation. Rather, they need the action of various efflux transporters 

to pump them out of the cells (Jeong et al., 2005b). Hence, the driving force for 

glucuronidation is different from that of CYP catalyzed reaction. Specifically, it is driven by 

the twin forces of UGT enzyme present in the cellular endothelial reticulum and efflux 

transporters present on the cell surface. The efflux transporters can act as a driving force for 

glucuronidation by controlling the rate of efflux of glucuronides from the cells, which in 

turn can affect the formation rate. The faster efflux rate can cause the rate of glucuronide 

formation to increase due to the removal of potentially inhibitory glucuronides. Whereas, the 

slower efflux rate can cause lower glucuronidation output when compared to the actual 

glucuronidation capacity based on sub-cellular fractions, possibly using a product-inhibition 
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feedback mechanism. In vast majority of the cases, these reactions occur in a polarized cell, 

making the glucuronide excretion polarized and dependent on the distribution of efflux 

transporter on two polar surfaces of a differentiated cell (Fig 1). For most orally 

administered drugs, these twin forces are in full effect in intestinal and liver cells, and 

together they determine the dispositional fate of a glucuronide.

Another distinction of the glucuronidation process is that the corresponding metabolites 

produced can be reconverted back to the original compound (or aglycone). This process 

could occasionally occur in mammalian tissues (usually at a very slow rate), but 

reconversion is extraordinary rapid in the colon when they are in contact with intestinal 

microflora, which produces a large quantity and variety of glucuronidases that can readily 

convert glucuronides into aglycones. The aglycones can then be re-absorbed to complete the 

process of recycling or recirculation. Hence, for glucuronides that are excreted back to the 

intestinal lumen, they often become bioavailable again following reconversion to the original 

compound.

There are considerable differences between UGTs and CYPs enzyme systems in terms of the 

similarity among their respective isoforms and the clinical significance of their genetic 

polymorphism. UGT enzymes are quite different from CYP in that each UGT subfamily 

tends to be clustered closely to each other, sometimes sharing the same gene. For example, 

the human UGT1A family shares the same gene (Guillemette, 2003; Kiang et al., 2005; 

Mackenzie et al., 2005; Bosch, 2008; Nies et al., 2008; Ginsberg et al., 2010), and utilizes 

alternative splicing to produce 9 active isoforms (UGT1A1, 1A3, 1A4, 1A5, 1A6, 1A7, 1A8, 

1A9, 1A10). In contrast to CYPs, clinical significance of polymorphism in UGT isoforms 

remains mostly unclear; perhaps due to the fact the glucuronide production is dependent on 

both formation and efflux of glucuronide.

Therefore, the purpose of the present review is to outline how these twin forces of 

glucuronidation affect the production and biodistribution of glucuronides in various body 

compartments including intestine, liver, blood, and urine. Discussions related to recently- 

identified efficient hepatocytes-mediated uptake of glucuronides and various recycling 

schemes are included because they have impact on the disposition of glucuronides in vivo.

2. Nomenclature, Mechanisms of Glucuronidation and Organ-specific 

Distribution of UGTs

Human UGT Nomenclature.

Based on the amino acid sequence identity, four different families of UGTs are observed in 

human, namely UGT1, UGT2, UGT3, and UGT8 (Mackenzie et al., 2005). Among these 

UGT isoforms, UGT1 (UGT1A) and UGT2 (UGT2A and UGT2B) subfamilies are to be 

considered of paramount importance in terms of imparting drug conjugation ability. 

Currently, a total of 19 human UGT isoforms are known from both subfamily UGT1 and 

UGT2. Experimental studies reported that human UGT1A contains 13 distinct individual 

promoters in chromosome 2q37, which spans approximately 200 kb; whereas human 
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UGT1B contains six individual promoters on the chromosome 4q13 (Mackenzie et al., 

2005).

Mechanisms of Glucuronidation.

Glucuronidation is one of the most important phase II conjugative reactions, which 

eliminates predominantly drugs, dietary substances, toxins and endogenous substances. This 

particular reaction involves the transfer of the glucuronic group from uridine 5’-diphospho-

glucuronic acid (UDPGA) to different substrate molecules containing oxygen, nitrogen, 

sulfur or carboxyl functional groups to generate relatively polar/hydrophilic glucuronide 

conjugate. In 2010, it was discovered that human UGTs mediate glucuronidation reaction by 

using a serine hydrolase-like mechanism, which involves two key amino acids histidine and 

aspartic acid (so-called “catalytic dyad” or “acid base pair”) (Radominska-Pandya et al., 

2010). Investigations later showed that the glucuronidation reaction involves the formation 

of a ternary complex of enzyme, substrate and the co-factor UDPGA prior to the formation 

of ultimate conjugate (Luukkanen et al., 2005).

In addition, based on the inhibition studies using expressed recombinant human UGT 

isoforms, a compulsory ordered bi bi (i.e., two substrates and two products) kinetic 

mechanism was proposed (Luukkanen et al., 2005) where the co-factor UDPGA first binds 

with particular UGT enzyme and then forms a complex with substrate. On the other hand, 

alternative mechanisms such as random ordered bi bi mechanism were also reported, where 

binding of the substrate to the enzyme does not require prior binding to UDPGA (Yin et al., 

1994). Based on the analysis of Luukkanen et al., these conflicting results were largely 

observed owing to the presence of multiple UGT enzymes and/or inactivated UGT enzyme 

in the latter study (Luukkanen et al., 2005).

Tissue Distribution of UGTs.

Generally UGT is present in humans, other animals (except cat), plants, and bacteria (Court 

and Greenblatt, 2000). In case of human, it is primarily distributed in different metabolic 

organs i.e., liver, kidney and intestine etc. (Uchaipichat et al., 2006). Studies showed that 

approximately 15%, 20% and 35% of marketed drugs are metabolized by three important 

human UGT isoforms, namely, UGT1A1, 1A4 and 2B7, respectively (Williams et al., 2004). 

Different human UGT isoforms such as UGT1A1, 1A3, 1A4, 1A6, 1A9, 2B4, 2B7, 2B10, 

2B15, and 2B17 etc. have been reported to be present in liver (Tukey and Strassburg, 2000; 

Izukawa et al., 2009). After comparing the mRNA expressions of different UGT isoforms it 

has been found that, compared to UGT1A isoforms, UGT2Bs are more abundant in the 

human liver (Ohno and Nakajin, 2009). Among UGT2B subfamily, UGT2B4 and UGT2B15 

are the highest expressed UGT isoforms present in liver. In case of UGT1A subfamily, 

UGT1A1 and UGT1A9 are the most abundant isoform present in liver. Apart from liver, 

UGT isoforms such as UGT1A8, UGT1A10 and UGT2B17 are predominantly expressed in 

human colon and intestine. The same study indicated that UGT1A7 is only present in the 

proximal tissues of the gastrointestinal tract (mainly the esophagus and stomach) (Ohno and 

Nakajin, 2009).
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Since protein expression is considered to more accurately reflect the activity of enzymes, the 

absolute protein expression levels of some UGT isoforms in human liver were determined 

using LC-MS/MS in a recent study. According to their report, among all measured isoforms, 

UGT1A6 had the highest expression level in human liver microsomes. It was also found that 

there was a low correlation between protein and mRNA quantities for most of the UGT 

isoforms analyzed except UGT1A6 (high correlation with r2 of more than 0.6 (Ohtsuki et al., 

2012). The absolute quantification of different UGT isoforms in rat tissue has not been 

reported yet.

Many of the studies have been performed to determine the mRNA levels of UGTs in 

different species such as rat and mouse (Shelby et al., 2003; Mackenzie et al., 2005; Owens 

et al., 2005; Buckley and Klaassen, 2007). In case of rats, both Ugt1a and Ugt2b subfamilies 

have been observed to be present. In contrast to human, Ugt1a subfamily containing 10 

different isoforms (Ugt1a1, 1a2, 1a3, 1a4, 1a5, 1a6, 1a7, 1a8, 1a9, and 1a10), while Ugt2b 

subfamily consists of six members, namely, Ugt2b1, 2b2, 2b3, 2b6, 2b8, and 2b12 

(Mackenzie et al., 2005; Owens et al., 2005). After comparing the mRNA expression of rat 

Ugt1 isoforms in different tissues, it was found out that rat Ugt1a isoforms are more 

prevalent in both liver and intestine compared to other tissues (Shelby et al., 2003). In liver, 

different isoforms of Ugt1a and Ugt2b subfamilies such as Ugt1a1, 1a3, 1a5, 1a8, 2b1, 2b2, 

2b3, 2b6, and 2b12 were present, whereas Ugt1a1, 1a2, 1a3, 1a6 and 1a7 were present in rat 

intestine. The same study also concluded that only a few Ugt2b subfamily members 

(Ugt2b3, 2b8 and 2b12) were found in rat intestine (Shelby et al., 2003).

