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Abstract

Image-guided tumor ablation has become a well-established hallmark of local cancer therapy. The 

breadth of options available in this growing field increases the need for standardization of 

terminology and reporting criteria to facilitate effective communication of ideas and appropriate 

comparison among treatments that use different technologies, such as chemical (eg, ethanol or 

acetic acid) ablation, thermal therapies (eg, radiofrequency, laser, microwave, focused ultrasound, 

and cryoablation) and newer ablative modalities such as irreversible electroporation. This updated 

consensus document provides a framework that will facilitate the clearest communication among 

investigators regarding ablative technologies. An appropriate vehicle is proposed for reporting the 

various aspects of image-guided ablation therapy including classification of therapies, procedure 

terms, descriptors of imaging guidance, and terminology for imaging and pathologic findings. 

Methods are addressed for standardizing reporting of technique, follow-up, complications, and 

clinical results. As noted in the original document from 2003, adherence to the recommendations 

will improve the precision of communications in this field, leading to more accurate comparison of 

technologies and results, and ultimately to improved patient outcomes.

In 2003, the International Working Group on Image-Guided Tumor Ablation published a 

document titled “Image-Guided Tumor Ablation: Proposal for Standardization of Terms and 

Reporting Criteria” (1). At the time, image-guided tumor ablation, and indeed, the 

subspecialty of interventional oncology, was in its infancy. Nevertheless, it was 

acknowledged by the members of the Working Group that the new field of image-guided 

tumor ablation required standardization of terminology and reporting criteria to facilitate 

effective communication of ideas and appropriate comparison among different technologies. 

The main objective of the document was “improved precision and communication in this 

field that leads to more accurate comparison of technologies and results and ultimately to 

improved patient outcomes” (1). Originally published in 2003 in Radiology, the document 

was subsequently reviewed at regular intervals in conjunction with the Society of 

Interventional Radiology (SIR) Technology Assessment Committee and republished in near 
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original form in 2005 and 2009. As a testament to its intended utility, this document has 

been cited by over 600 studies on tumor ablation.

Ten years later, the field of tumor ablation continues to evolve. Tumor ablation modalities 

that were still being developed at the time of original preparation, such as microwave and 

focused ultrasound, now have multiple commercially available clinical platforms in routine 

clinical use (2, 3). Newer ablation modalities, such as irreversible electroporation (IRE), 

have been introduced and clinical niches are being defined (4). Preliminary clinical studies 

have matured into larger longer-term series with 5- and 10-year follow-up data on par with 

the surgical and medical oncology literature (5–7). Several randomized, controlled studies 

have been published or are under way (8, 9). Over the interim, our initial document has also 

given rise to several additional position statements within the field of interventional 

oncology and been the source for more focused societal statements on tumor ablation of 

liver, kidney, and musculoskeletal tumors.

Given the number of changes that have taken place in the field of tumor ablation in the past 

10 years, the members of the original Working Group and additional interventional oncology 

experts have taken advantage of the opportunity to meet at the Interventional Oncology Sans 

Frontiers meeting in Lake Como, Italy, in May 2013 and to incorporate recent advances in 

this updated document. It is our intention to ensure that this highly utilized standardization 

continues to remain relevant as it unites all investigators and clinicians practicing 

interventional oncology by providing a common language to describe therapies and 

outcomes, develop studies, and communicate with other medical specialties. As was done 

previously, this document has again been vetted and approved by the Technology 

Assessment Committee of SIR. In an attempt to attain greater worldwide adoption, this 

version has also received official approval of the Cardiovascular and Interventional 

Radiological Society of Europe, CIRSE, and additionally includes more prominent authors 

from Asia than the initial document.

SCOPE

The main objective of this document is to improve precision in communication in the field 

of image-guided tumor ablation, leading to more accurate comparison of technologies, 

results, and ultimately to improve patient outcomes. Here, we outline a standardized set of 

terminology to be used and requisite clinical and technical information that should be 

provided when reporting on tumor ablation. Since our original document, clinical uses and 

imaging evaluation of tumor ablation have expanded significantly to the point that it is 

challenging to fully encompass all aspects of tumor ablation in one document. Accordingly, 

standardization of imaging techniques, imaging findings, and tumor-specific follow-up 

recommendations will now be reported separately in a companion document. Similarly, 

despite the authors’ commitment to improving all aspects of consensus in the field of 

interventional oncology, detailed reviews of any specific ablation modality (such as 

radiofrequency [RF] or microwave ablation) or clinical indication (such as liver or kidney 

ablation) are beyond the scope of this document.
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CLASSIFICATION OF THERAPIES

Image-Guided Tumor Ablation

The term tumor ablation is defined as the direct application of chemical (ie, nonenergy) or 

energy-based (ie, thermal and nonthermal) therapies to eradicate or substantially destroy 

focal tumors (1, 10–12). The term “direct” aims to distinguish these often applicator-based 

therapies from others that are applied orally or via an intravascular or peripheral venous 

route. The concept of image guidance and planning is emphasized in the title given our 

radiology perspective and to highlight that imaging (throughout the treatment cycle) is 

critical to the optimal success of ablative therapies (11, 12). Given that most ablative 

therapies can be performed using a host of imaging modalities (ie, ultrasonography [US], 

computed tomography [CT], magnetic resonance [MR] imaging, positron emission 

tomography [PET], and fluoroscopy), the more general term of image guidance is preferred, 

unless a particular imaging modality is mandated as part of the technique. However, virtually 

all available ablation techniques can theoretically be used with more than one image-

guidance modality.

While some have previously referred to these procedures as “minimally invasive” or 

“percutaneous” therapies, these terms should only be used where appropriate. Minimally 

invasive therapies refer to all therapeutic procedures that are less invasive than open, 

conventional surgery. All percutaneous procedures are therefore minimally invasive; 

however, not all minimally invasive therapies are performed or applied percutaneously. 

Indeed, the term “minimally invasive” is often used by surgeons to refer to procedures 

performed with mini-laparotomy or with laparoscopy. Although less invasive than open 

surgery, these are clearly more invasive than percutaneous image-guided tumor ablation 

procedures. Including the term “percutaneous” as a prefix to “image-guided tumor 

ablations” is often too limiting, as it does not reflect the fact that tumor ablation procedures 

can also be performed laparoscopically, endoscopically, or surgically (13, 14).

Individual procedures and therapies have often received multiple different names by various 

investigators, which can potentially lead to confusion. Hence, we propose and recommend a 

unified approach to the terminology regarding these therapies. The primary aim of this 

classification is to provide simplicity and clarity, most notably by eliminating extraneous 

detail and many acronyms. We acknowledge that some acronyms (such as RF and RFA for 

radiofrequency ablation and HIFU for high-intensity focused ultrasound) have gained 

widespread international acceptance. Nevertheless, the creation of additional niche acronyms 

for individual techniques should be avoided.

When discrimination between the ablation of malignant versus nonmalignant tissue is 

needed, the descriptive term “ablation” should still be used, with the type of ablated tissue 

stated afterwards (eg, acetic acid ablation of hepatocellular carcinoma, or radiofrequency 

ablation of angiomyolipoma, etc) In other words, the term “thermal (or laser, microwave, 

etc) ablation” should be used regardless of what is being ablated.

Our original document divided the different methods of tumor ablation in use at the time into 

two large classifications (chemical and thermal) to establish a basis for comparing 
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modalities that differed in their specific mechanism of action but were broadly similar in 

application methodology or mechanism of tissue injury (1). For example, both ethanol and 

acetic acid instillation were considered “chemical ablation” and radiofrequency and 

microwave-based ablation were considered “thermal ablation.” However, we now recognize 

that, while the utility of our classification system remains, tumor ablation has expanded to 

include modalities that are not completely suited to the original classification. A key case in 

point is the interval development of IRE as an ablative modality, as IRE is energy based with 

a mechanism of cellular injury that is largely nonthermal, but clearly not chemical (15). 

Accordingly, it is now most appropriate to divide ablative modalities into: (a) chemical 
ablation (ie, nonenergy ablation) or (b) energy-based ablation (ie, thermal and 

nonthermal). We recognize that there will be some potential crossover, as several modalities 

may have more than one type of mechanism of tissue injury (16). Thus, when necessary, 

ablation modalities should be assigned a category/classification based on the dominant mode 

of injury. For example, several studies have used direct injection of two or more chemicals to 

achieve a localized high-temperature thermal reaction to induce tissue injury—this would be 

considered a “thermal ablation” based on the mechanism of tissue injury (17).

