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Abstract

This paper discusses the prediction of hierarchical time series, where each upper-level time

series is calculated by summing appropriate lower-level time series. Forecasts for such hier-

archical time series should be coherent, meaning that the forecast for an upper-level time

series equals the sum of forecasts for corresponding lower-level time series. Previous meth-

ods for making coherent forecasts consist of two phases: first computing base (incoherent)

forecasts and then reconciling those forecasts based on their inherent hierarchical structure.

To improve time series predictions, we propose a structured regularization method for com-

pleting both phases simultaneously. The proposed method is based on a prediction model

for bottom-level time series and uses a structured regularization term to incorporate upper-

level forecasts into the prediction model. We also develop a backpropagation algorithm spe-

cialized for applying our method to artificial neural networks for time series prediction. Exper-

imental results using synthetic and real-world datasets demonstrate that our method is

comparable in terms of prediction accuracy and computational efficiency to other methods

for time series prediction.

Introduction

Multivariate time series data often have a hierarchical (tree) structure in which each upper-

level time series is calculated by summing appropriate lower-level time series. For instance,

numbers of tourists are usually counted on a regional basis, such as sites, cities, regions, or

countries [1]. Similarly, many companies require regionally aggregated forecasts to support

resource allocation decisions [2]. Product demand is often analyzed by category to reduce the

overall forecasting burden [3].

Forecasts for such hierarchical time series should be coherent, meaning that the forecast for

an upper-level time series equals the sum of forecasts for corresponding lower-level time series

[4, 5]. Smoothing methods such as the moving average and exponential smoothing are widely
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used in academia and industry for time series predictions [6, 7]. Although these methods pro-

vide coherent forecasts for hierarchical time series, they have low accuracy, especially for rap-

idly changing time series.

Another common approach for making coherent forecasts is the use of bottom-up and top-

down methods [3, 8–10]. These methods first develop base forecasts by separately predicting

each time series and then reconcile those base forecasts based on their inherent hierarchical

structure. The bottom-up method calculates base forecasts for bottom-level time series and

then aggregates them for upper-level time series. In contrast, the top-down method calculates

base forecasts only for a root (total) time series and then disaggregates them according to his-

torical proportions of lower-level time series. Park and Nassar [11] considered a hierarchical

Bayesian dynamic proportions model for the top-down method to disaggregate upper-level

forecasts sequentially. The middle-out method calculates base forecasts for intermediate-level

time series and then applies the bottom-up and top-down methods to make upper- and lower-

level forecasts. However, the bottom-up method often accumulates prediction errors as the

time series level rises, and the top-down method cannot exploit detailed information about

lower-level time series. Notably, when base forecasts are unbiased, only the bottom-up method

gives unbiased forecasts [12].

Hyndman et al. [12] proposed a linear regression approach to optimal base forecasts by the

bottom-up method. This forecast reconciliation method worked well for predicting tourism

demand [1] and monthly inflation [13], and this approach can be extended to hierarchical and

grouped time series [14]. van Erven and Cugliari [15] devised a game-theoretically optimal

reconciliation method. Regularized regression models have also been employed to deal with

high-dimensional time series [16, 17]. Wickramasuriya et al. [5] devised a sophisticated

method for optimal forecast reconciliation through trace minimization. Their experimental

results showed that this trace minimization method performed very well with synthetic and

real-world datasets. Note, however, that all of these forecast reconciliation methods consist

of two phases: first computing base forecasts and then reconciling those forecasts based on a

hierarchical structure. This study aimed to produce better time series predictions by simulta-

neously completing these two phases.

Structured regularization uses inherent structural relations among explanatory variables to

construct a statistical model [18–20]. Various regularization methods have been proposed for

multivariate time series [21, 22], hierarchical explanatory variables [23–26], and artificial neu-

ral networks [27]. Prediction of multivariate time series is related to multitask learning, which

shares useful information among related tasks to enhance the prediction performance for all

tasks [28, 29]. Tailored regularization methods have been developed for multitask learning [30,

31] and applied to artificial neural networks [32]. To the best of our knowledge, however, no

prior studies have applied structured regularization methods to predictions of hierarchical

time series.

In this study, we aimed to develop a structured regularization method that takes full advan-

tage of hierarchical structure for better time series predictions. Our method is based on a

prediction model for bottom-level time series and uses a structured regularization term to

incorporate upper-level forecasts into the prediction model. This study particularly focused on

applying our method to artificial neural networks, which have been effectively used in time

series prediction [33–38]. We developed a backpropagation algorithm specialized for our

structured regularization model based on artificial neural networks. Experiments involving the

application of our method to synthetic and real-world datasets demonstrated that our method

was comparable in terms of prediction accuracy and computational efficiency to other meth-

ods that develop coherent forecasts for hierarchical time series.
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Methods

This section starts with a brief review of forecasts for hierarchical time series. For such time

series, we present our structured regularization model and its application to artificial neural

networks. A backpropagation algorithm is also described for artificial neural networks with

structured regularization.

Forecasts for hierarchical time series

We address the prediction of multivariate time series where each series is represented as a

node in a hierarchical (tree) structure. Let yit be an observation of node i 2 N at time t 2 T,

where N is the set of nodes, and T is the set of time points. For simplicity, we focus on two-

level hierarchical structures. Fig 1 shows the example of a two-level hierarchical structure with

|N| = 7 nodes, where | � | denotes the number of set elements. The nodes are classified as

N ¼ f1g [M [ B; M ¼ f2; 3g; B ¼ f4; 5; 6; 7g;

Fig 1. Two-level hierarchical structure with |N| = 7.

https://doi.org/10.1371/journal.pone.0242099.g001
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where node 1 is the root (level-zero) node, and M and B are sets of mid-level (level-one) and

bottom-level (level-two) nodes, respectively. The associated time series is characterized by the

aggregation constraint

y1t ¼ y4t þ y5t þ y6t þ y7t;

y2t ¼ y4t þ y5t;

y3t ¼ y6t þ y7t;

ðt 2 TÞ:

8
>>><

>>>:

ð1Þ

Each upper-level time series is thus calculated by summing the corresponding lower-level time

series.