There are similarities and differences in expression of UGTs between rat and mouse. In case 

of mice, studies indicated that the Ugt1a subfamily contains 14 first exons (Buckley and 

Klaassen, 2007). Among them only nine enzymes were coded (Ugt1a1, 2, 5, 6a, 6b, 7c, 8, 9, 

and 10); whereas five were pseudogenes (Ugt1a3, 4, 7a, 7b, and 11). In case of Ugt2b 

subfamily, only seven Ugt2b genes (Ugt2b1, 2b5, 2b34, 2b35, 2b36, 2b37, and 2b38) were 

observed to be present in mice. Like rat, mouse liver was also shown to express different 

Ugt1a isoforms such as Ugt1a1, 1a5, 1a6, 1a9 as well as all Ugt 2b members. In addition, 

different Ugt subfamily such as Ugt1a6, 1a7c, 2a3, 2b34, and 2b35 are present in mouse 

gastrointestinal tract (Buckley and Klaassen, 2007).

3. Efflux Transporters Involved in Glucuronide Excretion

Phase II metabolites of drugs such as glucuronides, once formed, uses efflux transporters to 

exit the cell. Since the glucuronides are the substrate of efflux transporters, the two kinetic 

processes (glucuronidation by UGT and the excretion of glucuronides by efflux transporters) 

interplay with each other. These interplays are necessary, in large part, due to highly 

hydrophilic and charged properties of the metabolites, which requires the action of the efflux 

transporters (e.g., MRPs, BCRP) to exit cells.

MRPs.

The MRPs are the major efflux transporter family for phase II metabolites, and these 

transporters are expressed in many epithelial cells (Bera et al., 2002; Meyer zu 

Schwabedissen and Kroemer, 2011). MRPs share approximately 15% sequence similarities 
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to that of P-gp (Mdr1), and these efflux transporters are predicted to form a large central 

hydrophobic core in their active binding region. The core region has two nucleotide-binding 

domains (NBD1 and NBD2); two membrane-spanning domains (MSD1 and MSD2); six 

trans-membrane spanning helices; and a linker segment called L1. Some of the MRP 

subfamily members also contain a membrane-spanning domain zero (MSD0), trans-

membrane helices, and a linker zero (L0). The MSD0 and L0 are additional extensions that 

dangle at the N-terminus that extend extracellularly. Nine of the thirteen members of the 

multidrug resistant MRP/ABCC family are capable of effluxing both endogenous and 

exogenous organic anion compounds. Some MRPs, such as MRP1, are additionally capable 

of transporting neutral organic compounds in the presence of free glutathione (Kruh and 

Belisnsly, 2003). Collectively, the MRP family of efflux transporter is first known to 

convene resistance to anticancer agents (Kock and Brouwer, 2012). More recently, the Mrp 

family of efflux transporters has become known to efflux sulfate, glucuronide, and 

glutathione metabolites into the interstitial space, bile duct, intestinal lumen and basolateral 

surface of hepatocytes and enterocytes (Keppler and Konig, 2000; Jemnitz et al., 2010; 

Keppler, 2011; Kock and Brouwer, 2012).

Among the MRPs, Mrp1, Mrp3, Mrp5, and Mrp6 are densely expressed at the basolateral 

membrane of an epithelial cell, whereas Mrp2 is found in the apical side of the cell. Mrp4 

expression and location depends on the tissue and species (Klaassen and Aleksunes, 2010) 

(van der Deen et al., 2005). For example, Mrp4 is found in the basolateral membrane of 

human prostatic glandular cell, but has also been localized to the apical membrane of rat 

kidney tubule cells. For Mrp7, Mrp8, and Mrp9, their specific locations of expression are 

less clear and appear to be random (Cai and Gros, 2003; Marquez et al., 2009).

Mrp1 was the first of MRPs to be discovered. It is ubiquitous in epithelial vesicular tissue 

such as lung and blood-tissue barriers. Mrp1 effluxes glutathione and glucuronide 

conjugates into the tissue underlying the membrane instead of effluxing these metabolites 

into the interstitial space. Mrp1 is highly expressed in the intestine and certain other organs 

such as liver (Cherrington et al., 2002), however, the expression level of Mrp1 varies 

between rats.

Mrp2 is probably the most widely studied MRP transporter, primarily because at least two 

MRP2-deficient rat models (Eisai hyperbilirubinuria rats and TR- rats) are available to study 

the role of MRP2 in drug disposition (Chen and Tiwari, 2011). MRP2 is believed to be 

responsible for transporting bile acid conjugates. Hepatic deficiency of Mrp2 in rats is linked 

to low bile acid conjugate excretion. There are various reports of a linkage between disease 

severity and expression level in both humans and rats. MRP2 is shown to be deficient in the 

hereditary condition known as Dubin-Johnson syndrome, which causes chronic conjugated 

hyperbilirubinemia and hepatocytes are not able to excrete conjugated organic anions into 

bile (Keppler and Konig, 1997). MRP2 in the intestine serves as the first barrier against all 

toxins entering into the systemic circulation (Jansen et al., 1985; Kamisako et al., 1999; 

Kamisako et al., 2000; Zamek-Gliszczynski et al., 2011). Mrp2 effluxes organic anions that 

are conjugated to glutathione, glucuronic acid, or sulfate into the intestinal lumen, thereby 

eliminating/reducing toxicity exposures to epithelial cells at the tip of the villus part of the 
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jejunum (Cherrington et al., 2002; Wittgen et al., 2012) (Meyer zu Schwabedissen and 

Kroemer, 2011).

Mrp3 is very important for basolateral clearance of drugs and other substances in organs 

such as liver, gut, adrenals, pancreas, and kidney (Zelcer et al., 2001; Kock and Brouwer, 

2012). It facilitates the excretion of organic anions, especially bile acids. Importantly, Mrp3 

aids in the excretion of glucuronide metabolites into sinusoidal blood within the liver and 

into portal vein from enterocytes. Studies have shown that while expression level of Mrp3 

was unrelated to the excretion of sulfate conjugates, it was proportional to the basolateral 

clearance of glucuronide conjugates in rats (Borst and Elferink, 2002).

Fewer studies have been conducted on other MRPs. Mrp4 appears to have high affinity for 

sulfate conjugates of bile acids and steroids (Kock and Brouwer, 2012). Glucuronide and 

glutathione metabolites also interact with Mrp4 in the liver; however, they have lower 

affinity in the presence of sulfate conjugates (Russel et al., 2008). Mrp4 is expressed in the 

prostate, lung, muscle, and pancreas (Klaassen and Aleksunes, 2010). Mrp5 expression is 

relatively low in a healthy liver. However, in hepatic cholestasis condition, Mrp5 mRNA is 

up regulated (Kock and Brouwer, 2012). Mrp5 selectively binds to glutathione conjugates 

and cyclic nucleotides, which are also substrate for Mrp4. Mrp5 is also the main anionic 

conjugate efflux transporter at the basolateral side and is ubiquitous in many organs 

(Klaassen and Aleksunes, 2010; Chen and Tiwari, 2011; Kock and Brouwer, 2012).

The physiologic function and the potential involvement in drug resistance of the other Mrps 

are still under investigation. Mrp6 localizes in the kidney and the basolateral surface of 

hepatocytes and is mainly involved in transporting glutathione conjugates and substrates 

such as BQ123, a cyclic-pentapeptide endothelin receptor antagonist (Kool et al., 1999; 

Madon et al., 2000; Belinsky et al., 2002). Specific transporting mechanisms of Mrp5 and 

Mrp6 are unclear. Mrp7 is a potassium channel regulator and therefore can be found in 

various organs, such as pancreas, testis, colon, spinal cord, tonsils, lung, trachea, and skin 

(Klaassen and Aleksunes, 2010). Mrp7 is capable of effluxing various amphipathic anions 

such as 17-beta-estradiol-(17-beta-d-glururonide) (Chen et al., 2003b). Mrp8 is ubiquitous 

throughout many organs and is responsible for nervous responses (Bortfeld et al., 2006). 

Mrp8 is known to efflux dehydropiandrosteron-3-sulfate, an endogenous precursor of many 

sex hormones (Chen et al., 2005b; Bortfeld et al., 2006). Mrp9 sequence is about 45–55% 

similar to that of Mrp5 sequence (Meyer zu Schwabedissen and Kroemer, 2011), but, its 

specific substrate and organ expression remain unclear so far (Bera et al., 2002).