Other interventional oncologic therapeutic approaches including the percutaneous delivery 

of genetic material, drug delivery, radiation sensitization, low-temperature hyperthermia 

protocols, radioactive seeds or beads, radiation segmentectomy, and the transcatheter 

delivery of chemoembolization may ultimately require better definition but are beyond the 

scope of this current position article. Nevertheless, many of the issues discussed concerning 

reporting criteria may likely be equally appropriate for clinical trials with those therapies as 

well.

Chemical Ablation

These therapies are to be classified based on the universally accepted chemical nomenclature 

of the agent(s) such as ethanol, acetic acid, et cetera, that induce coagulation necrosis and 

cause tumor ablation (18, 19). For example, the term ethanol ablation should replace “PEI” 

(percutaneous ethanol instillation or injection), “PAI” (percutaneous alcohol instillation), 

and others (18, 19). The Materials and Methods section of the manuscript should specify the 

route (intravenous, intraarterial, or interstitial), method of substance preparation when not 

commercially available or when combining agents, substances and amounts injected, 

delivery vehicle (size and type of needle or catheter), and rate of delivery (rapid injection or 

a defined rate of infusion). The intended effect should be reported, if different from complete 

tissue destruction (such as using ablation to enhance drug delivery, radiation sensitization, in 

combination with other ablation modalities). The term “instillation” for the direct delivery of 

pharmacologic agents is preferred given that many pharmaceuticals can be injected (a 

process that implies rapid percutaneous delivery) or delivered intravascularly with a catheter. 

This category also includes newer chemical-based therapies that have variable mechanisms 

of actions (such as inducing thermal injury through the concomitant injection of acid and 

base solutions) (17).
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Energy-Based Ablation

This category includes modalities that destroy a tumor either through thermal (heat or cold) 

or nonthermal mechanisms. For thermal therapies, energy is “applied.” The term “irradiation 

of energy,” particularly in regard to microwave ablation, is a misnomer and should therefore 

be avoided. The following energy-based modalities have been described.

RF ablation.—This term (6, 7, 20) applies to coagulation induction from all 

electromagnetic energy sources within the RF spectrum (3 KHz to 300 GHz), including 

available “radiofrequency” and “microwave” devices (10, 21). However, currently available 

devices traditionally designated for “radiofrequency ablation” function in the 375–500-KHz 

range. The term radiofrequency should be written as a single nonhyphenated word. Most 

devices currently used are monopolar in that there is a single “active” or “interstitial” 

electrode, with current dissipated at one or more return grounding pads. Bipolar devices 

have two “active” electrode applicators, usually placed in close proximity to achieve 

contiguous coagulation between the two electrodes (either needlelike or multitined), or on a 

single electrode (22). Since less common, in clinical practice today, bipolar RF ablation 

should be specified as such.

Microwave Ablation.—By convention, the term “microwave ablation” (3, 23) has been 

used for electromagnetic methods for inducing tumor destruction using devices with 

frequencies from 300 MHz to 300 GHz (21). Therefore, technically, microwave ablation 

devices also function within the RF spectrum and are therefore a subset of RF ablation. 

However, due to a different mechanism of heating and practical device and applicator 

differences compared with RF ablation (and described in more detail below), this category 

should be reported separately. Currently available microwave ablation devices function at the 

915-MHz or 2.45-GHz frequencies designated for industrial, scientific, and medical (ISM) 

use. The term “microwave ablation” should replace the less succinct terminology of 

“percutaneous microwave coagulation therapy” or “microwave coagulation therapy.”

Ultrasound Ablation.—There are currently two methods (2, 24) for the application of 

ultrasound energy—extracorporeal (or transcutaneous) (25) and direct (or interstitial) for 

percutaneous application with a needlelike applicator and for intracavitary (and intracardiac) 

devices (26). Hence, additional nomenclature is required to distinguish between these two 

groups. For transcutaneous ultrasound ablation (which does not require placement of an 

applicator within the target tissue), high intensity focused ultrasound is the preferred term, 

as this denotes that more than one ultrasound beam is “focused” to create an ablation. 

Additionally, extracorporeal focused ablation can also be used. Both of these terms are 

separate from the direct application of ultrasound energy through an applicator placed within 

the target tissue, which should be referred to as interstitial ultrasound ablation. We feel 

that this revised nomenclature provides a more concise and clear description of different 

methodologies being studied and more closely aligns several classifications being used in 

the literature (25, 26).

Laser Ablation.—The term laser ablation (27, 28) should replace terminology such as 

“laser interstitial tumor therapy” (or LITT), “laser coagulation therapy,” and “laser 
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interstitial photocoagulation.” This term should be used for all types of ablation using light 

energy. Given multiple laser technologies and application methods, including superficial 

therapy (contact/noncontact mode) or transcutaneous ablation, the term “interstitial” or 

“direct” can be reported to clarify that laser energy is applied with fibers directly inserted 

into the tissue.

Cryoablation.—This term (27–30) should be exclusively used for all methods of 

destroying tissue by the application of freezing temperatures, or alternating freezing and 

thawing or slight heating (31). The phrase “cryo” as a freestanding term is to be avoided, as 

“cryo” is a prefix and not a word. The more antiquated terms “cryotherapy” or 

“cryosurgery” are also to be avoided as imprecise given the introduction of newer 

applicators that can be introduced percutaneously, endocavitarily, or endovascularly in a 

minimally invasive fashion.

Rapid tissue freezing and thawing produce the greatest cytotoxic effects by disrupting 

cellular membranes and inducing cell death (31). In the past, liquid nitrogen was placed 

directly on tissue, but with a few exceptions, this method is no longer used. In the neck, 

chest, abdomen/pelvis, and extremities, cryoablation is generally performed using one or 

more closed cryoprobe(s) that are placed in close proximity to or inside of the target tumor. 

The most common clinically available cryoablation systems utilize the Joule-Thomson 

effect, which relies on the expansion of a cryogen (argon gas or liquid nitrogen) at the 

cryoprobe tip to cause internal temperature fluctuation. Other cooling mechanisms have also 

been described, but all rely on a heat sink inside of the cryoprobe and thermal conduction 

through the probe wall from the tissue. For publication purposes, the type of cryoablation 

system, the gases used, probe dimensions including tip length and total length and number 

of freeze-thaw cycles (active or passive thawing) should also be specified.

Irreversible Electroporation.—This term (IRE or IRE ablation) (4, 16) should be used 

for those technologies and devices that cause cell death through the repeated application of 

short-duration high-voltage electrical pulses that create “irreversible” injuries to cellular 

membranes (15). While there may be some hyperthermic ablative changes with higher-

power applications, the mechanism of cell death with IRE is thought to be predominantly 

nonthermal (16). When describing IRE applications, relevant energy parameters that have 

been shown to affect outcome (including the number and length of pulses, their spacing in 

time, current applied, and voltage) must be adequately described (32).

ABLATION PARAMETERS

In the original version of this document, ablation parameters, such as the number of 

applicators and the algorithms for energy application had largely been described and 

developed for RF-based devices, and were described as such in a single general category. 

Now, there are a wide range of applicator types, device modifications, and application 

techniques for several modalities, and these parameters should be clearly delineated in any 

reporting, so as to ensure the reproducibility of any ablation technique. We now discuss 

reporting terminology for applicators, application parameters, and tissue characteristics 

separately, and highlight modality-specific topics as needed.
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Applicators

General Applicator Descriptions.—Although the devices are often referred to as 

“needles” or other nonspecific terms, they do not always conform to these precise 

classifications. Hence, the term applicator should be used when generally describing 

energy-based devices. Similarly, while generic needles are often used to inject agents for 

chemical ablation, if a device designed specifically for injection of chemical ablation agents 

is used, this should also be referred to as an “applicator” (33). For precision, RF and IRE 

applicators are electrodes, microwave applicators are antennas (rather than “antennae”), 

and laser applicators are fibers. By convention and consensus, cryoprobes are used to freeze 

tissue during cryoablation. For reporting completeness, a reference describing the 

appropriate applicator(s) should be cited if available; otherwise, an appropriate figure and/or 

schematic should be provided. A description of the applicator should also include length, a 

description of the active component (eg, for a needlelike RF applicator, this might include a 

“2-cm active tip”), and gauge size (eg, 17 gauge) (34). Gauge is preferred, as this is the 

common nomenclature for needle equipment used in percutaneous procedures.