A hierarchical structure is represented by the structure matrixH≔ (hki)(k,i)2(N\B)×B as

hki ¼

(
1 if node k is an ascendant of node i;

0 otherwise;
ðk 2 N n B; i 2 BÞ:

We define the summing matrix as

S≔ ðskiÞðk;iÞ2N�B ≔
H

IjBj

" #

;

where In is the identity matrix of size n. In Fig 1, we have

H ¼

1 1 1 1

1 1 0 0

0 0 1 1

2

6
4

3

7
5; S ¼

1 1 1 1

1 1 0 0

0 0 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

Let yt≔ (yit)i2N be a column vector comprising observations of all nodes at time t 2 T. Sim-

ilarly, for a node subset A� N we define yAt ≔ ðyitÞi2A as the observation vector of nodes i 2 A
at time t 2 T. In Fig 1, we have

yt ¼ ðy1t; y2t; y3t; y4t; y5t; y6t; y7tÞ
>
;

yMt ¼ ðy2t; y3tÞ
>
; yBt ¼ ðy4t; y5t; y6t; y7tÞ

>
ðt 2 TÞ:

The aggregation constraint (1) is then expressed as

yNnBt ¼ HyBt ðt 2 TÞ ð2Þ

or, equivalently,

yt ¼ SyBt ðt 2 TÞ: ð3Þ

Let ŷ t ≔ ðŷitÞi2N be a column vector comprising base forecasts at time t 2 T. Note that the

base forecasts are calculated separately for each node i 2 N, so they do not satisfy the aggrega-

tion constraint (2). For a node subset A� N, we define ŷA
t ≔ ðŷitÞi2A at time t 2 T. Such base

forecasts can be converted into coherent forecasts satisfying the aggregation constraint (2) by
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using the reconciliation matrix P≔ (pij)(i,j)2B×N. Specifically, we develop bottom-level forecasts

~yB
t ¼ Pŷ t and use the aggregation constraint (3) to obtain coherent forecasts, as

~y t ¼ SPŷ t ðt 2 TÞ: ð4Þ

A typical example of a reconciliation matrix is

P ¼ ½OjBj�jNnBj; IjBj�;

where Om×n is an m × n zero matrix. This leads to the bottom-up method

~y t ¼ SŷB
t ðt 2 TÞ: ð5Þ

Another example is

P ¼ ½p; OjBj�jNnf1gj�;

where p = (pi)i2B is a column vector comprising historical proportions of bottom-level time

series. This results in the top-down method

~y t ¼ Sðŷ1tpÞ ðt 2 TÞ:

In this manner, we can make coherent forecasts from various reconciliation matrices. The

condition SPS = S is proven to ensure that when base forecasts are unbiased, the resultant

coherent forecasts (4) are also unbiased [12]. This condition is also known to be fulfilled only

by the bottom-up method [12].

Forecast reconciliation methods

Hyndman et al. [12] introduced the following linear regression model for given base forecasts:

ŷ t ¼ Sβt þ εt ðt 2 TÞ;

where βt≔ (βit)i2B is a column vector of bottom-level estimates, and εt≔ (εit)i2B is a column

vector of errors having zero mean and covariance matrix var(εt) ≔ St. The bottom-up method

(5) with ŷB
t ¼ βt is then used to makes coherent forecasts.

If the base forecasts are unbiased and the covariance matrix St is known, the generalized

least-squares estimation yields the minimum variance unbiased estimate of βt. However, the

covariance matrix St is nonidentifiable and therefore impossible to estimate [5].

In contrast, Wickramasuriya et al. [5] focused on differences between observations and

coherent forecasts (4),

et ≔ yt � ~y t ¼ yt � SPŷ t ðt 2 TÞ:

The associated covariance matrix is derived as

varðetÞ ¼ SPW tP
>S> ðt 2 TÞ; ð6Þ

where W t ≔ E½ðyt � ŷtÞðyt � ŷtÞ
>
� is the covariance matrix of base forecasts. The trace of the

covariance matrix (6) is minimized subject to the unbiasedness condition SPS = S. This yields

the optimal reconciliation matrix

P ¼ ðS>W � 1

t SÞ� 1S>W � 1

t ;
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and coherent forecasts (4) are given by

~y t ¼ SðS>W � 1

t SÞ� 1S>W � 1

t ŷ t ðt 2 TÞ: ð7Þ

See Wickramasuriya et al. [5] for the full details.

Note, however, that in these forecast reconciliation methods, base forecasts are first deter-

mined regardless of the underlying hierarchical structure, then those forecasts are corrected

based on the hierarchical structure. In contrast, our proposal is a structured regularization

model that directly computes high-quality forecasts based on the hierarchical structure.

Structured regularization model

We consider a prediction model for bottom-level time series. Its predictive value is denoted by

the column vector ŷB
t ðΘÞ≔ ðŷitðΘÞÞi2B, where Θ is a tuple of model parameters. As an exam-

ple, the first-order vector autoregressive model is represented as

ŷitðΘÞ ¼
X

j2B

yijyj;t� 1 ði 2 B; t 2 TÞ;

where Θ = (θij)(i,j)2B×B.