BCRP.

The breast cancer resistance protein (Bcrp, ABCG2) was also identified as a hepatic 

canaliculus drug efflux transport protein, although its role in cancer multidrug resistance has 

been known for decades (Nakanishi and Ross, 2012). BCRP is densely expressed in the 

liver, kidney, blood-brain, intestine, and placental barriers (Doyle and Ross, 2003). BCRP’s 

role in biliary excretion of phase II conjugates is just beginning to be understood, partly 

because it covers a wide range of substrates. Common to the P-gp and MRP family, a single 

Transmembrane domain (TMD) binds to the terminus of the Nucleotide-binding domain 

(NBD) in BCRP. Since there are two TMD and two NBD repeats, the binding of a TMD to a 
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single NBD is considered as a homodimer or half-transporters. The BCRP half-transporter 

NBD contains a single nucleotide that binds to the TMD. BCRP exist as either homodimer 

or homotetramers. As part of an ATP-dependent half-transporter, BCRP becomes functional 

upon dimerization (Biemans-Oldehinkel et al., 2006). It excretes anthracyclines, the active 

metabolite of CPT-11 (SN-38), mitoxanthrone, doxorubicin, as well as many sulfate and 

glucuronide conjugates into bile (Ni et al., 2010; Alvarez et al., 2011). BCRP appears to be 

responsible for the non-Mrp2 mediated component of biliary excretion of sulfate 

metabolites. The role of BCRP in the biliary excretion of sulfate conjugates has been 

demonstrated in vitro, and in rat and mice organ perfusion studies (Zamek-Gliszczynski et 

al., 2006c; Zamek-Gliszczynski et al., 2008; Zhu et al., 2010). Negligible excretion of 

glutathione conjugates in Mrp2-deficient rat livers indicate BCRP’s minor role in the 

excretion of these metabolites. BCRP transports many hydrophilic conjugated organic 

anions instead of hydrophobic compounds that are most likely substrates of P-gp. Working 

synergistically, Bcrp, Mrp-2, and P-gp eliminate a multitude of drugs absorbed across tissue 

barriers (Chang et al., 2011).

BSEP.

Bile salt export pump’s (BSEP, ABCB11) is another member of the Mdr family. BSEP is 

more than 80% homologous in human, rat, mouse, and dog. The variations are found mostly 

in the encoding gene of transmembrane loops (Yabuuchi et al., 2008). The exact structure of 

BSEP is not known (Wakabayashi et al., 2004) but it is believed that BSEP contains two 

trans-membrane domains composed of six helices connected between the cytoplasmic 

domain that is homologous to the structure of p-glycoprotein (van Den Elsen et al., 1999). 

However, BSEP is believed to also have four putative N-linked glycosylation sites for post-

translational modifications (Borst and Elferink, 2002). BSEP is exclusively found in the 

canalicular membrane of the hepatocytes and has very specific substrates compared to p-

glycoprotein (Kock and Brouwer, 2012). BSEP exclusively effluxes monoanionic conjugated 

bile acids, and whether it will excrete any other anions such as glucuronides remains to be 

determined. Currently, only a small number of drugs such as pravastatin and vinblastine are 

known to be effluxed by BSEP (Hirano et al., 2005; Yabuuchi et al., 2008). Studies have 

shown that deficiency in expression or function of this protein leads to intra-hepatic 

cholestasis and even liver injury (Balistreri et al., 2005; Hirano et al., 2006).

4. Possible and Likely Uptake Transporters Involved in Glucuronides 

Transport

Owing to their hydrophilic nature, the glucuronides also use uptake transporters, in addition 

to efflux transporters, to cross the biological membrane. Once formed in the intestinal 

epithelial cells, glucuronides are excreted into the portal vein by the efflux transporters in 

enterocytes, from where they enter hepatocytes with the aid of hepatic uptake transporters to 

be excreted into bile. The three major uptake transporter families involved in drug 

disposition, organic anion transporting polypeptides (OATPs), organic anion transporters 

(OATs), and the organic cation transporters (OCTs), likely belongs to the two solute carrier 

(SLC) superfamilies (Roth et al., 2012). SLC transporters are widely distributed in small 

intestine, kidney, liver and even brain, and are responsible for the uptake of many drugs 
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and/or their glucuronides. These transporters are mostly expressed on the apical membrane 

of enterocytes, and the basolateral membranes of hepatocytes. However, in kidney, different 

SLC transporters are expressed on both apical and basolateral sides (Roth et al., 2012).

The OATP family is the predominant hepatic drug uptake transporter superfamily among 

SLCs in liver (Vasilyeva et al., 2015). 11 isoforms of OATPs are classified into 6 families 

(from OATP1 to 6) and several subfamilies based on similarities in their amino acid 

sequences (Vasilyeva et al., 2015). OATP1B1, OATP1B3 and OATP2B1 are three of the 

major isoforms expressed in the hepatic basolateral membrane (van de Steeg et al., 2012; 

Badee et al., 2015; Rowland et al., 2015), which are responsible for most of the hepatic 

uptake of drugs and their metabolites.

OATP transporters show varied expression levels on the apical or basolateral side of various 

human tissues. OATP1B1 and 1B3 are exclusively present on the sinusoidal membrane of 

liver (van de Steeg et al., 2012; Vasilyeva et al., 2015), whereas OATP2B1 is ubiquitously 

distributed throughout human body. It is not only expressed in liver (sinusoidal membrane) 

but also in other organs like brain, kidney and intestine (gut lumen) (van de Steeg et al., 

2012; Rowland et al., 2015). Other isoforms such as OATP1A2, OATP2A1 are expressed at 

a relatively low concentration. OATP1A2 is exclusively expressed in cholangiocytes, the 

epithelial cells of the bile duct and may be involved in the reabsorption of xenobiotics 

excreted into the bile. Additionally, OATP1A2 is expressed on the apical side in the 

intestinal epithelial cells (Roth et al., 2012). Though they participate in the uptake process, 

their role in drug disposition is not yet understood (van de Steeg et al., 2012; Rowland et al., 

2015; Vasilyeva et al., 2015).

OATPs share a similar transmembrane domain organization, which contains 12 predicted 

transmembrane domains and a large fifth extracellular loop. Based on a comparison among 

multiple species, all OATPs/Oatps (rat) transport using a rocker-switch type of mechanism, 

where substrate passes through a central, positively charged pore (Roth et al., 2012; 

Rowland et al., 2015). OATP-mediated uptake of drugs and glucuronides is an ATP- and 

sodium- independent transport process, however, the exact driving force for transporters is 

still not clear (Roth et al., 2012). One hypothesis offered a possible explanation to the 

mechanism. A pharmacophore model developed for OATP1B1 base on published apparent 

Km values of OATP substrates suggests that substrates contain two hydrogen bond acceptors, 

one hydrogen bond donor and two hydrophobic regions (van de Steeg et al., 2012; Rowland 

et al., 2015). However, there are different mechanism among different model substrates and 

even different OATPs (e.g. OATP 1B1 and 1B3) have slightly different mechanism.

The pharmacological importance of OATP transporters is owed to their broad substrate 

specificities (Roberts et al., 2002; Roth et al., 2012). As electrogenic transporters, OATP1B1 

and 1B3 facilitate transport of many drugs and their metabolites. Many anticancer drugs like 

irinotecan and its active metabolite SN-38, methotrexate are their substrates (Roberts et al., 

2002; Kalliokoski and Niemi, 2009). Though OATP1B1 and 1B3 share most of their 

substrates list, OATP1B3 seems to be the only hepatic OATP responsible for the uptake of 

digoxin, paclitaxel and docetaxel (Kalliokoski and Niemi, 2009). Moreover, statins are also 

transported by OATPs (Ming, 2008; Peng et al., 2015). As the top ranked anti-
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hyperlipidemia drug, statins have special importance in human health, which makes the 

study of OATPs more relevant and impactful. Many studies of drug–drug interactions 

focused on drug metabolism enzymes, such as CYPs, only. However, the wide range of the 

substrates as a “perpetrator” or a “victim” makes OATPs a potential target of drug-drug 

interactions. Pinpointing a single uptake transporter responsible for drug-drug interactions is 

still challenging due to overlapping substrate-specificity, which could be further impacted by 

the change in internal drug concentrations by metabolism enzymes.