Modality-Specific Applicator Descriptions.—A description of pertinent applicator 

characteristics relevant to a specific ablation modality is required. For RF ablation, the 

geometry of the electrode (eg, active tip length) should be provided (34). For microwave 

ablation, the energy frequency and a basic antenna design description (eg, dipole, slot, etc) is 

necessary to understand energy deposition around the antenna (21). For laser ablation, in 

addition to the laser source (Nd:YAG, erbium, holmium, etc) and precise wavelength, 

additional device characteristics must be specified, including the following: (a) type of laser 

fiber (flexible/glass dome); (b) modifications to the tip (ie, flexible diffusor tip, or scattering 

dome) with dimensions and materials specified; and (c) length of applicator and diameter of 

the optic fiber (35). For IRE, active tip length, number of electrodes in the array, and 

interelectrode spacing should be specified (32). For cryoablation, probe caliber, gases used, 

applicator length, and number of probes used should be specified.

Multitined Expandable Applicators, Cluster Electrodes, and Multielement 
Antennas.—This standard terminology refers to a family of applicators that are currently 

available from several manufacturers for RF platforms (36) but have also been developed or 

are in development for chemical ablation (33) and microwave platforms (37), respectively. 

For RF ablation, the usual embodiment of this type of device is that of an array of multiple 

electrode tines that expand from a single centrally positioned larger needle cannula (36). 

These have been previously referred to as umbrella electrodes, multitined electrodes, 

Christmas tree electrodes, multiple hooked electrodes, or arrays, but this has led to 

confusion. Given the number of electrode types that have become available and the fact that 

several multitined devices are now available with variable deployment lengths, the exact 

electrode model and diameter of electrode array used must be specified. Also, if a stepped 

deployment with incremental extension of the tines was performed with a multitined device, 

this too needs to be explained in detail regarding the length and time of deployment. One RF 

ablation device uses an applicator with three parallel electrodes closely spaced together that 

are separately introduced into the body but have a common hub (38). This should be referred 

to as a “cluster electrode” [not “clustered”] and is most appropriate to describe internally 
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cooled electrode devices in which three or more closely spaced (< 1 cm) electrodes are used 

simultaneously to approximate a larger-diameter electrode (38). Many refer to these 

electrodes as “an array,” which may not adequately reflect the true underlying mechanism 

for enhanced energy deposition and ablation.

Internally Cooled Applicators and Perfusion Electrodes.—Some devices use a 

cooling agent (such as saline, water, or gas) that flows within internal lumina and does not 

come in direct contact with patient tissues (38–40). These should be referred to as 

“internally cooled applicators,” and should not be confused with perfusion electrodes. When 

internal cooling is used, specific parameters (cooling agent used, approximate temperature 

of the agent, perfusate volume, and rate of infusion) should be provided where applicable. 

Cooled applicators should also describe whether the perfusion was performed in a closed 

system (with no communication with the tissue) or an open system (with free infusion into 

tissue) (40). Perfusion electrodes have been described for RF ablation and have small 

apertures at the active tip or along the distal shaft allowing fluids (ie, normal or hypertonic 

saline) to be infused or injected into the tissue before, during, or after the ablation procedure 

should be referred to as perfusion electrodes. The term replaces descriptions such as “cool-

wet,” “wet,” or “saline-enhanced” electrodes, which should be avoided.

Multipolar Ablations.—Most RF ablation devices are “monopolar,” applying energy 

through one active tip with the current dissipated on a return grounding pad. Several ablation 

technologies (such as multipolar RF ablation or IRE) use energy application between two or 

more applicators to create a zone of ablation between applicators (10, 22). For multipolar 

applications, the number of applicators, length of active tip, spacing between applicators, 

and application algorithms (such as the order of energy application between different 

applicators) should be described (22, 32).

Device and Application Parameters

Energy Application Parameters and Algorithm of Energy Deposition.—For all 

energy-based ablation systems, energy application parameters should be provided, including 

power (in appropriate terminology for the specific energy source) and duration of 

application. As the methods used for applying energy have undergone continuous 

modification and improvement, this has led to substantial confusion and difficulty 

comparing the results of studies performed by different groups of investigators. When 

reporting results, pulsing techniques and other methods for amplifying energy deposition 

should be succinctly elaborated on in the Materials and Methods (41). Whenever possible, a 

reference for the precise algorithm used (eg, ramped energy deposition or impedance 

regulated) and the model number of the generator should be cited. Additionally, other 

parameters including the use of monopolar or bipolar systems, the amount of energy applied 

(current and/or watts), and the total or incremental duration of ablation should be provided.

For microwave ablation, sufficient parameters must be given to at least estimate the total 

energy delivered. The cables that transfer power from the generator to the antenna, and 

within the antenna apparatus itself, are lossy and can absorb a substantial fraction of the 

generated power (over 50% in some systems) (21). Therefore, an estimate of the actual 
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power delivered to the tissue should be included when describing microwave ablation 

results.

Multiple Applicator Insertions of a Single Applicator.—When multiple overlapping 

ablations are performed to achieve a single large ablation zone or an ablation zone of 

specific configuration, the number of ablations, mean ablation times, and the end point used 

(ie, imaging end point, or predetermined number of ablations) should be reported (42). If a 

complex composite ablation is performed, details regarding spacing and degree of overlap 

should be described in a manner that allows reproducibility (with many advocating for a 

schematic as well) (43, 44).

Multiple Separate Applicators Inserted Simultaneously.—If several applicators are 

inserted simultaneously for simultaneous application of power (45), multipolar ablations 

(described above), or simultaneous ablations using “switching” technology (in which energy 

is applied to a single applicator at any given time, but energy application rapidly alternates 

between two or more applicators) (46), then specific application algorithms, ablation times, 

and applicator spacing should also be reported. Similarly, for multiple microwave antenna 

arrays, the approximate phase between electromagnetic waves applied to each antenna (if 

known and controlled, or acknowledged if not controlled), total power and time applied to 

each antenna, and pulsing parameters (if used), should also be described (47). Similar 

descriptions should be provided for equivalent platforms for cryoablation, and for newer 

ablative modalities such as ultrasound ablation or IRE (32).

Tissue Properties

Tissue-specific properties have been shown to affect the success of ablative technologies in 

achieving adequate tumor destruction. Characteristics of the primary organ (ie, lung, bone, 

liver, etc) and the tumor type (ie, hypervascular hepatocellular carcinoma vs hypovascular 

liver metastasis) both influence the extent of tissue injury (48). Additionally, variability in 

tissue characteristics in the same organ may occur based on ablation location (ie, RF 

ablation may be limited near the main portal vein compared with a small peripheral branch). 

Finally, specific ablation modalities will be affected more by one tissue characteristic than 

another (48, 49). In general and for publication, tissue type and the effect of tissue properties 

on ablation (eg, proximity to adjacent blood vessels when this might impact study end point) 

should be acknowledged and discussed whenever relevant. Terminology specific to certain 

tissue characteristics has been previously described and is addressed herein.

Blood Flow and Airflow.—Blood flow can negatively counteract the intended 

modulation of tissue temperatures during thermal ablation by cooling heated tissues or 

warming cooled tissues (50). Similar effects have been observed from airflow in ventilated 

lung during pulmonary ablation (51). The term heat sink effect refers to the buffering effect 

of patent blood vessels or ventilated bronchi adjacent to the ablation zone (50, 51). The 

shape of the thermal zone of ablation is altered away from the vessel, and the overall 

ablation size is diminished (50). Although this phenomenon serves to protect blood vessels 

and prevent bleeding from large vessels, it is also a major source of incomplete tumor 

ablation in many studies involving thermal ablation (52). Perfusion mediated tissue cooling 
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(or heating) is a more encompassing term that refers to both the effects of the larger heat 

sinking vessels, as well as the substantial effects of capillary level microperfusion (53). 

Several strategies have been developed to overcome this problem, ranging from 

pharmacologically decreasing blood flow, to temporary vascular balloon occlusion of a 

specific vessel during ablation (ie, hepatic artery, hepatic vein, and/or portal vein during 

intrahepatic ablation), to intraarterial embolization and chemoembolization, to performing a 

Pringle maneuver (ie, temporary hepatic arterial and portal venous occlusion by direct 

compression of the vessels) while performing RF or cryoablation at laparotomy (10). 

Finally, it is further acknowledged that other fluids can be used to alter or retard uniform 

heating and thereby protect critical structures (such as chilled perfusate in the ureter) (54). 

The fluid instillation method should be adequately reported whenever employed.

Other Properties.—Other tissue properties that influence tissue and tumor heating during 

thermal ablation include thermal conductivity, electrical conductivity (for RF ablation and 

IRE), tissue elasticity or fibrosis, and tissue water content and permittivity (microwave 

ablation). These should be acknowledged and discussed on an ablative modality and an 

organ/tumor-specific basis. Authors should also set out to describe the tissue homogeneity of 

the target tumors or stratify/quantify those with substantial cystic components, calcification, 

metallic structures, graft material (eg, diaphragm or thoracoabdominal mesh), suture lines, 

stents (eg, ureteral or biliary) or appreciable (> 1 mm) tumoral vessels.