The residual sum of squares for bottom-level time series is given by
X

t2T

kyBt � ŷB
t ðΘÞk

2

2
¼
X

t2T

X

i2B

ðyit � ŷitðΘÞÞ
2
: ð8Þ

We also introduce a structured regularization term that quantifies the error for upper-level

time series based on the hierarchical structure. Let Λ≔ Diag(λ) be a diagonal matrix of regu-

larization parameters, where λ≔ (λi)i2N\B is a vector of its diagonal entries. Then, we con-

struct a structured regularization term based on the aggregation constraint (2) as
X

t2T

kΛðyNnBt � HŷB
t ðΘÞÞk

2

2
: ð9Þ

Minimizing this term aids in correcting bottom-level forecasts, thus improving the upper-level

forecasts.

Adding the regularization term (9) to the residual sum of squares (8) yields the objective

function E(Θ) to be minimized. Consequently, our structured regularization model is posed as

Θ� 2 argmin
Θ

EðΘÞ≔
1

2

X

t2T

kyBt � ŷB
t ðΘÞk

2

2
þ

1

2

X

t2T

kΛðyNnBt � HŷB
t ðΘÞÞk

2

2

( )

: ð10Þ

Here, matrix Λ adjusts the tradeoff between minimizing the error term (8) for bottom-level

times series and minimizing the error term (9) for upper-level time series. In the experiments

section, we set its diagonal entries as

li ¼

(
l1 ði ¼ 1Þ;

lM ði 2 MÞ;
ð11Þ

where λ1 and λM are regularization parameters for root and mid-level time series, respectively.

After solving the structured regularization model (10), we use the bottom-up method (5) to

obtain coherent forecasts

~y t ¼ SŷB
t ðΘ

�
Þ:

Our structured regularization model based on the bottom-up method may not work well
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when upper-level time series are easier to predict than bottom-level time series. To remedy

this situation, we can adopt a methodology proposed by Panagiotelis et al. [39], where the

summing matrix is redefined by replacing a bottom-level time series with an upper-level time

series.

Application to artificial neural networks

This study focused on application of our structured regularization model (10) to artificial neu-

ral networks for time series prediction; see Bishop [40] and Goodfellow et al. [41] for general

descriptions of artificial neural networks. For simplicity, we consider a two-layer neural net-

work like the one shown in Fig 2, where the input vector zð1Þ ≔ ðzð1Þi Þi2B is defined as

zð1Þi ¼ yi;t� 1 ði 2 BÞ:

First, we calculate the vector uð2Þ ≔ ðuð2Þj Þj2D as the weighted sum of the input entries

uð2Þj ¼
X

i2B

wð2Þji z
ð1Þ

i ðj 2 DÞ; ð12Þ

where Wð2Þ ≔ ðwð2Þji Þðj;iÞ2D�B is a weight matrix to be estimated. This vector u(2) is transferred

from the input units to hidden units, as shown in Fig 2.

Fig 2. Network diagram for a two-layer neural network.

https://doi.org/10.1371/journal.pone.0242099.g002
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Next, we generate the vector zð2Þ ≔ ðzð2Þj Þj2D by nonlinear activation functions as

zð2Þj ¼ f ðuð2Þj Þ ðj 2 DÞ:

Typical examples of activation functions include the logistic sigmoid function

f ðuÞ ¼
1

1þ exp ð� uÞ
ð13Þ

and the rectified linear function

f ðuÞ ¼ maxfu; 0g:

The vector z(2) is transferred from the hidden units to the output units as shown in Fig 2.

Finally, we calculate the vector uð3Þ ≔ ðuð3Þk Þk2B as the weighted sum of the output entries

from the hidden units as

uð3Þk ¼
X

j2D

wð3Þkj z
ð2Þ

j ¼
X

j2D

wð3Þkj f ðu
ð2Þ

j Þ ðk 2 BÞ; ð14Þ

where Wð3Þ ≔ ðwð3Þkj Þðk;jÞ2B�D is a weight matrix to be estimated.

This process is summarized as

zð1Þ ¼ yBt� 1
; uð2Þ ¼Wð2Þzð1Þ; zð2Þ ¼ f ðuð2ÞÞ; uð3Þ ¼Wð3Þzð2Þ; ð15Þ

where the tuple of model parameters is

Θ ¼ ðWð2Þ;Wð3ÞÞ:

This neural network outputs ŷB
t ðΘÞ ¼ uð3Þ as a vector of predictive values.

Backpropagation algorithm

We develop a backpropagation algorithm specialized for training artificial neural networks in

our structured regularization model (10); see Bishop [40] and Goodfellow et al. [41] for over-

views of backpropagation algorithms. Our algorithm sequentially minimizes the following

error function for time t 2 T:

EtðΘÞ≔
1

2
kyBt � uð3Þk2

2
þ

1

2
kΛðyNnBt � Huð3ÞÞk2

2
ðt 2 TÞ: ð16Þ

We first define vectors δð2Þ ≔ ðdð2Þj Þj2D and δð3Þ ≔ ðdð3Þk Þk2B, which consist of partial deriva-

tives of the error function (16) with respect to intermediate variables (12) and (14) as follows:

d
ð2Þ

j ≔
@EtðΘÞ
@uð2Þj

ðj 2 DÞ; d
ð3Þ

k ≔
@EtðΘÞ
@uð3Þk

ðk 2 BÞ:

PLOS ONE Prediction of hierarchical time series using structured regularization

PLOS ONE | https://doi.org/10.1371/journal.pone.0242099 November 12, 2020 8 / 23

https://doi.org/10.1371/journal.pone.0242099


From Eqs (12) and (14), the partial derivatives of the error function (16) can be calculated as

@EtðΘÞ
@wð2Þji

¼
@EtðΘÞ
@uð2Þj

@uð2Þj
@wð2Þji

¼ d
ð2Þ

j zð1Þi ði 2 B; j 2 DÞ; ð17Þ

@EtðΘÞ
@wð3Þkj

¼
@EtðΘÞ
@uð3Þk

@uð3Þk
@wð3Þkj

¼ d
ð3Þ

k zð2Þj ðj 2 D; k 2 BÞ: ð18Þ

From Eq (14), we have

@uð3Þk
@uð2Þj

¼ wð3Þkj f
0ðuð2Þj Þ ðj 2 D; k 2 BÞ:

Therefore,

d
ð2Þ

j ¼
@EtðΘÞ
@uð2Þj

¼
X

k2B

@EtðΘÞ
@uð3Þk

@uð3Þk
@uð2Þj

¼
X

k2B

d
ð3Þ

k wð3Þkj f
0ðuð2Þj Þ ðj 2 DÞ: ð19Þ

It follows from Eq (16) that

δð3Þ ≔
@EtðΘÞ
@uð3Þ

¼ � ðyBt � uð3ÞÞ � ðΛHÞ>ΛðyNnBt � Huð3ÞÞ

¼ � ðyBt � uð3ÞÞ � H>Λ2
ðyNnBt � Huð3ÞÞ

¼ � ½H>Λ2
; IjBj�yt þ ðIjBj þH>Λ2HÞuð3Þ:

ð20Þ

Algorithm 1 summarizes our backpropagation algorithm.
Algorithm 1 Backpropagation algorithm.
Step 0 (Initialization): Let η > 0 be a step size and ε > 0 be a thresh-
old for convergence. Set Θ = (W(2), W(3)) as initial parameter values,
and E  E(Θ) = ∑t2T ET(Θ) as an incumbent value of the objective
function.
Step 1 (Backpropagation): Repeat the following steps for all t 2 T:
Step 1.1: Compute z(1), u(2), z(2), and u(3) from Eq (15).
Step 1.2: Compute δ(3) from Eq (20) and then δ(2) from Eq (19).
Step 1.3: Compute the partial derivatives (17) and (18).

Step 2 (Gradient Descent): Update the weight parameter values as

wð2Þji  wð2Þji � Z
X

t2T

@EiðΘÞ
@wð2Þji

ði 2 B; j 2 DÞ;

wð3Þji  wð3Þji � Z
X

t2T

@EiðΘÞ
@wð3Þji

ðj 2 D; k 2 BÞ;

8
>>>><

>>>>:

Step 3(Termination Condition): If E(Θ) > (1 − ε)E, terminate the
algorithm with Θ = (W(2), W(3)). Otherwise, set E  E(Θ) and return to
Step 1.

Experimental results and discussion

The experimental results reported in this section evaluate the effectiveness of our structured

regularization model when applied to artificial neural networks. These experiments focused on
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the two-level hierarchical structure shown in Fig 3, where

N ¼ f1g [M [ B; M ¼ f2; 3; 4g; B ¼ f5; 6; . . . ; 13g:

Performance evaluation methodology

To evaluate out-of-sample prediction performance, we considered training and test periods of

time series data, where the training period was used to train prediction models, and the test

period was used to compute prediction errors in the trained models. We calculated the root-

mean-squared error (RMSE) for each node i 2 N during the test period T̂ as

RMSE≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t2T̂ ðyit � ~yitÞ

2

jT̂ j

s

ði 2 NÞ:

We compared the performance of the following methods for time series prediction.

MA(n): moving average of the previous n values,

~yit ¼
Pn

k¼1
yi;t� k

n
ði 2 N; t 2 TÞ

ES(α): exponential smoothing with a smoothing parameter α 2 [0, 1],

~yit ¼ ayi;t� 1 þ ð1 � aÞ~yi;t� 1 ði 2 N; t 2 TÞ

Fig 3. Two-level hierarchical structure with |N| = 13.

https://doi.org/10.1371/journal.pone.0242099.g003
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NN+BU: bottom-up method (5) using artificial neural networks for base forecasts ŷBt

NN+MinT: forecast reconciliation method (7) through the trace minimization (i.e., MinT

(Shrink) [5]) using artificial neural networks for base forecasts ŷt

NN+SR(λ1, λM): our structured regularization model (10) applied to artificial neural networks

with regularization parameters λ1 and λM; see also Eq (11)

Here, we determined parameter values for n and α that minimized RMSE in the training

period. During the training period, we tuned regularization parameters λ1 and λM through

hold-out validation [42].

We adopted two-layer artificial neural networks (Fig 4) for NN+BU, NN+MinT, and NN

+SR. Here, prediction ŷitðΘÞ of each time series depends on its own two lags yi,t−1 and yi,t−2,

and the backpropagation simultaneously updates weight parameters of all the series. Note also

that NN+BU is equivalent to NN+SR(0,0). Following prior studies [43, 44], we set the number

of hidden units to twice the number of input units (i.e., |D| = 4 � |B|). Bias parameters were

added to hidden and output units.

We implemented the backpropagation algorithm (Algorithm 1) in the R programming lan-

guage, with the convergence threshold set as ε = 5 � 10−5. The step size was kept constant and

set as η = 1 � 10−5, which was small enough for the backpropagation algorithm to converge.

We employ the logistic sigmoid function (13) as an activation function. The algorithm was

repeated 30 times by randomly generating initial values for the parameter Θ from a standard

normal distribution. The following sections show average RMSE values with 95% confidence

intervals over the 30 trials.

Synthetic datasets

We generated common factors to express correlations among time series. Denote as N(μ, σ2) a

normal distribution with mean μ and standard deviation σ. For common factors, we used the

Fig 4. Two-layer neural network adopted in experimental results.

https://doi.org/10.1371/journal.pone.0242099.g004
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first-order autoregressive models

cit � Nð�ici;t� 1; s
2

i Þ ði 2 f1g [M; t 2 TÞ;

where ϕi is an autoregressive coefficient, and σi is the standard deviation of white noise for

the ith common factor. Note that ψit reflects the overall trend for i = 1 and mid-level trends for

i 2M = {2, 3, 4}.