Apart from the uptake of these exogenous substrates, OATPs are also responsible for the 

detoxification of endogenous compounds (Iusuf et al., 2012). For example, OATP1B1 and 

1B3 play a major role in the metabolism of bilirubin and disposition of the resulting 

glucuronides. Together with MRP3, OATP1B1 and 1B3 establish a liver-blood shuttling loop 

for the transport of bilirubin and its glucuronides (van de Steeg et al., 2012; Vasilyeva et al., 

2015). The functional deficiency of these two uptake transporters would lead to the blockage 

of the hepatocyte hopping, which causes the Rotor Syndrome (RS), a rare hereditary 

hyperbilirubinemia (Marin, 2012; van de Steeg et al., 2012; Rowland et al., 2015). Also, the 

homeostatic equilibrium of other endogenous substances such as bile acids, conjugated 

steroids and thyroid hormones are affected by OATPs because of their involvement in 

recycling of these substances (Kalliokoski and Niemi, 2009; Marin, 2012).

Organic anion transporters (OATs) are another transporter family related to the hepatic 

uptake. The substrates with one or two carboxylate groups are favored by the transporters 

(Roth et al., 2012). Though several isoforms have been detected in human liver, OAT2 is the 

most abundant one expressed in liver. (Jonker and Schinkel, 2004; Peng et al., 2015). 

Interestingly, sinusoidal membrane of hepatocyte is commonly regarded as the membrane 

for polarized distribution of OAT2, however, the subcellular localization of this protein in 

liver has only been demonstrated in rat but not in human (Jonker and Schinkel, 2004). 

Similar to OATPs, OAT2 is a sodium independent transporter. It works as a multi-specific 

organic anion exchanger by effluxing glutamate during the anion exchange. In human 

kidneys, OAT1, OAT2, and OAT3 are localized in the basolateral cell membrane, whereas 

OAT4, OAT10, and URAT1 in the apical cell membrane of proximal tubule cells, 

respectively. Studies have shown that OAT1 and OAT3 are involved in the elimination of 

various classes of drugs and conjugates of endogenous and exogenous substances from 

blood to urine in renal proximal tubules (Emami Riedmaier et al., 2012; Roth et al., 2012).

Compared to OAT1 and OAT3, a relatively small number of drugs are transported by OAT2. 

Some antiviral drugs, ACE inhibitors, angiotensin II receptor antagonists, HMG-CoA 

reductase inhibitors, NSAIDs, and antitumor drugs (paclitaxel, methotrexate etc.) are its 

substrates (Jonker and Schinkel, 2004; Estudante et al., 2013). In addition, a number of 

endogenous substances including sulfated steroid hormones (estrone-3-sulphate etc.), second 

messengers (Cyclic GMP and Cyclic AMP) and nucleosides (adenine, cytidine, guanosine 

etc.) are transported by OAT2 (Jonker and Schinkel, 2004).
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5. Driving Forces for the Systemic Distribution of Metabolites

Polarized Excretion of Glucuronides.

In major metabolic organs such as intestine, liver and kidney, the primary cells responsible 

for metabolism are polarized, and as such efflux transporters located on the basolateral 

membrane are mostly distinct from those located on the apical membrane. Assuming stable 

UGT expression and functionality, transporters located at the basolateral membrane of 

enterocytes and hepatocytes, function as the driving forces for glucuronides to be distributed 

into blood. On the other hand, hepatic uptake transporters are able to extract extra-hepatic 

generated glucuronides, limiting their systemic exposure and facilitating their elimination 

via biliary excretion.

Role of Basolateral Efflux Transporters.

MRP3 is an important transporter located at the basolateral side of enterocytes and 

sinusoidal membrane of hepatocytes. Various glucuronide conjugates have been identified as 

substrates of MRP3, and MRP3 facilitates their entry into the mesenteric blood or the 

general circulation. In vesicular transport and ATPase activity assays, it was shown that 

estradiol 17-β-d-glucuronide, 7-hydroxycoumarin glucuronide, morphine glucuronide and 

bisphenol A glucuronide are substrates of MRP3 (Zelcer et al., 2001; Zamek-Gliszczynski et 

al., 2011; Mazur et al., 2012; Wittgen et al., 2012). Studies in everted intestinal sacs showed 

that the serosal efflux rate of 4-methylumbelliferone glucuronide decreased significantly in 

the small intestine of Mrp3 knockout mice (Kitamura et al., 2010). In Mrp3 knockout mice, 

the levels of resveratrol-3-glucuronide were up to 10-fold lower in plasma and urine (van de 

Wetering et al., 2009), and levels of morphine-3-glucuronide were up to 50-fold lower in 

plasma (Zelcer et al., 2005), owing to the lack of Mrp3 in the basolateral membrane of the 

enterocytes. In addition to MRP3, MRP4 is responsible for driving the intracellular 

glucuronides into the circulation from hepatocytes. In sandwich-cultured human hepatocytes 

and membrane vesicle uptake assays, the involvement of MRP3 and MRP4 in hepatic 

transport of mycophenolic acid glucuronide into the circulation was reported (Matsunaga et 

al., 2014).

Apical efflux transporters do not directly contribute towards the systemic exposure of 

glucuronides, however they can affect the outcome indirectly. The reduce expression of 

apical efflux transporter MRP2 is often associated with up-regulation of basolateral efflux 

transporter MRP3 to limit hepatic toxicity (Keppler and Konig, 2000; Dietrich et al., 2001; 

Roberts et al., 2002; Kubo et al., 2009). Owing to this, the systemic exposure of endogenous 

substrates and xenobiotic can be greatly altered due to the altered expression level or 

inhibition of apical efflux transporters.

Role of Basolateral Uptake Transporters.

When the extra-hepatic generated glucuronides reach portal vein, they have a chance to be 

taken up by the hepatocytes. OATP transporters expressed on the sinusoidal membrane of 

the hepatocytes play an important role in hepatic uptake of many endogenous and exogenous 

conjugates. For instance, studies in Oatp1a/1b knockout mice suggested that Oatp1a/1b 

transporters are involved in hepatic uptake of glucuronidated bilirubin (van de Steeg et al., 
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2010). There is also evidence showing that OATP1 plays important role in mediating the 

uptake of estradiol 17β-d-glucuronide by hepatocytes (Kouzuki et al., 1999). Moreover, 

OATP2B1 was demonstrated to be a major transporter involved in hepatic uptake of 

scutellarein glucuronides, which was suggested as a predominant process for their 

pharmacokinetic behaviors (Gao et al., 2012). Daidzein-7- glucuronide was reported as a 

substrate of OATP2B1 as well (Grosser et al., 2015). More detailed discussions can be found 

in Section 4.

In the liver, the presence of uptake transporters (e.g. OATPs) provides a potential pathway 

for extrahepatically generated glucuronides to be excreted into bile and therefore enhances 

the enterohepatic circulation of glucuronide conjugates. The circulation half-life of a 

glucuronide can be prolonged as the result of the increased enterohepatic recycling. On the 

other hand, the OATP uptake transporters also work in concert with sinusoidal export 

transporters (e.g.MRP3). Van de Steeg et al. proposed a theory they called “hepatocyte 

hopping” based on their observations with glucuronidated bilirubin in Oatp1a/1b mice. They 

found that the plasma level of bilirubin glucuronide in the Oatp1a/1b-deficient mice is 

remarkably increased. It was hypothesized that in the presence of both Oatp1a/1b and Mrp3 

transporters, bilirubin glucuronide secreted in blood by Mrp3 can be taken up again by 

Oatp1a/1b located in the neighboring hepatocytes and hence have another chance to be 

excreted into bile. They claimed that this hepatocyte shuttling process can efficiently prevent 

the buildup of bilirubin glucuronide in the circulation (van de Steeg et al., 2010; Iusuf et al., 

2012).

An important contributor to the systemic distribution of metabolites is recycling of 

glucuronides that are eliminated via bile or directly into the intestinal lumen. Because of the 

presence of microflora, glucuronides can be reconverted back into aglycone, which can then 

be reabsorbed, completing the recycling loop. More detailed discussion can be found in 

Section 6 below.

6. Recycling Mechanisms

Recycling prolongs the exposure of drugs to the systemic circulation due to repeated 

hydrolysis of glucuronides by (microbial) β-glucuronidase in gut, followed by reabsorption 

of the parent compound. Endogenous and exogenous substances such as xenobiotics and 

environmental pollutants can participate in one or more of the three types of recycling 

processes; enterohepatic, enteric and local recycling. Many compounds undergo only 

enterohepatic recycling (Gao et al., 2014) but some compounds such as polyphenols undergo 

duo recycling scheme involving both enteric and enterohepatic recycling (Roberts et al., 

2002; Chen et al., 2003a; Liu et al., 2003; Jia et al., 2004; Silberberg et al., 2006; Liu and 

Hu, 2007). Similarly, local recycling could also occur independently or along with enteric 

and enterohepatic recycling, depending on the drug disposition characteristics. It is 

suggested that the relative contribution of enterohepatic, enteric and local recycling in the 

overall disposition of drug depends on the efficiency of enzyme-transporter coupling (see 

Section 8) by controlling the amounts of metabolites excreted by the intestine and liver (Jia 

et al., 2004; Jeong et al., 2005b; Liu and Hu, 2007).
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Enterohepatic Recycling.