ABLATION PROCEDURE

Procedure Terms

As was outlined in our original standards, we continue to recommend using the term 

procedure rather than “operation,” as the latter implies open surgery. We consider the term 

session to be synonymous with procedure. A procedure refers to a single intervention event 

that consists of one or more ablations performed on one or more tumors. We acknowledge 

that multiple ablations may be performed, either in the same procedure or as separate serial 

events, but as part of an overall treatment plan. The term course of treatment (akin to 

terminology currently used in radiation therapy) is now recommended to be used to describe 

this series of ablations. Whenever possible, this “course of treatment” should be intention 

based, within a well-defined time frame, and with a clearly defined end point described. The 

number of planned sessions and key deviations from the original course of treatment should 

also be explained. We acknowledge that a course of treatment may include planned 

treatments other than tumor ablation (eg, performing embolization prior to ablation). Thus, 

specific details regarding additional nonablative treatments should also be provided.

Indications

Clinical indications for tumor ablation are divided into ablations performed for curative 
intent (ie, achieving the goal of complete eradication of all known tumor cells within the 

index tumor[s], and without any other known tumor foci in the body) or palliative intent (ie, 

complete ablation of the index tumor[s] [6,7,19] with other known nontarget tumor foci 

within the body or complete or partial ablation to treat sufficient portions of the index tumor 

to achieve symptom relief) (29). As one cannot “palliate” asymptomatic tumors, the term 
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debulking should be used when describing a procedure performed with the sole intent of 

reducing tumor burden or controlling disease progression.

Additionally, the specified well-defined rationale for palliative therapy and an appropriate 

method for assessing outcomes must be provided (ie, the intended partial ablation of given 

tumor). For example, when tumor ablation is used as a vehicle for pain reduction (such as 

pain from osseous metastases), pre- and postprocedure pain scales and medication use (using 

commonly used scales such as morphine equivalent dose) should be obtained (55, 56). If 

ablation is employed to reduce symptoms of a syndrome (such as carcinoid or other 

hormonally active or paraneoplastic tumors), appropriate documentation of laboratory 

results from blood or urine before and after therapy must be provided, and other 

symptomatic end points and grading systems must be specified and employed. Standardized 

questionnaires should also be used for quality of life assessment when appropriate (55).

Complete ablation of symptomatic benign tumors (such as osteoid osteomas, tender breast 

fibroadenomas, or hormonally active benign adrenal aldosteronomas) to complete 

symptomatic relief can also be considered curative (57–59).

Adjuvant Therapies

In the original standards document, “adjuvant therapies” referred to those therapies 

administered concomitantly with or during ablation to potentiate local effects of ablation. 

For example, the percutaneous instillation of sodium chloride solutions was used to alter 

electrical and thermal conductivity during RF ablation. Increasingly though, tumor ablation 

is now being combined with a multitude of agents, ranging from those given to potentiate 

the local antitumor effects of ablation, to the concurrent or staged administration of systemic 

chemotherapy while simultaneously performing local ablation (7, 60). As such, the original 
general description of “adjuvant therapies” is felt to be sufficiently nonspecific and 
archaic. The more precise following descriptions should replace this term.

Concomitant Agents.—This includes those agents that are being used to potentiate the 

local effects of tumor ablation (without having a specific independent antitumoral effect). 

For example, sodium chloride fluid or iron oxide particles injected into the target tumor prior 

to RF ablation have been described. Hence, specific details of the agent used (ie, agent/

substance/liquid concentration, route and rate of administration, timing in relation to the 

ablation) must be provided. Whenever possible a reference for the precise algorithm and the 

rationale for the selected concomitant agent should be provided. An additional term, 

“sensitizers,” is used to describe certain treatment-enhancing agents in radiation therapy, and 

may be appropriate here as well (61).

Combination Therapies.—This includes cytotoxic or chemotherapeutic agents that, 

while having known independent antitumor effects, are administered in conjunction with 

(and temporally close to) ablation with the specific intent of inducing a synergistic effect 

(eg, RF ablation combined with transarterial chemoembolization [or TACE], antiangiogenic 

agents such as sorafenib, liposomal doxorubicin, or ethanol) (8, 60). Specific details of the 

agents used should be provided, along with a rationale for their use (whenever possible).
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Concurrent Therapies.—This includes agents that have known antitumor effects that are 

administered at the time (or around) of ablation, but either have not been shown to interact 

with ablation, or are without clear mechanisms of synergy, or are administered without 

intent to potentiate effects of one or the other therapy (eg, systemic chemotherapy or 

radiation therapy, or cementoplasty after bone ablation) (7, 62). Specific administration 

timing related to ablation (and any predetermined periods of cessation around ablation) 

should still be described, as these therapies may ultimately be proven to effect end-point 

outcomes.

We also acknowledge that with greater understanding of potential systemic effects of local 

ablation, agents may be combined with tumor ablation to modulate secondary systemic 

effects (without intended effect on local tumor ablation efficacy). Examples of this include 

modulating antitumor immunity after tumor ablation using vaccines or immunomodulatory 

agents (63). Yet, this area of research is too premature to provide a well-defined 

classification system. Regardless, in all circumstances, specific details of administration, 

rationale, and use should be provided. For example, in clinical studies in patients treated 

with ablation, details regarding prior or concurrent systemic chemotherapy treatment (first- 

and second-line regimens) should be provided.

Image Guidance

While all procedures referred to in this communication refer to tumor ablations guided by 

imaging, it is important to understand what is meant by the term “image guidance.” First, 

guidance refers to procedures in which imaging techniques (eg, fluoroscopy, US, CT, PET, 

and MR imaging) are used during the procedure. Imaging is used in five separate and 

distinct ways: planning, targeting, monitoring, intraprocedural modification, and assessing 

treatment response (64). Different imaging techniques can be used, alone or in combination, 

to successfully perform each of the procedural steps described. While CT and MR imaging 

use have been traditionally described, contrast material–enhanced US is also now well 

established and commonly used in performing image guidance for all parts of an ablation 

procedure, and in many different organs (65). Treatments are planned before the procedure, 

and the assessment of treatment response occurs after the procedure is completed. Targeting, 

monitoring, and intraprocedural modification are all performed during the procedure. The 

meaning of these terms is described further as follows.

Planning.—Imaging techniques, including US, CT, MR imaging, and more recently 

PET/CT, are used to help determine whether patients are suitable candidates for these 

procedures. Imaging aspects that are particularly important include tumor size and shape, 

number, and location within the organ relative to blood vessels, as well as critical structures 

that might be at risk for injury during an ablative procedure (66). Additionally, disease-

specific cancer staging (which may include additional imaging of nontarget areas) should 

also be provided. Adopting similar terms to radiation therapy is acceptable, such as “planned 

treatment volume” (or PTV).

Targeting.—This term is used to describe the step during an ablation procedure that 

involves placement of an applicator (eg, an RF electrode or cryoprobe) into the tumor. While 
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much of the current image-guided tumor ablation literature describes the use of techniques 

such as contrast-enhanced US and CT to target tumors for purposes of ablating them, 

targeting is only one aspect of intraprocedural image guidance. Ideal qualities of a targeting 

technique include clear delineation of the tumor(s) and the surrounding anatomy, coupled 

with real-time imaging, and multiplanar and interactive capabilities. For example, US (66) 

and some MR imaging systems (67) have all of these qualities.

Image-fusion and navigation systems that combine multiple modalities (such as US and MR 

imaging with CT) have also been developed and are used with ever increasing frequency for 

tumor targeting (68, 69). These devices should be appropriately described, including the 

type of source/reference images and real-time images incorporated into the fusion and 

projections displayed. Methods of registration should be described (ie, rigid vs elastic, 

fiducial-based vs landmark selection, software source, and level of automation clarified 

where appropriate). Errors should be described in terms of overall accuracy (system error), 

registration error (root mean square error where applicable), and target to registration error 

(or TRE) (68, 69).

Monitoring.—Monitoring is the term that is used to describe the process by which therapy 

effects are viewed during a procedure. Changes in imaging that occur during a procedure can 

and should be used to determine treatment effects. For example, the zone of cryoablation can 

be effectively monitored with US, CT, and MR imaging by virtue of appreciable changes in 

tissue reflectivity, density, and phase as tissues solidify with freezing, respectively. Important 

aspects of monitoring include how well the tumor/target is being covered (ie, included 

and/or encompassed) by the ablation zone, and whether any adjacent normal structures are 

being affected at the same time. Not all image-guidance techniques provide the same degree 

and types of monitoring. For example, MR imaging is currently the only modality with well-

validated techniques for near real-time temperature monitoring. For thermal monitoring, 

temperature measurements within the applicator and/or the ablation zone, when reported, 

should include specification as to where the temperature was measured (ie, where the 

temperature sensor is located in the applicator, or if a separate thermocouple was used), and 

when during the ablation temperature measurements were acquired. For noninvasive thermal 

monitoring (ie, with MR imaging), additional descriptions of how this was performed (eg, 

number of sections and imaging plane), and specific imaging sequences used, should be 

provided. If other forms of monitoring are used, such as measuring evoked potentials during 

ablation near nerves or of intramuscular tumors, then detailed descriptions should be 

provided. The term “monitoring” should not be used to describe response to treatment; for 

this, “treatment assessment” or “follow-up” is used.