Bottom-level time series were produced by combining the overall trend, mid-level trends,

and autocorrelation. We denote the parent (mid-level) node of node i as

mðiÞ ¼

2 ði 2 f5; 6; 7gÞ;

3 ði 2 f8; 9; 10gÞ;

4 ði 2 f11; 12; 13gÞ:

8
><

>:

For bottom-level time series, we used the first-order autoregressive models

yit � Nðric1t þ yicmðiÞ;t þ �iyi;t� 1; s
2

i Þ ði 2 B; t 2 TÞ;

where ρi and θi respectively indicate effects of the common factors ψ1t and ψm(i), t on the ith
time series. After that, we generated upper-level time series (yit for i 2 N\B) according to the

aggregation constraint (2).

We prepared three synthetic datasets: NgtvC, WeakC, and PstvC. Table 1 lists the parame-

ter values used to generate these datasets. Time series are negatively correlated in the NgtvC

dataset, weakly correlated in the WeakC dataset, and positively correlated in the PstvC dataset.

Each dataset consists of time series data at 100 time points; the first 70 and latter 30 times were

used as training and test periods, respectively.

We standardized the generated time series according to the mean and variance over the

training period when using artificial neural networks. Specifically, we standardized each bot-

tom-level time series for NN+BU and NN+SR and summed them appropriately to calculate

upper-level time series for NN+SR. We standardized each time series at all levels for NN

+MinT. We then computed predictive values for these time series and transformed the

obtained predictive values into the original (unstandardized) scale. After that, we applied

the bottom-up method (NN+BU and NN+SR) and the forecast reconciliation method

Table 1. Parameter values for the synthetic datasets.

NgtvC WeakC PstvC

Node i ϕi σi ρi θi ρi θi ρi θi
1 0.3 0.3 — — — — — —

2 0.3 0.3 — — — — — —

3 0.3 0.3 — — — — — —

4 0.3 0.3 — — — — — —

5 0.3 0.3 0.1 1.0 0.1 0.1 1.0 1.0

6 0.3 0.3 −0.1 −1.0 0.1 0.1 1.0 1.0

7 0.3 0.3 1.0 0.1 0.1 0.1 1.0 1.0

8 0.3 0.3 0.1 1.0 0.1 0.1 1.0 1.0

9 0.3 0.3 −0.1 −1.0 0.1 0.1 1.0 1.0

10 0.3 0.3 −1.0 0.1 0.1 0.1 1.0 1.0

11 0.3 0.3 0.1 1.0 0.1 0.1 1.0 1.0

12 0.3 0.3 −0.1 −1.0 0.1 0.1 1.0 1.0

13 0.3 0.3 1.0 0.1 0.1 0.1 1.0 1.0

https://doi.org/10.1371/journal.pone.0242099.t001
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(NN+MinT) to make coherent forecasts. Finally, we calculated RMSEs on the original scale to

evaluate prediction performance.

Results for synthetic datasets

Tables 2–4 list the out-of-sample RMSE values provided by each method for each node in the

NgtvC, WeakC, and PstvC datasets. In the tables, the rows labeled “Mid-level” and “Bottom-

level” show the average RMSE values over the mid- and bottom-level nodes, respectively, with

Table 2. Prediction performance for the NgtvC dataset.

RMSE

Node i MA(12) ES(0.20) NN+BU NN+MinT NN+SR(0.0, 2.1)

Root 1.09 1.10 1.16 ± 0.04 1.09 ± 0.01 1.15 ± 0.01

2 0.63 0.64 0.66 ± 0.03 0.60 ± 0.01 0.60 ± 0.01

3 0.80 0.76 0.76 ± 0.01 0.73 ± 0.01 0.73 ± 0.01

4 0.71 0.72 0.70 ± 0.02 0.69 ± 0.01 0.67 ± 0.01

Mid-level 0.71 0.71 0.71 ± 0.01 0.67 ± 0.01 0.67 ± 0.01

5 0.53 0.48 0.48 ± 0.02 0.47 ± 0.02 0.44 ± 0.01

6 0.67 0.64 0.65 ± 0.02 0.64 ± 0.01 0.64 ± 0.02

7 0.39 0.37 0.38 ± 0.00 0.39 ± 0.01 0.38 ± 0.00

8 0.42 0.39 0.41 ± 0.01 0.41 ± 0.01 0.41 ± 0.01

9 0.35 0.35 0.38 ± 0.01 0.38 ± 0.01 0.38 ± 0.01

10 0.58 0.56 0.55 ± 0.02 0.53 ± 0.01 0.53 ± 0.01

11 0.58 0.49 0.47 ± 0.01 0.47 ± 0.01 0.47 ± 0.01

12 0.50 0.47 0.47 ± 0.01 0.46 ± 0.01 0.46 ± 0.00

13 0.48 0.48 0.47 ± 0.01 0.47 ± 0.01 0.46 ± 0.01

Bottom-level 0.50 0.47 0.47 ± 0.00 0.47 ± 0.00 0.46 ± 0.00

Average 0.60 0.57 0.58 ± 0.00 0.56 ± 0.00 0.56 ± 0.00

https://doi.org/10.1371/journal.pone.0242099.t002

Table 3. Prediction performance for the WeakC dataset.