Enterohepatic recycling also known as enterohepatic circulation is a process where certain 

drug absorbed by enterocytes reenters intestine via bile excretion as glucuronides, which 

upon hydrolyzing back to aglycone, are reabsorbed. The drug once absorbed by intestinal 

cells enters the portal vein by the passive diffusion, whereas its glucuronides formed in the 

intestinal cell excrete on the basolateral side (gut lumen) by the efflux transporters. The drug 

from portal vein then enters hepatocytes by passive diffusion, where it can get metabolized 

again. On the other hand, glucuronides in portal vein may be taken up by the hepatocytes 

with the aid of hepatic sinusoidal uptake transporters. Hepatic efflux transporters on the 

apical side (MRP2 and BCRP) then can return the glucuronide to the intestine via the bile 

duct (Roberts et al., 2002; Gao et al., 2014) (Fig 2).

The bile contains glucuronides that are emptied into the gut after a meal, where glucuronides 

are hydrolyzed into parent drug by gut microflora followed by reabsorption in colon, thereby 

entering enterohepatic recycling (Roberts et al., 2002; Chen et al., 2003a; Liu et al., 2003; 

Jia et al., 2004; Silberberg et al., 2006; Liu and Hu, 2007). This process repeats itself until 

the drug is eliminated from the body. Enterohepatic recycling increases the half-life and the 

residence time for the species being recycled, and thus increase systemic exposure and delay 

drug clearance, as evident by the prolonged terminal elimination phase (Ouellet and Pollack, 

1995; Schaiquevich et al., 2002). A drug undergoing enterohepatic recycling usually shows 

the multiple-peak phenomenon in its plasma-concentration–time profile and the prolonged 

elimination half-life (Gao et al., 2014). Ezetimibe (Ezzet et al., 2001; Yamamoto et al., 

2007), sorafenib (Vasilyeva et al., 2015), diclofenac (Fukuyama et al., 1994), irinotecan (and 

SN-38) (Younis et al., 2009) and morphine (Ouellet and Pollack, 1995) are some of the 

drugs, which have shown to undergo biliary excretion and enterohepatic recycling as 

glucuronides in various animal models.

The enterohepatic recycling of glucuronides can have either beneficial or harmful effects on 

the body. In certain cases, such as flavonoids with lower bioavailability due to high 

metabolic clearance, the recycling increases their systemic exposure, half-life and the 

residence time in body, which is a favorable outcome (Hu, 2007; Thilakarathna and 

Rupasinghe, 2013; Dai et al., 2015). However, in other cases, this process is an unwanted 

outcome. For example, the enterohepatic recycling of diclofenac acyl glucuronides could 

increase the potential of gut toxicity by the repeated exposure to NSAID (Seitz and 

Boelsterli, 1998). Similarly, deconjugation of SN-38-glucuronide by gut microflora, results 

in high concentrations of SN-38 locally, thereby causing severe delayed diarrhea (Kaneda et 

al., 1990).

Enteric Recycling.

Certain percentages of parent drug that enter intestinal cells after oral administration are 

metabolized into glucuronides(s). These glucuronides can either enter the mesenteric blood 

system by the basolateral efflux transporters, or effluxed back into intestinal lumen by the 

apical efflux transporter(s). In the gut lumen, glucuronides are not absorbed and they will 

travel down the intestine until they reach terminal ileum or colon (bacteria-rich regions of 

the gut), where they are converted back into the parent drug by the gut microflora, and 
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reabsorbed, thereby completing the enteric recycling scheme. A compound may be recycled 

repeatedly until it is completely eliminated from the system (Fig 2).

Multiple studies have been published to delineate the role of various components of enteric 

recycling scheme of glucuronides (UGT and efflux transporters) and understand how these 

components can be modulated to affect the local and systemic bioavailability of compounds/

aglycones undergoing glucuronidation. A combination of in situ rat/mouse intestinal 

perfusion model along with in vitro intestinal/hepatic microsomes and Caco-2 cell transport 

studies demonstrated that enteric recycling plays an important role in disposition of various 

flavonoids, owing to their extensive glucuronidation in intestine and excretion of these 

glucuronides in gut lumen (Chen et al., 2003a; Hu et al., 2003; Liu et al., 2003; Jia et al., 

2004; Chen et al., 2005a; Jeong et al., 2005b; Wang et al., 2006). MK-571 (Mrp2 inhibitor) 

and dipyridamole (BCRP inhibitor) when used together were able to significantly decrease 

the intestinal and biliary excretion of naringenin glucuronides in Wistar rats. These findings 

strongly suggested the involvement of MRP2 and BCRP efflux transporters in the 

enterohepatic and enteric recycling, by controlling the biliary and luminal efflux of 

glucuronides in liver and intestine, respectively (Xu et al., 2009).

Contrary to enterohepatic recycling, excretion of conjugates by enterocytes in enteric 

recycling do not usually cause double peak phenomenon, mainly because metabolites are 

gradually and continuously excreted into large intestine to be hydrolyzed and reabsorbed 

(Roberts et al., 2002; Chen et al., 2003a; Liu et al., 2003; Jia et al., 2004; Silberberg et al., 

2006; Liu and Hu, 2007). In the enteric recycling of glucuronides, action of both, UGT 

enzyme (present at higher levels in the small intestine) and microbial β-glucuronidases 

(present at higher levels in the large intestine), are required and recycling is completed over 

the entire intestine. Moreover, enteric recycling does not require hepatic enzymes and efflux 

transporters observed for enterohepatic recycling, but rely only on the intestinal enzymes 

and efflux transporters.

Local Recycling.

More recently, a novel recycling system called local recycling of glucuronide has been 

reported, where drug enters the recycling mechanism without the intervention of bacterial β-

glucuronidases. In local recycling, the deconjugation of glucuronides into parent drug is 

carried out by β-glucuronidases of enterocytes in upper small intestine, followed by 

reabsorption of drug in lower part of gut (Fig 2) (Xia et al., 2012; Dai et al., 2015). 

Wogonoside was rapidly hydrolyzed into wogonin by the β-glucuronidase present in the 

enterocytes rather than that of gut lumen (Xia et al., 2012). Dai et al. showed that tilianin 

could enter enteric, enterohepatic and local recycling scheme, called the triple-recycling 

mechanisms, after metabolizing into three metabolites; tilianin glucuronide, acacetin, and 

acacetin glucuronide (Dai et al., 2015).

Local recycling prolongs the residence time and increase local exposure of flavonoids in the 

gut and thus, it is assumed that flavonoids may have more biological activities in the gut 

than predicted based on their poor systemic bioavailability (Jeong et al., 2005a; Hu, 2007; 

Zhang et al., 2007; Xia et al., 2012). Though the local recycling has been reported in only 

two instances so far (Xia et al., 2012; Dai et al., 2015), based on the proposed mechanism of 
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action, it is very much possible that local recycling significantly affects the biological 

activities of other drugs, which are undergoing extensive glucuronidation in gut. Local 

recycling of glucuronides, along with their enteric and enterohepatic recycling, can lead to 

prolonged and higher systemic exposure of poorly bioavailable phenolics, both locally and 

systemically. This prospect is equally important in the case of locally active drugs such as 

ezetimibe and ezetimibe glucuronide (more active than the parent compound), which exerts 

their cholesterol-lowering action by reducing the uptake and absorption of cholesterol by 

enterocytes. Possible triple recycling of ezetimibe glucuronide leads to prolonged local 

exposure in gut, resulting in more bioactivity at the site of action (Kosoglou et al., 2005). 

Similarly, SN-38 toxicity in large intestine is attributed to deconjugation of SN-38 

glucuronide to toxic aglycone by bacteria β-glucuronidase in colon (Wallace et al., 2010). 

However, upper small intestine toxicity may be due to the local recycling, but this has not 

been investigated fully yet.