Intraprocedural Modification.—This term was previously referred to as “controlling” 

and is used to describe the intraprocedural tools and techniques that are used to perform 

“real-time” modification of the ablation treatment. In order to control an image-guided 

ablation procedure, the treatment should be monitorable, such that the operator can utilize 

the image-based information obtained during monitoring to modify the ablation treatment as 

needed to control it. This may simply be repositioning of a therapy applicator based on 

physician experience, imaging findings, and thermal feedback, or it could be as sophisticated 
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as an automated system that automatically terminates the ablation at a critical point in the 

procedure. This also includes intraprocedural imaging with cone-beam CT or CT, PET, MR 

imaging, or US, when used for assessment of effect or repositioning.

Assessment of Immediate Treatment Response.—Imaging used to immediately 

assess an image-guided tumor ablation procedure occurs after the procedure is completed 

(10–12). Immediate assessment after ablation procedure should demonstrate that the target 

end point has been reached. When ablation is performed with curative intent, assessment 

should demonstrate that the ablation zone encompasses the target tumor including a 

circumferential ablative margin (at least 5 mm, and ideally 10 mm all around the tumor) 

(70). Use of a contrast agent during procedures should be well described, including agent 

volume and timing of imaging.

Ancillary Procedures.—As one of the main considerations in thermal ablative strategies 

has been nontarget injury to nearby structures, several techniques have been described to 

separate critical nontarget structures from the target ablation zone (54). One key technique 

involves injection of fluid using a separately introduced hollow-bore needle to create 

separation, and was initially termed “hydrodissection.” This concept has now expanded to 

include the injection of air, creation of artificial ascites or pneumothorax, and mechanical 

displacement using balloon catheters. Additionally, mixing injected fluid with an iodinated 

contrast agent to improve visibility has also been described. When these techniques are used, 

a description of the injected agent (such as saline or sterile water, with or without contrast 

agent), the technique used to introduce the agent (such as needle caliber and length), and the 

end point (such as specific distance between structures or a set volume of the agent), should 

also be included. Likewise, denoting the agent used with the prefix hydro- or pneumo- 
combined with dissection is also recommended. Displacement is the appropriate term to 

describe separation of the target from the nontarget structure.

The use of saline and/or externally applied warming or cooling bags for overlying skin 

protection are additional examples of ancillary procedures. Use of thermal balloons to 

control/protect surrounding tissue temperatures should also be noted, such as for ablations 

near ureters, the urethra and/or esophagus. Similarly, intraluminal perfusion to protect 

nontarget structures, such as for renal pelvicalyceal, ureteral, and bile duct protection, should 

also be specified, when used.

PATHOLOGIC AND IMAGING FINDINGS

The difference between pathologic findings and imaging findings must be stressed by the 

appropriate selection of terminology. Although in many cases there is a good correlation or 

overlap between radiologic and pathologic findings, this is not invariably the case, as over- 

and underreporting of the true extent of disease has occurred (12, 71). The classic example 

of this is assuming that imaging findings (ie, the zone of abnormality on the image) are 

equivalent to the pathologic findings (ie, the true zone of tumor destruction/treatment effect), 

which may not be the case. Hence, careful differentiation between imaging findings and 

pathologic findings must be made. This distinction is critical given that our accuracy at 

assessing the extent of tumor destruction by using imaging is limited by the resolution of 
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imaging and uncertainty about the viability of cells within the radiographic margins of the 

zone of ablation (72).

Zone of Cell Death at Pathologic Examination

As newer technologies such as IRE induce tissue injury through nonthermal mechanisms, 

thus the term treatment effect should be used globally to describe the gross pathologic 

changes from ablation. For thermal ablation, the gross pathologic appearance of treated 

tissue should continue to be referred to as coagulation (which is associated with those 

pathologic findings associated with high-temperature thermal injury). Given that many 

tumors undergo central necrosis without ablation therapy, the term “coagulation” is preferred 

over the use of “necrosis,” as it denotes that the ablation intervention is actively leading to 

tumor destruction. The more generalized term “coagulation” is preferred over the term 

“coagulative necrosis,” as the latter term has a well-defined meaning within the pathology 

literature including absence of visible nuclei within the dead cells. In actuality, the zone of 

coagulation, while predominantly comprised of coagulative necrosis, often lacks the classic, 

well-defined histologic appearance of coagulative necrosis in the acute postablation period 

or even within some zones of adequately ablated tissue for many months following ablation 

(73). Additionally, for thermal ablation, short-duration high-temperature exposure results in 

a well-known “thermal fixation” effect, which preserves cellular architecture despite cell 

death, making interpretation of pathologic findings based on traditional features of 

“coagulation necrosis” difficult (74). When histopathologic evaluation of the ablation zone is 

performed, tumor cells identified in morphologic stains (hematoxylin-eosin) should undergo 

additional evaluation with specialized immunohistochemical stains to determine viability or 

irreversible cell death (72, 75). Both histopathologic and immunohistochemical evaluation of 

the ablation zone are recommended for articles reporting on pathologic findings or 

performing radiologic-pathologic correlation after tumor ablation (73). The term 

“coagulation” should also be used to describe pathologic findings caused by newer ablation 

technologies, such as microwave ablation and IRE, as well.

Another important issue is defining the zone of ablation at gross pathologic examination. 

Most thermal therapies induce a central “white zone” of coagulation, a pathologic finding 

that is generally accepted to represent coagulated tissue, surrounded by a variable “red zone” 

of hyperemia, which is most often absent in ex vivo specimens (76). However, there has 

been controversy in measuring and hence comparing the “true” size of induced zones of 

ablation based on the fact that some have reported that this more peripheral “red” zone also 

represents ablated tissue and include it in their measurements. To avoid confusion, both 

measurements (the zone of complete ablation alone and the extent of the inflammatory zone) 

should be provided. Furthermore, these descriptions apply closely to thermal ablation, but 

may not be as applicable to other modalities such as IRE or chemical ablation (77). 

Therefore, terminology such as “central ablation” and “peripheral inflammation” can also be 

used. This should be differentiated from the thickness of the ablation transition zone, which 

describes how much spatial zone resides between devascularized and dead tissue and 

normal/unaffected tissue. This has been called the “hyperemic rim” or “benign periablational 

enhancement” (at imaging), but could be described simply as the “transition zone.” At a 

minimum, the zones included in gross pathologic measurement should be specified. Where 
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appropriate, for newer technologies, histopathologic results with viability staining should be 

correlated to gross pathologic changes.

Zone of Ablation at Postprocedural Imaging

Appropriate terminology must reflect the fact that although we rely on imaging to define the 

gross extent of induced coagulation, our accuracy is limited by both spatial and contrast 

resolution to approximately 2–3 mm depending on the imaging modality employed (73). 

Hence, postprocedural imaging findings are only a rough guide to the success of ablation 

therapy because microscopic foci of residual disease cannot be expected to be identified with 

standard imaging. The term “ablation zone” can be used to describe the radiologic region or 

zone of induced treatment effect (ie, the area of gross tumor destruction visualized by using 

imaging). The term “lesion” is to be avoided given potential confusion as to the intended 

meaning, as the term “lesion” has been used to refer to both the “ablation zone,” as well as 

the underlying tumor to be ablated itself. Reporting of the ablation zone should be made in 

relation to the target tumor. In order for the ablation to be considered successful, the target 

tumor should be completely covered by the ablation zone that includes at least a 5–10-mm 

margin all around the expected tumor margin (70).

There are two types of imaging findings that are identified following an ablation procedure, 

those related to zones of decreased perfusion (73) and those in which the signal intensity (at 

MR imaging), echogenicity (at US), attenuation (at CT), or tracer uptake (at PET) are altered 

(78). Hence, the imaging strategy employed and the criteria used to define ablation must be 

specified. Timing of early or “immediate” imaging should be described when performed. 