RMSE

Node i MA(12) ES(0.00) NN+BU NN+MinT NN+SR(0.0, 1.2)

Root 1.06 1.00 1.06 ± 0.02 1.05 ± 0.01 1.06 ± 0.01

2 0.46 0.41 0.45 ± 0.01 0.43 ± 0.01 0.44 ± 0.01

3 0.60 0.56 0.60 ± 0.01 0.58 ± 0.01 0.58 ± 0.01

4 0.61 0.60 0.59 ± 0.01 0.58 ± 0.01 0.57 ± 0.01

Mid-level 0.56 0.52 0.55 ± 0.00 0.53 ± 0.01 0.53 ± 0.00

5 0.32 0.30 0.31 ± 0.01 0.31 ± 0.01 0.30 ± 0.00

6 0.39 0.37 0.39 ± 0.01 0.38 ± 0.01 0.38 ± 0.01

7 0.24 0.24 0.25 ± 0.00 0.25 ± 0.01 0.24 ± 0.00

8 0.30 0.29 0.33 ± 0.01 0.32 ± 0.01 0.31 ± 0.01

9 0.27 0.26 0.27 ± 0.01 0.27 ± 0.01 0.26 ± 0.01

10 0.37 0.34 0.35 ± 0.01 0.34 ± 0.01 0.35 ± 0.01

11 0.39 0.36 0.34 ± 0.01 0.34 ± 0.01 0.33 ± 0.01

12 0.37 0.36 0.37 ± 0.01 0.36 ± 0.01 0.36 ± 0.01

13 0.29 0.29 0.29 ± 0.00 0.29 ± 0.01 0.28 ± 0.00

Bottom-level 0.33 0.31 0.32 ± 0.00 0.32 ± 0.00 0.31 ± 0.00

Average 0.44 0.41 0.43 ± 0.00 0.42 ± 0.00 0.42 ± 0.00

https://doi.org/10.1371/journal.pone.0242099.t003
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smallest RMSE values for each node indicated in bold. Note that average RMSE values with

95% confidence intervals are shown for NN+BU, NN+MinT, and NN+SR.

For the NgtvC dataset (Table 2), our structured regularization method NN+SR was compa-

rable to the forecast reconciliation method and outperformed the other methods, except for

the RMSE of the root node. For the WeakC dataset (Table 3), our method was slightly inferior

to the exponential smoothing method, but the differences were minimal. For the PstvC dataset

(Table 4), our method attained the best prediction performance in terms of average RMSE.

These results show that our structured regularization method delivered good prediction per-

formance for the three synthetic datasets. Our method was especially effective when the time

series were strongly correlated, as in the NgtvC and PstvC datasets.

We next focus on the parameter values for our structured regularization. Only for the

PstvC dataset, our method NN+SR(λ1, λM) adopted λ1 > 0 and performed significantly better

than the bottom-up method in terms of the RMSE of the root node. Additionally, our method

employed λM> 0 for all three datasets and outperformed the bottom-up method for mid-level

RMSEs. These results show an association between regularization weights and prediction accu-

racy at each time series level. Our method adjusts the regularization parameters to fit the data

characteristic, thereby achieving better prediction performance.

Fig 5 shows the training RMSE values as a function of the epoch (number of iterations) in

the backpropagation algorithm for the synthetic datasets. Note that the computational effi-

ciency can be evaluated based on epochs because little difference existed between NN+SR and

NN+BU in the computation time required for one epoch.

RMSEs decreased faster for our structured regularization method NN+SR than for the bot-

tom-up method NN+BU. The convergence performance of the two methods greatly differed,

especially for the PstvC dataset and upper-level time series. Consequently, our structured regu-

larization method improved both prediction accuracy and convergence speed of the backpro-

pagation algorithm. This suggests that our method will deliver good prediction performance

even if the backpropagation algorithm is terminated in the middle of computation.

Table 4. Prediction performance for the PstvC dataset.

RMSE

Node i MA(1) ES(0.89) NN+BU NN+MinT NN+SR(0.4, 2.4)

Root 2.69 2.69 2.90 ± 0.05 2.58 ± 0.07 2.49 ± 0.03

2 1.20 1.20 1.33 ± 0.03 1.16 ± 0.03 1.12 ± 0.01

3 1.49 1.42 1.12 ± 0.01 1.16 ± 0.03 1.27 ± 0.02

4 1.11 1.11 1.25 ± 0.03 1.63 ± 0.02 1.06 ± 0.01

Mid-level 1.27 1.24 1.23 ± 0.01 1.32 ± 0.03 1.15 ± 0.01

5 0.53 0.53 0.56 ± 0.01 0.50 ± 0.01 0.53 ± 0.01

6 0.49 0.49 0.55 ± 0.02 0.48 ± 0.01 0.51 ± 0.02

7 0.46 0.46 0.49 ± 0.01 0.46 ± 0.01 0.43 ± 0.01

8 0.56 0.55 0.48 ± 0.01 0.48 ± 0.01 0.54 ± 0.03

9 0.57 0.54 0.42 ± 0.01 0.46 ± 0.02 0.53 ± 0.04

10 0.49 0.47 0.43 ± 0.01 0.42 ± 0.01 0.45 ± 0.01

11 0.48 0.48 0.55 ± 0.02 0.51 ± 0.01 0.49 ± 0.02

12 0.59 0.57 0.51 ± 0.01 0.48 ± 0.01 0.55 ± 0.02

13 0.44 0.44 0.45 ± 0.02 0.42 ± 0.01 0.43 ± 0.01

Bottom-level 0.51 0.50 0.49 ± 0.00 0.47 ± 0.01 0.50 ± 0.00

Average 0.85 0.84 0.85 ± 0.00 0.83 ± 0.01 0.80 ± 0.00

https://doi.org/10.1371/journal.pone.0242099.t004
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Fig 6 shows heat maps of the out-of-sample relative RMSE values provided by our struc-

tured regularization method NN+SR(λ1, λM) for the synthetic datasets. Here, the vertical and

horizontal axes are the values of regularization parameters λ1 and λM, respectively. This figure

shows how regularization for each time series level affects the prediction performance.