Like enteric recycling, local recycling requires only intestinal enzymes and transporters, and 

does not exhibit any double peak phenomenon, as the excretion of glucuronide is 

continuous. On the other hand, unlike the enteric recycling, local recycling could complete 

in the small intestine alone, without involving the whole intestine, as the action of microbial 

β-glucuronidases is not needed. Local recycling can occur either independently or in 

conjugation with other recycling processes. For drugs that are extensively metabolized in the 

gut, glucuronides can be excreted in gut lumen from enterocytes where they can re-enter the 

intestine after hydrolyzing back to aglycone by β-glucuronidases of enterocytes, thereby 

completing the cycle without the involvement of the other recycling mechanisms. However, 

rapidly absorbing drugs can saturate the gut UGT at high concentrations, so that they bypass 

intestinal metabolism and are predominantly glucuronidated in the liver. For these 

compounds, local recycling does not play significant role in first pass metabolism, but the 

glucuronides can later participate in local recycling followed by excretion in lumen through 

bile (Xia et al., 2012).

7. Driving Forces for the Elimination of Glucuronides

Routes of Elimination.

The elimination of glucuronides includes biliary, urinary, and intestinal excretion. For 

example, it has been shown that the biliary, urinary, and intestinal excretion of 

acetaminophen glucuronide accounts for 13, 9, and 1% of the orally administered 

acetaminophen in rats (Villanueva et al., 2008). Because of their involvement in the 

excretion of hydrophilic glucuronides, various membrane transporters (efflux and uptake) 

together determine the preferential elimination pathway for the disposition of glucuronides.

Intestinal Excretion.

In enterocytes, MRP2 and BCRP are the apical transporters, which have been shown to 

mediate the efflux of intracellular-formed glucuronide metabolites into the lumen (Fig 1a). 

In the lumen, the glucuronides can either be excreted in the feces or hydrolyzed back to the 

aglycone. For example, in Caco-2 cells, there was about one-fold decrease in the apical 

efflux of hesperetin glucuronide when Ko143 (5 μM) was used as BCRP inhibitor (Brand et 
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al., 2008). Similarly, the use of LTC4 (an inhibitor of MRP2) decreased the efflux of emodin 

glucuronide from basolateral to apical side significantly (Liu et al., 2012a). The efflux of 

luteolin glucuronides from HeLa cells overexpressing UGT1A9 was inhibited by Ko143 in a 

dose-dependent manner (Tang et al., 2014). In rat perfusion model, Mrp2 and Bcrp1 were 

shown to efflux naringenin glucuronide to intestine and compensate for each other (Xu et al., 

2009). As reported by our group, in Bcrp1 knockout mice, the excretion rate of genistein 

glucuronide in the small intestine decreased significantly (78%) (Zhu et al., 2010), whereas 

in Bcrp1-defecient mice, a substantial increase (>10 folds) in plasma AUC of genistein 

glucuronide after oral dose of genistein was observed (Yang et al., 2012). Similarly, in 

bioavailability and tissue distribution studies of resveratrol in Bcrp1 knockout mice, it was 

shown that Bcrp1 mediated the efflux of resveratrol glucuronides to the intestinal lumen and 

the AUC of resveratrol glucuronides increased in Bcrp1-deficient mice (Alfaras et al., 2010).

Hepatocyte Excretion.

In hepatocytes, MRP2 and BCRP are located on the canalicular membrane, where they 

function as efflux pumps to move intracellular glucuronides into bile (Fig 1b). The presence 

of these transporters provides a pathway for hepatic excretion and facilitates enterohepatic 

recycling. In Mrp2 knockout mice, a 56% decrease in biliary excretion of ezetimibe 

glucuronide was observed (de Waart et al., 2009), while the serum ezetimibe glucuronide 

levels in Mrp2-deficient rat increased by 10 folds compared to that in wild-type rats (de 

Waart et al., 2009; Oswald et al., 2010). Moreover, in the intestinal and liver perfusion 

studies in Mrp2-deficient rats, the excretion of ethinylestradiol glucuronide into intestine and 

bile was significantly deceased, and the systemic exposure of ethinylestradiol glucuronide 

was 46-fold higher in Mrp-2 knockout mice due to its decreased excretion into lumen and 

bile (Zamek-Gliszczynski et al., 2011). Similarly, Mrp2 has also been reported to mediate 

the biliary excretion of mycophenolic acid-7-O-glucuronide, 4-methylumbelliferyl 

glucuronide, flavopiridol glucuronide, grepafloxacin glucuronide, 17β-estradiol-17-β-D-

glucuronide, and resveratrol glucuronide (Sasabe et al., 1998; Morikawa et al., 2000; Jager 

et al., 2003b; Jager et al., 2003a; Westley et al., 2006; Zamek-Gliszczynski et al., 2006a; 

Maier-Salamon et al., 2008). In in situ perfusion studies in Bcrp1(−/−) and Mrp2 (−/−) 

mouse livers, Bcrp was demonstrated to play a major role in biliary excretion of glucuronide 

metabolites of acetaminophen, 4-methylumbelliferone, and harmol, whereas Mrp2 played 

only a minor role (Zamek-Gliszczynski et al., 2006c). In efflux transporter-deficient mice, it 

was shown that both MRP2 and BCRP mediate the biliary excretion of droxydiclofenac acyl 

glucuronide (Lagas et al., 2010). Since, MRP2 and BCRP have overlapping substrate 

specificities, it is challenging to predict the impact of altered function of one or more 

transporter on the biliary excretion and systemic exposure of glucuronides (Yang et al., 

2014).

Kidney Excretion.

In hepatocytes, glucuronides are either excreted by apical efflux transporters such as MRP2 

and BCRP into bile, or they enter the systemic circulation by basolateral efflux transporters 

such as MRP3 (Fig 1c). From systemic circulation, glucuronides can be taken up into the 

kidney proximal tubular cells via organic anion transporters to be excreted via MRP2 or 

MRP4 at the apical side of these cells. Several transporters haven been shown to mediate the 
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renal handling of glucuronides on the apical and basolateral sides of renal epithelial cells. 

Glomerular Filtration Rate (GRF) is also an important factor for the urinary excretion of 

glucuronides. For example, it had been shown that mycophenolic acid glucuronide (MPAG) 

and morphine glucuronides levels were higher in patients with poor renal function because 

of the decreased renal clearance of these glucuronide metabolites (Osborne et al., 1993; 

Naesens et al., 2007).

Organic anion transporters (OATs) expressed on the basolateral membrane of the proximal 

tubules in kidney are known to be involved in the transport of glucuronides. Studies in 

human embryonic kidney 293 (HEK 293) cells overexpressing hOAT3 showed that there 

was an enhanced uptake of MPAG (Uwai et al., 2007), morinidazole glucuronides (Zhong et 

al., 2014), daidzein-7-O-glucuronide, genistein-7-O-glucuronide, glycitein-7-O-glucuronide 

and quercetin-3-O-glucuronide (Wong et al., 2011), which suggested that OAT3 contributes 

to the renal tubular secretion of these glucuronide conjugates.

For renally excreted drugs, MRP2 and MRP4 plays a significantly role in the excretion of 

glucuronide in a substrate-dependent manner. On the apical side of renal cells, it was 

demonstrated that MRP4 was involved in the urinary excretion of glucuronide metabolite of 

edaravone, and the renal excretion of edaravone glucuronide was 2-fold lower in Mrp4-

deficient mice (Mizuno et al., 2007). The role of MRP2 and MRP4 in renal excretion of 

MPAG was studied in HEK293 cells overexpressing human transporters and in isolated 

perfused kidneys. It was found that MPAG was a substrate of MRP2 but not MRP4, and the 

urinary excretion of MPAG was significantly greater in wild-type rat kidneys than in Mrp2 

(−/−) rat kidneys (El-Sheikh et al., 2014). It was also reported that the renal excretion of 

acetaminophen glucuronide increased by 200% in bile duct-ligated rats, and this alteration 

was attributed to the up-regulation of renal Mrp2 (Villanueva et al., 2008). The glucuronide 

of 7-hydroxycoumarin (7-HC-G) was shown to be a substrate of MRP4 in studies using 

membrane vesicles overexpressing MRP transporters, and MRP4 was suggested to play a 

role in the excretion of 7-HC-G in kidney (Wittgen et al., 2012).

8. Interplay of UGT Enzymes, Efflux and Uptake Transporters

The disposition of drugs undergoing glucuronidation is usually controlled by multiple serial 

and/or parallel processes. First the drug is absorbed into enterocytes via passive diffusion, 

where it converts to glucuronides by intestinal UGTs. The gut-generated glucuronides are 

then excreted into gut lumen and portal vein by apical and basolateral intestinal efflux 

transporters, respectively. From portal vein, drug enter hepatocytes by passive diffusion and 

undergo glucuronidation by hepatic UGTs, whereas, glucuronides are taken up by the 

hepatic uptake transporters. From hepatocytes, both intestinal- and hepatic-generated 

glucuronides are then excreted into bile and systemic circulation by the apical and 

basolateral hepatic efflux transporters, respectively. These steps are further inter-linked with 

the three recycling mechanism mentioned in section 6.