For contrast-enhanced studies, it is important to recognize that in some organ sites, and in 

particular the kidney, minimal contrast enhancement (ie, for CT, < 20 HU) early after 

ablation can be identified in areas that are subsequently proven at pathologic examination to 

be uniformly dead tissue (79). This finding is not well understood but may be due to 

pseudoenhancement, as has recently been described for renal cysts, or alternatively to 

represent true minimal enhancement from leaky capillaries at the treatment margin.

Finally, we acknowledge that imaging findings after tumor ablation differ based on ablation 

modality, imaging modality, tumor type, and organ site of ablation. Our original document 

included specific imaging features of thermal ablation of the liver, where terminology at the 

time was unclear or poorly defined. The field of image-guided tumor ablation has expanded 

sufficiently that standardization of descriptive terminology for postablation imaging findings 

that are modality and organ/tumor specific now falls beyond the scope of this document. Key 

terminology for imaging will be reviewed and reported in a separate consensus document.

Ablative Margin

For many disease processes and particularly for tumors in the liver, the ablation of 

appropriate margins beyond the borders of the tumor is necessary to achieve complete tumor 

destruction. The term “ablative margin” is used to describe the region that should ideally be 

ablated in these cases (1, 44, 70). This term is preferable to “surgical margin,” as there is no 

surgery. Although most investigators place this at 5–10 mm for many processes, particularly 

those in the liver, lung, and kidney, data are currently lacking to support definitive 
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recommendations regarding the ideal margin size at this time (70, 80). Accordingly, the 

extent of desired or intended ablative margin should be specifically mentioned. It is 

important to stress that an extensive ablative margin, while desirable in curative ablation, is 

not always necessary or desired when sparing of uninvolved organ parenchyma is required. 

For example, when attempting to destroy focal tumors in the kidney in patients having a 

tendency toward the development of multiple tumors such as those with von Hippel-Lindau 

syndrome, nephron sparing and more limited ablation are desired to preserve renal function 

and avoid dialysis (81).

For normally vascular organs such as the kidney and liver, creation of an ablative margin 

results in zones of low attenuation and absent perfusion extending into the parenchyma (78, 

82). Increased attenuation occurs in low-density tissues such as perinephric fat (for 

exophytic renal or adrenal tumors) and in the lungs where the term “ground glass opacity” is 

used to describe the imaging findings of the treatment zone surrounding and including the 

ablated lung tumor.

Involution of the Ablation Zone

The term “involution” should describe the process by which the body eliminates the zone of 

induced coagulation over weeks to months. The term “shrinkage” should be avoided as 

being imprecise. The term “regression” is likewise to be avoided given that it is commonly 

used in the medical oncology literature to describe involution of just the tumor itself, rather 

than the induced coagulation that often involves both tumor and the surrounding tissues (ie, 

the ablative margin). It is important to note that the lack of or minimal involution does not 

imply treatment failure. This is a finding that has been described for multiple ablation 

modalities (eg, RF ablation, and more recently, IRE) (78). Cicatrization may accompany 

involution, where nearby tissue is retracted toward the treatment zone.

Reporting of Tumor and Ablation Sizes

Appropriate uniform guidelines and standards are needed for the reporting of the extent of 

induced coagulation. In the past, comparison between technologies has been made 

somewhat difficult based on the fact that some authors report the largest diameter of induced 

coagulation, others report the average diameter, while some report the short-axis diameter. 

Additionally, coagulation has occasionally been reported as a volume of ablated tissue 

without any definition of dimensional measurements. Finally, zones of coagulation often 

demonstrate nonspherical shapes, and variations in cross-sectional axis can introduce 

variability in ablation size measurements. Hence, uniform standards of comparison are 

essential and must be adopted. It is also important to acknowledge that volumetric 

assessment for staging is also not yet uniform or standardized in the oncology community, 

but will likely be increasingly important for ablation, as noted below.

A three-dimensional, or whenever possible volumetric evaluation, should be performed to 

measure the ablation zone (80). While software to perform volumetric quantification of the 

ablation zone is being developed and not in widespread clinical use, we recognize that this 

technology may ultimately provide a means for detailed evaluation (83). At a minimum, 

characterization with multiplanar imaging (which is now widely available in clinical 
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practice) should be performed. Additionally, it is important to acknowledge variability in 

postablation size measurements, which can be more or less significant depending on the 

ablation modality. For example, microwave ablation and, to a lesser degree, RF ablation can 

lead to significant tissue contraction after ablation, resulting in a smaller apparent ablation 

zone at postprocedure imaging (84). The visible “ice ball” during cryoablation likely 

overestimates the size of the ablation zone, as the cytotoxic isotherm is several millimeters 

inside the ice-ball margin (85). Finally, a successful ablation zone will be significantly larger 

than the target tumor and therefore traditional Response Evaluation Criteria in Solid Tumors, 

or RECIST, do not address successful ablation (86). Therefore, the first postablation imaging 

(eg, contrast-enhanced CT or MR imaging) is the new baseline imaging for further 

assessment of the ablation zone and detection of subsequent local tumor progression.

Ablation Index Tumor.

Ablation index tumor is the preferred term for the initially identified tumor prior to 

ablation. This tumor should not be referred to as a “lesion,” as this term could be confused 

with the zone of induced coagulation or the region of ablation at imaging. This should be 

distinguished from other “index tumors” defined by response criteria for prior courses of 

systemic chemotherapy or radiation therapy.

Size Classification of Tumors.—Actual tumor sizes (mean ± standard deviation, and 

range if applicable) should be reported. Given that the appropriate ablation of adequate 

margins often represents the rate-limiting step for treatment efficacy, the maximum diameter 

of the original tumor must be specified (based on Response Evaluation Criteria in Solid 

Tumors 1.1). However, many investigators perform analyses of their results based on 

stratification of tumor sizes. In this regard, there is often too much ambiguity and variability 

in the categorization of tumors by size. Different investigators have reported an upper limit 

of 2, 2.5, 3, and 5 cm as “small tumors” and 5 or 10 cm as large. This has made the direct 

comparison of results using different technologies challenging. We therefore continue to 

recommend that if such categorization is performed that the tumor size classification should 

be standardized according to the following scale: small tumors as 3 cm or smaller in 

diameter, 3–5-cm tumors as intermediate, and tumors larger than 5 cm as large. This 

classification was determined as most practical because it parallels the current technical 

capabilities and efficacy for most image-guided ablation therapies and has proven to be 

reproducible in clinical practice (7, 8).

Comparing Zones of Coagulation among Different Ablation Techniques

Often the extent of induced coagulation is reported in experimental studies as a vehicle for 

comparing different ablation technologies and parameter modifications (87). The extent of 

induced coagulation should include reporting of the short-axis diameter, given that this 

parameter influences the overall extent of necrosis that can be achieved from a single 

application of energy, and is likely to be an important factor influencing technical success in 

clinical practice. Hence, while additional parameters can certainly be provided and may be 

potentially useful, at a minimum, this should be the standard that is reported to enable honest 

comparison between techniques. Of course, given that the ablation of a tumor is performed 

in three dimensions, ideally, all three-dimensional measurements of the ablation zone and 
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tumor, and less ideally both measurements of the cross-sectional area should be provided. If 

volume is to be used as the only reported parameter, then a rationale must be specified. 

Average diameters should only be accepted if the tumor or zone of ablation is truly 

spherical, varying not more than 2–3 mm in cross-sectional diameter. It is further well 

known that many devices produce irregularly shaped zones of coagulation. Hence, the 

degree of uniformity or irregularity in the shape of the ablation zone should be specified. 

Finally, some ablation technologies, most notably microwave ablation and to a lesser extent 

RF ablation, can cause relatively immediate local tissue contraction secondary to collagen 

and other protein remodeling, profound water evaporation, and tissue dehydration in the 

ablation zone (84). As a result, postablation measurements of the ablation zone at imaging or 

gross inspection likely underestimate the preablation tissue dimensions. Because the amount 

of contraction varies with ablation time, temperatures, and energy type, postablation 

measurements alone may not be suitable for directly comparing all technologies.

It is important to stress that reliance on minimum and maximum sizes for the zone of 

ablation may not be useful for predicting clinical technical efficacy, as other technical factors 

are likely to be equally important. For instance, depending on the orientation of the energy 

applicator, a 1 × 2-cm tumor may be adequately treated by using a 2 × 3-cm zone of 

ablation, but not by using a 3 × 2-cm zone of ablation. Ablation diameter or volume may 

also not tell the entire story. Although a 3-cm zone of coagulation may completely cover a 2-

cm tumor when correctly positioned, if off the mark, it will fail to destroy the entire tumor.