Note that RMSE values were normalized in Fig 6 such that the RMSE for (λ1, λM) = (0, 0)

was zero (white-colored) in each trial. Accordingly, the corresponding regularization is effec-

tive if the relative RMSE value is negative (red-colored), and it is ineffective if the relative

RMSE value is positive (blue-colored). RMSEs were consistently reduced in the NgtvC dataset.

Regularization was particularly effective for the root time series in the PstvC dataset. RMSE

values tend to vary drastically from left to right in each heat map, which suggests that the regu-

larization for the mid-level time series greatly impacted prediction performance.

Fig 5. Convergence of the backpropagation algorithm for the synthetic datasets.

https://doi.org/10.1371/journal.pone.0242099.g005

PLOS ONE Prediction of hierarchical time series using structured regularization

PLOS ONE | https://doi.org/10.1371/journal.pone.0242099 November 12, 2020 15 / 23

https://doi.org/10.1371/journal.pone.0242099.g005
https://doi.org/10.1371/journal.pone.0242099


Real-world datasets

We downloaded historical data describing unemployment rates in Japan from e-Stat, a portal

site for official Japanese statistics (https://www.e-stat.go.jp/en). Using these data, we prepared

three real-world datasets for Japanese regions: Tohoku, Chubu, and Kansai. Table 5 lists the

prefectures forming the two-level hierarchical structure (Fig 3).

We used quarterly statistics (model-based estimates) of unemployment rates during 90

time periods from January 1997 to June 2019, taking the first 60 and last 30 time periods as the

training and test periods, respectively. As a preprocessing step, we removed seasonal and trend

components by means of the stl function in the R stats package. We next calculated

upper-level time series according to the aggregation constraint (2). After that, we standardized

Fig 6. Heat maps of relative RMSEs provided by NN+SR(λ1, λM) in the synthetic datasets.

https://doi.org/10.1371/journal.pone.0242099.g006
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time series, computed predicted values, and calculated RMSEs on the original scale, in the

same way as for the synthetic datasets.

Results for real-world datasets

Tables 6–8 list the out-of-sample RMSE values provided by each method for each node in the

Tohoku, Chubu, and Kansai datasets. For the Tohoku dataset (Table 6), our structured regu-

larization method NN+SR was comparable to the forecast reconciliation method and substan-

tially outperformed the other methods. For the Chubu dataset (Table 7), our method attained

the second-best value for average RMSE.

For the Kansai dataset (Table 8), our method greatly exceeded the prediction performance

of the other methods. These results demonstrate that our structured regularization method

achieved good prediction performance for the three real-world datasets.

Fig 7 shows the training RMSE values as a function of epoch in the backpropagation algo-

rithm for the real-world datasets. The convergence of RMSE values was consistently faster for

Table 5. List of prefectures in the real-world datasets.

Prefectures

Node i Tohoku Chubu Kanasi

5 Aomori Niigata Mie

6 Iwate Toyama Shiga

7 Miyagi Ishikawa Kyoto

8 Akita Fukui Osaka

9 Yamagata Yamanashi Hyogo

10 Fukushima Nagano Nara

11 Ibaraki Gifu Wakayama

12 Tochigi Shizuoka Tottori

13 Gunma Mie Okayama

https://doi.org/10.1371/journal.pone.0242099.t005

Table 6. Prediction performance for the Tohoku dataset.

RMSE

Node i MA(20) ES(0.12) NN+BU NN+MinT NN+SR(0.4, 1.5)

Root 6.32 6.45 5.98 ± 0.07 5.87 ± 0.06 5.70 ± 0.06

2 2.83 2.91 2.77 ± 0.05 2.65 ± 0.05 2.66 ± 0.03

3 2.06 2.13 2.02 ± 0.05 2.04 ± 0.04 2.01 ± 0.03

4 2.86 2.92 2.70 ± 0.04 2.68 ± 0.03 2.63 ± 0.01

Mid-level 2.58 2.65 2.50 ± 0.01 2.46 ± 0.03 2.43 ± 0.01

5 1.69 1.76 1.68 ± 0.06 1.59 ± 0.04 1.65 ± 0.05

6 0.76 0.77 0.77 ± 0.03 0.70 ± 0.02 0.72 ± 0.02

7 1.15 1.17 1.14 ± 0.04 1.12 ± 0.03 1.11 ± 0.03

8 0.79 0.82 0.79 ± 0.03 0.76 ± 0.03 0.74 ± 0.02

9 0.88 0.91 0.86 ± 0.03 0.87 ± 0.02 0.83 ± 0.03

10 1.01 1.04 1.01 ± 0.03 1.00 ± 0.03 1.00 ± 0.03

11 1.21 1.24 1.21 ± 0.03 1.19 ± 0.02 1.25 ± 0.04

12 0.90 0.92 0.88 ± 0.03 0.88 ± 0.01 0.89 ± 0.02

13 0.98 1.00 0.94 ± 0.02 0.88 ± 0.03 0.94 ± 0.02

Bottom-level 1.04 1.07 1.03 ± 0.01 1.00 ± 0.01 1.01 ± 0.00

Average 1.80 1.85 1.75 ± 0.01 1.71 ± 0.02 1.70 ± 0.01

https://doi.org/10.1371/journal.pone.0242099.t006
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our structured regularization method NN+SR than for the bottom-up method NN+BU. For

the Tohoku and Chubu datasets, our method greatly accelerated convergence for upper-level

time series. For the Kansai dataset, our method was superior to the bottom-up method in

terms of both prediction accuracy and convergence speed. These results suggest that our struc-

tured regularization method improves the convergence performance of the backpropagation

algorithm.

Fig 8 shows heat maps of the out-of-sample relative RMSE values provided by our struc-

tured regularization method NN+SR(λ1, λM) for the real-world datasets. For the Tohoku

Table 8. Prediction performance for the Kansai dataset.