In such a multi-component system, interplay between two or more components and 

processes is highly probable. The interplay could be explained by a combination of variety 

of coupling mechanisms for the disposition of glucuronides: UGT enzyme-efflux transporter 
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coupling; UGT-uptake transporter coupling; efflux-uptake transporters coupling; and UGT 

enzyme-efflux transporter-uptake transporters coupling. These coupling mechanisms with 

the participation of multiple enzyme isoforms, efflux transporters and uptake transporters 

create a multi-component Enzyme–Transporter coupling network. Despite its complexity, 

this coupling network is highly capable of protecting human body against exogenous toxins; 

maintaining homeostasis of endogenous chemicals; and acting as bioavailability barrier to 

many xenobiotics. Importantly, failure in any of the individual components of the network is 

highly unlikely to cause the failure of the entire network.

UGT Enzyme–Efflux Transporter Coupling.

In the disposition of the drugs undergoing glucuronidation, the process of glucuronidation 

by UGTs couples with the process of excretion of glucuronides by efflux transporters. This 

phenomenon can be explained by the “Revolving door theory”, where the efflux transporters 

act as “revolving door” to facilitate and/or control the excretion of hydrophilic glucuronides 

out of the liver and intestinal cells (Liu and Hu, 2007; Singh and Hu, 2011). The UGT-efflux 

transporter coupling can leads to an imbalance between formation and excretion of 

glucuronides if one of the above processes act as the rate-limiting step. As a result, the actual 

rate of glucuronide excretion could either be lower (in efflux rate –limiting) or higher (in 

UGT rate-limiting) than the estimated rate of glucuronide excretion based on the cellular 

UGT activity (as measured from subcellular fraction) (Chen et al., 2003a; Jia et al., 2004; 

Jeong et al., 2005b; Wang et al., 2006).

Multiple UGT isoforms and efflux transporters (such as MRP2, MRP3 and BCRP) are 

shown to participates in the coupling process (Zamek-Gliszczynski et al., 2006b; Zhou et al., 

2010; Jiang et al., 2012; Yang et al., 2012; Wei et al., 2013; Tang et al., 2014; Zhang et al., 

2015; Wang et al., 2016). For example, estradiol-17-beta-d-glucuronide, which is formed by 

UGTs 1A1, 1A3, 1A4, 1A8, 1A9, and 1A10, was shown to interact with MRP2 and MRP3, 

expressed in isolated Sf9 membrane vesicles (Bodo et al., 2003). Also, enzyme-transporter 

interplay was observed in genistein glucuronide excretion in Hela cell overexpressed with 

UGT1A9 and BCRP. Ko143, a potent BCRP inhibitor was able to reduce the clearance of 

genistein glucuronide by about 75–94% in a dose-dependent manner (Jiang et al., 2012). 

Similarly, MK-571, a non-specific chemical inhibitor of MRP2, MRP3, and MRP4, 

significantly reduced the efflux of emodine glucuronide in the apical-to-basolateral (A-B) 

and B-A directions in Caco-2 cell lines in a dose-dependent manner (Liu et al., 2012a). 

Emodine is majorly glucuronidated by UGT1A1, 1A9, 1A10 and 2B7 (Wu et al., 2014). Due 

to overlapping substrate-specificity (Tian et al., 2008; Zhou et al., 2010; Singh et al., 2011a; 

Keppler, 2014; Yang et al., 2014) among UGT isoforms and efflux transporters, in an event 

of inhibition or deficiency of a UGT isoform or efflux transporters, other isoforms and 

transporters from same family and/or sub-family compensate for them (Wang et al., 2009; 

Xu et al., 2009). This mechanism makes it highly difficult to delineate individual UGT 

Enzyme-Efflux Transporter coupling pairs.

Specific inhibitors for various UGT isoforms and efflux transporter participating in the 

network are not readily available, so that the importance of individual enzyme isoform and 

transporter in the network has not been determined so far. Therefore, it has not yet been 
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possible to overcome the bioavailability barrier by targeting a specific UGT enzyme(s) 

and/or an efflux transporter(s) of glucuronides. Furthermore, it is challenging to study this 

compensation mechanism, as when gene(s) of interest is silenced or induced for prolonged 

period of time, the expression of other enzymes and transporters of same family or 

subfamily are up- or down-regulated, respectively (Johnson et al., 2006; Hoffmann and 

Loscher, 2007; Kubo et al., 2009; Miyawaki et al., 2012).

UGT Enzyme-efflux transporter-uptake transporters coupling.

Once a glucuronide is excreted into gut lumen or the portal vein by efflux transporters in 

enterocytes, the uptake transporters in hepatocytes and enterocytes could take it up from 

portal vein and intestinal lumen, respectively. Due to overlapping substrate-specificity 

between various efflux and uptake transporters of glucuronides (Liu et al., 2006; Kalliokoski 

and Niemi, 2009; Kindla et al., 2009; Fahrmayr et al., 2010; Keppler, 2014), it could be 

hypothesized that the net excretion of glucuronides from enterocyte and hepatocyte could be 

dependent both on uptake of glucuronides into the cell by uptake transporters (such as 

OATPs and OATs) and efflux of glucuronides out of the cell by efflux transporters (such as 

MRPs and BCRP). The glucuronide taken up in the process can further be excreted into bile 

by hepatocytes or portal vein by enterocytes. The glucuronide excreted into the intestinal 

lumen and bile (emptying into gut) from apical efflux transporters of enterocytes and 

hepatocytes, respectively, can be reabsorbed after getting deconjugated in intestine thereby 

entering the recycling mechanisms (see Section 6).

UGT Enzyme-efflux transporter interplay has been investigated extensively in last decade, 

however, other coupling mechanisms with respect to xenobiotic glucuronidation are yet to be 

explored in depth. Though such couplings have been successfully shown for CYP substrates 

and endogenous glucuronides (Nies et al., 2004; van de Steeg et al., 2010; Iusuf et al., 2012; 

van de Steeg et al., 2012; Daali et al., 2013; Neve et al., 2013; Li et al., 2014; Shi and Li, 

2014; Vasilyeva et al., 2015), very little has been reported for UGT substrates. OATP1B1 has 

been shown to play crucial role in the hepatic transport of glucuronides. Gemfibrozil 

glucuronide was able to inhibit the OATP1B1- and OATP1B3-mediated hepatic uptake of 

pravastatin (Nakagomi-Hagihara et al., 2007a; Nakagomi-Hagihara et al., 2007b). Uptake of 

ezetimibe glucuronide in cell expressing OATP1B1*1b was reduced as compared to the 

uptake in cell expressing wild-type protein (Oswald et al., 2008). Similarly, 

pharmacokinetics of ezetimibe glucuronide in human subjects with OATP1B1 

polymorphism was affected. Fecal ezetimibe glucuronide excretion was significantly 

decreased whereas renal glucuronide excretion was increased in carriers of *1b/*1b. 

Polymorphism of OAT1B1 affect the uptake of ezetimibe glucuronide from portal vein into 

hepatocyte, such that reduced levels of ezetimibe glucuronides are available in hepatocytes 

for biliary excretion. However, this did not cause the expected increase in systemic 

concentration of ezetimibe glucuronides, probably due to increased renal clearance of 

glucuronides (Oswald et al., 2008). Very recently, sorafenib-glucuronide has been shown to 

display in UGT enzyme - efflux transporter (MRP2/MRP3) - uptake transporter 

(OAPT1B1/1B3) coupling, hepatocyte shuttling/hopping, as well as enterohepatic recycling 

(Vasilyeva et al., 2015). However, further mechanistic studies are required to understand 

these mechanisms and their implications in clinical drug-drug interactions.
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9. New Directions

An important area, which is gaining significant attention and requires further exploration is 

the effect of gut microbiome on the disposition of drugs undergoing glucuronidation through 

enteric and enterohepatic recycling mechanism. Diet and antibiotics drugs can significant 

alter the microbial population in gut, thereby influencing the drug systemic exposure and 

disposition by affecting its re-entry into systemic circulation. Moreover, gut microbiome can 

also be used as therapeutic target to reduce drug related gut and liver toxicity owing to 

enterohepatic recycling. SN-38-glucuronide (phase-II metabolite of CPT-11) is converted 

into SN-38 (phase-I metabolite of CPT-11) by β-glucuronidase present in gut microflora, 

resulting in high luminal concentrations of SN-38, thereby causing severe delayed diarrhea 

(Kaneda et al., 1990). Potent bacterial β-glucuronidase inhibitors (1, 2, 3, and 4) (Fig 3) with 

submicromolar IC50 and Ki values have been identified recently that can block the 

conversion of glucuronides to aglycone, thereby blocking the enterohepatic recirculation of 

CPT-11 and NSAIDs. Crystal structures of E Coli β-glucuronidase complexes with 

inhibitors showed that inhibitors were bound at the “bacterial loops” at the entrance to the 

active-site cavity. Inhibitor 1 was shown to significantly reduce diarrhea and lower GI 

damage in 6- to 8-week-old Balb/cJ mouse models of CPT-11-induced toxicity (Wallace et 

al., 2010; LoGuidice et al., 2012).