STANDARDIZATION OF FOLLOW-UP

Currently, defining appropriate length of follow-up and the time points for defining technical 

success are not well established. One investigator’s long-term follow-up is often another’s 

short-term follow-up. Hence, specific guidelines need to be adhered to depending on the 

type of disease treated, and the intended goal of the study. Particularly, if existing standards 

for overall length of follow-up exist for a specific type of tumor, then those practice 

guidelines should be followed when treating those cancers with ablative therapies. Treatment 

study goals are generally related to one or more of the following four categories, which 

usually need to be distinguished from one another: (a) technical success, or was the tumor 

treated according to protocol?, (b) technique efficacy, or was the tumor effectively ablated? 

(c) morbidity, or were critical structures and complications avoided? and (d) outcomes, or 

was there some improvement in tumor control, patient survival, quality of life, or palliation?

Technical Success

This term simply addresses whether the tumor was treated according to protocol and was 

covered completely by the ablation zone. Tumor coverage can be assessed either during or 

immediately following the procedure, most often with contrast-enhanced CT or contrast-

enhanced US. A tumor that is treated according to protocol and covered completely (ie, 

ablation zone completely overlaps or encompasses target tumor plus an ablative margin), as 

determined at the time of the procedure, is “technically successful.” The importance of this 

term is to help investigators separate out those patients in whom the protocol could not be 

executed completely, either for technical reasons or for reasons related to comorbid disease, 
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from those who were treated according to protocol. As outlined above, a predefined course 

of treatment may include several ablation procedures spaced out over time. Primary 

technical success should be determined at the first follow-up imaging study after completion 

of the predetermined course of treatment.

Technique Efficacy

Distinction between “technical success” and “technique efficacy” must be made for each 

treated tumor. Efficacy can only be demonstrated with appropriate clinical follow-up. 

“Technique efficacy” should therefore refer to a prospectively defined time point (ie, 

immediately following the last course of a defined ablation protocol, 1 week, or 1 month 

after treatment) at which point “complete ablation” of macroscopic tumor, as evidenced by 

imaging follow-up (or another specified end point), was achieved. The number of sessions 

(ie, the number of interventional procedures) to achieve the specified end point should 

likewise be defined. Authors are encouraged to report whether or not this complete ablation 

included an ablative margin and how this was determined (ie, what imaging modality).

Comparison of technical success and efficacy between various ablation protocols has been 

challenging, as many authors have adopted different terminology or guidelines. This 

problem is further compounded by our ability, and often the clinical need, to ablate a tumor 

over many sessions and the possibility of ablating growing foci of local tumor progression 

months after the initial course of therapy. A window of initial therapy for each ablation 

technique during which it is reasonably expected for the tumor to be completely ablated 

should be defined. For percutaneous thermal ablation, ideally this should not exceed an 

upper limit of either one to four procedures or a specified time frame (up to 1–3 months), 

depending on the size, type, and location of the tumor, as well as the rationale for therapy. 

We have purposefully left definition of this end point as a broad range, given evolving 

consensus on defining more specific parameters, as each disease process may vary. If 

complete ablation cannot be achieved within these specified parameters, the tumor should be 

classified as “unsuccessfully treated.”

Primary and Secondary Technique Efficacy Rates.—Given that multiple treatments 

of image-guided tumor ablation therapy are often given over the course of the disease, 

primary and secondary technique efficacy rates should be reported. The primary efficacy 
rate is defined as the percentage of target tumors successfully eradicated following the 

initial procedure or a defined course of treatment. The secondary or assisted efficacy rate 
is defined as including tumors that have undergone successful repeat ablation following 

identification of local tumor progression. The term retreatment should be reserved for 

describing ablation of locally progressive tumor, in cases where complete ablation was 

initially thought to have been achieved based on imaging demonstrating “adequate” ablation 

of the tumor.

The technical success and technique efficacy rates are very important as we define the 

limitations of our technologies, ideally in a manner similar to other disciplines (ie, surgical 

resection articles typically report a positive margin rate). Nevertheless, for some protocols, 

the concepts of local technical success and local tumor progression (ie, technique efficacy) 
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may have limited impact on the most important outcome parameter—patient survival. For 

example, using three to four procedures or 1 month as the window may be of secondary 

importance if the patient lives for 5 years because of the treatment, or if the tumor is 

completely eradicated over multiple courses of ablation therapy over many years.

Disease Progression.—Disease progression may be considered in three ways.

1. Residual unablated tumor versus local tumor progression. When initial follow-up 

imaging demonstrates residual tumor at the ablative margin, this is referred to as 

residual unablated tumor. Local tumor progression describes the appearance 

of tumor foci at the edge of the ablation zone, after at least one contrast-

enhanced follow-up study has documented adequate ablation and an absence of 

viable tissue in the target tumor and surrounding ablation margin by using 

imaging criteria. This term applies regardless of when tumor foci were 

discovered either early or late in the course of imaging follow-up.

The term local tumor recurrence implies the appearance of new tumor foci at 

the ablative margin after local eradication of all tumor cells with ablation. 

However, pathologic determination of a “clear margin” cannot be made after 

most cases of image-guided ablation (6, 7). Accordingly, the appearance of 

tumor at the ablative margin at imaging likely represents residual untreated 

microscopic tumor, and therefore, this term should be avoided.

2. Causes of disease progression. The distinction between local incomplete therapy 

(local tumor progression), new foci of disease within the target organ (especially 

the liver), and distant malignancy should be distinguished whenever possible and 

reported on. Discrimination between “local tumor progression” and new tumor is 

important for determining the potential utility (ie, local treatment success rate) of 

a given method, in the setting of many potentially confounding causes for the 

demise of a given patient. Additionally, for patients with cirrhosis, the causes of 

mortality should be differentiated between hepatic disease and others.

3. Complete ablation versus partial ablation. When complete ablation is not 

achieved, classification of the degree of partial ablation should be avoided. For 

example, either reporting a percentage of the tumor ablated, or using descriptions 

of “near complete ablation” (to refer to ablation zones that encompass 90%–95% 

of the tumor) should be avoided. This kind of classification of partial ablation is 

not warranted given that adequate data are lacking to support a difference in 

outcome between different levels of partial ablation. Furthermore, such 

percentages are often estimates and may be inaccurate. Hence, for cases with 

curative intent, partial ablations should either be considered technical failures or 

simply noted as incomplete ablations as appropriate.

Complications

Classification.—The unified standardized SIR grading system should be used as outlined 

(88). Complications should be reported using the most recent version of the SIR 

Classification standard table so that they can be categorized consistently according to 
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severity. The definition of death is self-explanatory and should be reported on a per-patient 

basis. Any patient death within 30 days of image-guided tumor ablation should be addressed 

(SIR classification F). The specific cause of death should be reported, with the potential and 

degree of causality to the ablation procedure clearly specified. Major and minor 

complications and side effects should be reported based on the number of ablation sessions 

on a per-session basis. However, ideally, the number of ablations performed should be 

included, as multiple ablations increase the likelihood of complications.

The definition of major complication is an event that leads to substantial morbidity and 

disability (eg, results in the unexpected loss of an organ) that increases the level of care, or 

results in hospital admission, or substantially lengthens the hospital stay (SIR classifications 

C–E). This includes any case in which a blood transfusion or interventional drainage 

procedure is required. All other complications are considered minor. It is important to stress 

that several complications such as pneumothorax or tumor seeding can be either a major or 

minor complication depending on severity. For tumor seeding this would depend on whether 

or not the ectopic tumor focus can be successfully ablated or otherwise treated.

Differentiation among immediate complications (up to 6–24 hours following the procedure), 

periprocedural complications (within 30 days), and delayed complications (greater than 30 

days after ablation) is advised. This stratification will give the reader an idea when specific 

complications/side effects are most likely to occur and assist in defining when and how to 

take adequate precautions. Ablation-related complications should include problems 

encountered within the periprocedural (30–day) time period that can be related in any way to 

the procedure, as well as additional complications that were identified at delayed follow-up 

imaging that were judged to be highly likely due to the ablation therapy (biliary ductal 

stricture, tumor seeding along the needle track, etc). Additionally, it should be specified 

which complications are being reported on a patient-by-patient basis (such as death) and for 

which the denominator represents the number of sessions, or by the number of tumors.

Alternative classifications exist, and can be used if a compelling reason is provided. For 

example, the Common Terminology Criteria for Adverse Events (CTCAE) v4.0 of the 

National Cancer Institute and the Clavien-Dindo classification system are commonly used 

systems in oncologic and surgical practice (89, 90).

Side Effects.—Side effects are expected, undesired consequences of the procedure that 

although occurring commonly, rarely, if ever, result in substantial morbidity. These include 

pain, the postablation syndrome, and asymptomatic pleural effusions and minimal 

asymptomatic perihepatic (or renal) fluid or blood collections seen at imaging (78). Another 

such side effect would include asymptomatic imaging evidence of minimal thermal damage 

to adjacent structures without other evidence for negative sequelae (ie, “collateral damage”). 