RMSE

Node i MA(18) ES(0.05) NN+BU NN+MinT NN+SR(0.4, 1.2)

Root 13.88 13.84 13.60 ± 0.68 12.47 ± 0.30 12.20 ± 0.39

2 2.57 2.56 2.58 ± 0.09 2.43 ± 0.05 2.37 ± 0.04

3 12.78 12.79 12.56 ± 0.69 11.57 ± 0.30 11.14 ± 0.41

4 1.90 1.90 1.83 ± 0.04 1.81 ± 0.04 1.68 ± 0.03

Mid-level 5.75 5.75 5.66 ± 0.12 5.27 ± 0.11 5.06 ± 0.07

5 0.73 0.74 0.77 ± 0.03 0.72 ± 0.02 0.79 ± 0.02

6 1.80 1.82 1.87 ± 0.07 1.77 ± 0.04 1.83 ± 0.04

7 1.35 1.36 1.33 ± 0.07 1.35 ± 0.05 1.22 ± 0.04

8 11.31 11.34 11.29 ± 0.66 10.38 ± 0.27 10.02 ± 0.39

9 2.71 2.69 2.62 ± 0.14 2.60 ± 0.12 2.43 ± 0.10

10 1.50 1.49 1.48 ± 0.07 1.45 ± 0.06 1.43 ± 0.06

11 1.16 1.14 1.14 ± 0.04 1.12 ± 0.04 1.03 ± 0.03

12 0.82 0.82 0.79 ± 0.02 0.81 ± 0.01 0.78 ± 0.01

13 0.99 0.99 0.96 ± 0.03 0.96 ± 0.03 0.95 ± 0.02

Bottom-level 2.49 2.49 2.47 ± 0.04 2.35 ± 0.04 2.28 ± 0.02

Average 4.12 4.11 4.06 ± 0.08 3.80 ± 0.07 3.68 ± 0.05

https://doi.org/10.1371/journal.pone.0242099.t008

Table 7. Prediction performance for the Chubu dataset.

RMSE

Node i MA(16) ES(0.03) NN+BU NN+MinT NN+SR(0.4, 0.6)

Root 4.11 4.09 3.99 ± 0.04 4.00 ± 0.04 3.97 ± 0.03

2 1.77 1.75 1.72 ± 0.03 1.71 ± 0.03 1.72 ± 0.03

3 1.38 1.37 1.37 ± 0.03 1.35 ± 0.02 1.36 ± 0.03

4 2.19 2.17 2.18 ± 0.03 2.15 ± 0.03 2.18 ± 0.03

Mid-level 1.78 1.76 1.76 ± 0.01 1.74 ± 0.02 1.75 ± 0.01

5 0.80 0.79 0.81 ± 0.03 0.78 ± 0.02 0.81 ± 0.03

6 0.67 0.65 0.65 ± 0.03 0.64 ± 0.02 0.66 ± 0.03

7 0.76 0.76 0.74 ± 0.03 0.74 ± 0.02 0.74 ± 0.03

8 0.82 0.81 0.77 ± 0.02 0.77 ± 0.03 0.76 ± 0.02

9 0.71 0.70 0.68 ± 0.02 0.69 ± 0.02 0.67 ± 0.02

10 0.95 0.97 0.99 ± 0.02 0.97 ± 0.02 0.98 ± 0.02

11 0.81 0.80 0.88 ± 0.04 0.86 ± 0.03 0.89 ± 0.04

12 0.99 0.98 0.98 ± 0.03 0.96 ± 0.02 0.97 ± 0.03

13 0.73 0.73 0.75 ± 0.02 0.75 ± 0.02 0.77 ± 0.02

Bottom-level 0.80 0.80 0.81 ± 0.00 0.80 ± 0.01 0.81 ± 0.00

Average 1.28 1.27 1.27 ± 0.00 1.26 ± 0.01 1.27 ± 0.00

https://doi.org/10.1371/journal.pone.0242099.t007
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dataset, the reduction in RMSE values was particularly large for the root time series. For the

Chubu dataset, RMSE values changed greatly from left to right in each heat map, meaning

that the regularization for mid-level time series was the most effective. For the Kansai dataset,

RMSE values can be reduced greatly for all time series levels if the regularization parameters

are properly tuned.

Conclusion

We proposed a structured regularization model for predicting hierarchical time series. Our

model uses the regularization term for improving upper-level forecasts to correct bottom-level

forecasts. We demonstrated the application of our model to artificial neural networks for time

Fig 7. Convergence of the backpropagation algorithm for the real-world datasets.

https://doi.org/10.1371/journal.pone.0242099.g007
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series prediction. We also developed a backpropagation algorithm specialized for training our

model based on artificial neural networks.

We investigated the efficacy of our method through experiments using synthetic and real-

world datasets. The experimental results demonstrated that our method, which can adjust

regularization parameters to fit data characteristics, compared favorably in prediction perfor-

mance with other methods that develop coherent forecasts for hierarchical time series. Our

regularization term accelerated the backpropagation algorithm. Regularization for mid-level

time series was closely related to prediction performance.

One contribution made by this study is the establishment of a new computational frame-

work of artificial neural networks for time series predictions. Moreover, our experiments

using synthetic and real-world datasets demonstrated the potential of specialized prediction

Fig 8. Heat maps of relative RMSEs provided by NN+SR(λ1, λM) in the real-world datasets.

https://doi.org/10.1371/journal.pone.0242099.g008
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methods for hierarchical time series. We hope that this study will stimulate further research on

exploiting structural properties for better time series predictions.

In future studies, we will extend our structured regularization model to other time series

prediction methods, such as the autoregressive integrated moving average model [6, 7] and

support vector regression [8]. Another direction of future research will be to develop a high-

performance estimation algorithm for our method based on various mathematical optimiza-

tion techniques [45–50].
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