10. Summary

The presence of multiple driving forces makes the disposition of drugs via glucuronidation 

process very complex in nature, when comparing to drug disposition via CYPs. Atypical 

behavior in glucuronidation is often observed when two drugs interact via a phase II 

disposition mechanism. For example, for drug interaction via phase I enzymatic inhibition, 

substrate levels in plasma increases but metabolite levels decreases (Dresser et al., 2000; 

Stearns et al., 2003; Laugesen et al., 2005). For a drug that is a substrate of both CYP and p-

glycoprotein, inhibition of the efflux transporter led to higher concentration of both the 

metabolite and the corresponding aglycone (Pang et al., 2009; Li et al., 2014). In contrast, 

for drugs undergoing phase II metabolism, a drug interaction via efflux transporter inhibition 

could lead to higher plasma levels of metabolite with or without a corresponding increase in 

the aglycone levels, even though the enzyme activities were not altered (Yang et al., 2012; 

Wei et al., 2013; Ge et al., 2016). This complex process is also the reason why in vitro 
glucuronidation obtained from organ microsomes often cannot predict in vivo glucuronide 

production or levels of glucuronides in plasma (Wang et al., 2006; Wu et al., 2013).

The complex process involves the interplay of various enzyme and transporter systems 

including recycling mechanisms to control the system exposure and clearance of these 

drugs. The interplay can happen between enzyme system (UGT1A and UGT2B) and efflux 

transporters (both apical and basolateral) in enterocytes and hepatocytes as well as between 

the efflux and uptake transporters of hepatocytes (Liu and Hu, 2007; Jiang and Hu, 2012; 

Kock and Brouwer, 2012; Wu, 2012; Pfeifer et al., 2014; Zamek-Gliszczynski et al., 2014). 

Such a complex interplay of various components is possibly essential for the body to 

maintain a tight control over the disposition of various endogenous compounds such as bile 
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acid, bilirubin and steroids in order to maintain their homeostasis, as well as the 

detoxification of environmental and dietary toxins.

The absence or inhibition of a particular component in this complex equation can cause 

compensation by one or more components to avoid cell toxicity, thereby resulting in 

increased or decreased concentration of parent compound or the glucuronide in the systemic 

circulation. For e.g., MRP3 up-regulation in event of MRP2-deficiency can cause increased 

bilirubin glucuronide excretion in blood (Kamisako et al., 2000). Similarly, comparable or 

even higher level of glucuronidation by Ugt1a-deficient Gunn rats as compared to the 

control Wistar rats, were ascribed to the compensatory up-regulation of intestinal Ugt2bs 

and hepatic anion efflux transporters (Wang et al., 2009).

However, the downside of this complex system is a very difficult-to-overcome oral 

bioavailability barrier for xenobiotics using glucuronidation as major elimination pathway 

(Hu, 2007; Gao and Hu, 2010). Many recent studies have been published showing how these 

individual components contribute to the overall disposition mechanism, as well as how the 

modulation of one or more these components can alter the systemic exposure of 

glucuronidated compounds (Wei et al., 2013; Tang et al., 2014; Dai et al., 2015; Zhang et al., 

2015; Wang et al., 2016; Zeng et al., 2016). The published research with UGT- or 

transporter- deficient or over-expressed animal or cell models indicates that it is very 

difficult to improve bioavailability of the drug by interfering with one or the other 

components. However, the systemic exposure can be modulated by altering the excretion of 

glucuronide in blood by inhibiting the one or more efflux and/or uptake transporters. Further 

detailed studies to understand the interplay of various components will be needed in order to 

improve the systemic and/or local exposure of beneficial UGT substrates.

In conclusion, systemic glucuronide levels are often not determined by the UGT enzyme 

activities alone but also by the action of efflux transporters that mediate the distribution of 

glucuronides into the systemic circulation. This mechanism means that any drug interaction 

involving an efflux transporter of glucuronides can have a direct impact on the systemic 

levels of the glucuronides, which in turn could change the levels of their corresponding 

aglycone due to the presence of glucuronidases. On the other hand, the systemic clearance of 

glucuronides is also affected by the recycling of substrates, which undergo glucuronidation 

via local, enteric and enterohepatic recycling (i.e., so called triple-recycling mechanisms). 

Hence, predicting systemic glucuronide levels requires the consideration of the structure and 

function of intestinal microbiome. Taken together, recent advances in understanding the 

glucuronidation process will help us improve the systemic and local bioavailability of drugs 

that undergo phase II glucuronidation.
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Figure 1. 
Graphs illustrating the driving forces for systemic distribution (green) and elimination 

(orange) of glucuronide in enterocytes (a), hepatocytes (b), and renal cells (c).
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Figure 2. 
Graphs illustrating mechanisms of enterohepatic recycling, enteric recycling, and local 

recycling of drug via enteric and hepatic glucuronidation, and bacterial and enteric β-

glucuronidases. Enzymatic reaction by UGT and β-glucuronidases from enterocytes/bacteria 

was marked with black arrow(s), and passive diffusion of drug was marked with red arrow. 

The local recycling only need the involvement of players enclosed in the dashed green box, 

whereas enteric and enterohepatic recycling need the involvement of players enclosed in the 

dashed red and blue boxes, respectively. Within the local recycling, enteric β-glucuronidase 

is responsible for deconjugation of glucuronide into aglycone, whereas in enteric and 

enterohepatic recycling mechanisms, bacterial β-glucuronidase is required.
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Figure 3. 
Structures of four selective bacterial β-glucuronidase inhibitors identified via high-

throughput screening
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Table 2.

A list of compounds with their secondary metabolic pathway as glucuronidation

Compounds ACS Number Chemical Structures References

MeOP 67023-02-3 (Meyer et al., 2015)

TPN729 - (Zhu et al., 2016)

Profluthrin 223419-20-3 (Beyerle et al., 2015)

DALT 60676-77-9 (Michely et al., 2015)

Alpelisib 1217486-61-7 (James et al., 2015)

Miltirone 27210-57-7 (Guo et al., 2015)

Rupestonic acid 115473-63-7 (Gu et al., 2015)

2C-P 207740-22-5 (Wink et al., 2015)

Praziquantel 55268-74-1 (Wang et al., 2014)
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Compounds ACS Number Chemical Structures References

ABT-894 799279-80-4 (Liu et al., 2014)

Tofacitinib 477600-75-2 (Dowty et al., 2014)

4-MA 64-11-9 (Welter et al., 2014)

Brucine 357-57-3 (Tian et al., 2014)

Praeruptorin A 73069-27-9 (Song et al., 2014)

Etamicastat 760173-05-5 (Loureiro et al., 2014)

GLS4 - (Zhou et al., 2013)

Apatinib 811803-05-1 (Ding et al., 2013)
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Compounds ACS Number Chemical Structures References

Glaucine 475-81-0 (Meyer et al., 2013)

GDC-0152 873652-48-3 (Yue et al., 2013)

Vismodegib 879085-55-9 (Yue et al., 2011)

Benfluron 78250-23-4 (Jirasko et al., 2011)

BIBF 1120 928326-83-4 (Stopfer et al., 2011)

Anastrozole 120511-73-1 (Kamdem et al., 2010)

Vabicaserin 620948-93-8 (Tong et al., 2010)
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Compounds ACS Number Chemical Structures References

Dicentrine 517-66-8 (Lai et al., 2010)

Flumatinib 895519-91-2 (Gong et al., 2010)

Anacetrapib 875446-37-0 (Tan et al., 2010)

2-Amino-3-methylimidazo[4,5-f]quinolone 76180-96-6 (Lakshmi et al., 2009)

Berberine 2086-83-1 (Liu et al., 2009)

Mazapertine 134208-17-6 (Wu et al., 2007)

Loratadine 79794-75-5 (Ramanathan et al., 2007)
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