An example of this would include when the zone of ablation extends beyond the liver 

capsule to include small portions of the diaphragm or kidney. These are not true 

complications, as they do not lead to an unexpected increased level of care.

Pain.—Even with appropriate conscious sedation techniques, patients may experience pain 

during ablation procedures. Additionally, depending on the organ site, many patients may 
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experience grade 1–2 pain for several days, occasionally lasting 1–2 weeks following an 

ablation procedure. Last, thermal ablation, particularly RF and cryoablation, are being used 

with increased frequency as a method for treating refractory metastatic and primary bone 

tumor pain. We therefore propose adopting the Common Terminology Criteria for Adverse 

Events (CTCAE) v4.0 of the National Cancer Institute for the reporting of pain (90).

Postablation Syndrome.—This syndrome is a transient, self-limiting symptom/sign 

complex of low-grade fever, nausea, vomiting, and general malaise. The duration depends on 

the volume of necrosis produced and the overall condition of the patient. If small areas are 

treated, the patient is unlikely to experience postablation syndrome at all. If very large areas 

of liver tumors are ablated, the syndrome may persist for 2–3 weeks. The majority of 

patients who get this syndrome will experience some malaise for 2–7 days, depending on the 

volume of tumor and surrounding tissue ablated and the integrity of the patient’s immune 

system (ie, patients receiving steroids or with small tumors may have no postablation 

syndrome).

Follow-up and Outcomes

Outcomes of interest may include the following: local response (by imaging assessment), 

systemic response (pain, cancer syndromes, etc), quality of life, time to progression (or 

progression-free survival) or overall survival. For those studies that deal with quality of life, 

some form of objective measurement must be used both before and after treatment (91). 

Ideally, previously validated scales or metrics should be used and appropriately referenced.

Imaging Follow-up.—Currently, despite a reliance on imaging findings to determine the 

extent of “unablated residual tumor,” there is a lack of consensus on a standard follow-up 

interval regimen for imaging. The most common approach taken by members of the 

Working Group include contrast-enhanced imaging (US, CT, MR imaging, or PET) within 6 

weeks of the initial ablation to determine whether or not additional ablation therapy is 

required (many centers perform this on the day of the initial procedure), and thereafter every 

3–4 months, to determine technique efficacy. Imaging intervals may also vary depending on 

the type of underlying tumor and the goals of treatment. At a minimum, the intervals at 

which imaging follow-up were performed should be clearly specified. A more 

comprehensive, separate document describing approaches and standardization of imaging 

follow-up is forthcoming.

Although standard imaging criteria for response assessments have been defined for 

evaluation of other cancer therapies, these criteria focus almost exclusively on tumor size. 

Yet, exclusive reliance on tumor size does not provide a complete imaging assessment of 

tumor response, and may even lead to erroneous conclusions as to the efficacy of the therapy 

(86). Therefore, in addition to reporting index tumor diameter and the diameter of the zone 

of ablation, assessment of tumor enhancement or lack thereof should also be included in the 

imaging response assessment following ablation therapy. This approach is consistent with 

the incorporation of tumor enhancement as a measure of treatment response in newer 

imaging criteria (92).
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Length of Follow-up.—Compared with the original document, now much of the data 

from clinical studies has matured, and 5- and 10-year follow-up data are becoming available 

(6–8, 92). In this context, some standardization of reporting clinical follow-up is required. 

Here, we define these end points as (a) technical success and early safety data should have 6-

month follow-up, (b) preliminary clinical outcome results should have a minimum of 1-year 

follow-up, (c) intermediate-term data should have 3-year follow-up, and long-term data 

should have at least 5-year (and ideally longer) data, clearly specifying whether this is mean 

or median follow-up. Adopting this approach ensures that clinical data for ablation meet 

benchmarks used by other specialties. When assessing survival and disease-free survival, an 

appropriate length of follow-up should be selected based on tumor biology and accepted 

criteria for other therapies for a given tumor type. For example, surgical literature has 

required long-term follow-up of greater than 5 years for determining the impact of various 

therapies on survival for colorectal metastases to the liver or hepatocellular carcinoma (93). 

For other tumors, the appropriate length of follow-up may vary, and indeed for more rapidly 

growing tumors such as in the lung, the length of follow-up may be shorter. For slow-

growing tumors, such as low-grade primary renal cell carcinoma, the length of follow-up 

may need to be longer (6).

Clinical Outcomes.—For all studies reporting intermediate or long-term ablation 

outcomes, metrics of overall survival (OS) should be reported (including percentage 

survival at specified time points, and mean and median survival times). OS should be 

calculated from the start of ablation treatment rather than treatment completion. 

Additionally, OS should also be reported from the date of cancer diagnosis. The time 

interval between treatment initiation and disease progression, time to tumor progression 
(TTP) (and its associated metric, progression-free survival [PFS] ) is also increasingly 

used as a measure of how effective tumor ablation is in achieving local tumor control, 

particularly in patients receiving more than one treatment where interpreting the effect of 

ablation on OS can be difficult. “Local TTP or PFS” (reflecting the incidence of progression 

in the ablated index tumor[s]) should be differentiated from “organ-specific TTP or PFS” 

(representing tumor progression or lack thereof in the diseased organ, such as liver), and 

both reported. For “tumor-related” death, determination of local TTP or PFS (eg, 

differentiating death due to local tumor progression or diffuse metastatic burden) will often 

be useful, as it can potentially shed further light on the efficacy of local therapy. As for OS, 

PFS should be calculated from the time of treatment initiation. Definitions of “progression” 

should also be provided (eg, percentage increase in tumor size), and any imaging response 

assessment criteria used should be specified. Where tumor ablation is performed for 

symptom relief, symptom-free survival may be a more appropriate descriptor. For some 

oncologic populations (such as early-stage renal cell cancers or small hepatocellular 

cancers), substantial non–cancer-related patient mortality (unrelated to or even masking 

ablation efficacy) may be anticipated, particularly in clinical studies with long-term follow-

up. In this case, the cause of death should be specified as related or unrelated to the patient’s 

underlying malignancy (cancer-specific survival). Finally, risk adjustors should be reported 

as appropriate for the organ/disease involved (eg, performance status using Eastern 

Cooperative Oncology Group or Karnofsky scores).
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OTHER IMPORTANT ASPECTS REQUIRING ATTENTION WHEN REPORTING 

CLINICAL RESULTS

Technique Parameters to Be Provided for Publication

It is our belief that many published series do not provide enough technical detail to permit 

duplication of the investigators’ efforts. This problem is compounded by the fact that there 

are many different types of ablation equipment on the market and in development, and these 

often change. Hence, the specification of the parameters such as duration of application 

energy applied, manufacturer, et cetera, must be provided. Particularly, in clinical trials 

where several different devices and techniques are used, a clear description of device and 

applicator selection, and determination of ablation end point should be provided. A clear 

table that details how often specific devices and techniques used should also be provided. 

Also, the number of treatment sessions for each tumor should be specified. The procedure 

approach (ie, whether the procedure was performed percutaneously, laparoscopically, or 

endoscopically) should also be clearly specified. Additional parameters to be provided for 

publication should include the following: (a) whether the procedure is performed under 

general anesthesia or conscious sedation (the specifics of anesthesia and medications 

administered during the procedure and in the recovery phase should always be reported, 

including agent, dose, route, etc), (b) the types of imaging guidance (CT, CT fluoroscopy, 

US, PET, and/or MR imaging), (c) whether or not the patient was hospitalized, (d) the 

number of sessions required to initially achieve technical success, and (e) the subsequent 

rates of other tumors requiring additional ablation therapy. Furthermore, any repositioning of 

the applicator during the ablation and the procedure for applicator removal (ie, use of tract 

ablation, fiber enclosure, or other closure devices) should be noted. Last, the frequency of 

use within a reported series of all ancillary procedures should be provided to establish the 

procedural complexity that is required to achieve a specific outcome. This will also formally 

differentiate more complex procedures (requiring more time, equipment, resources, and 

ultimately, reimbursement) from simpler procedures requiring less time, associated 

equipment costs, and risk.

Other Study Population Data to Be Reported

The study population should be rigorously described, including inclusion/exclusion criteria, 

tumor type and size, or other patient selection criteria. The degree of proof of disease 

required for entry into the study (ie, biopsy, imaging, or serologic criteria) should be clearly 

specified. Pretreatment evaluation also needs to be reported. In addition to an appropriate 

focus on anatomy (ie, the organ, tumor size, location, and number), the pretreatment 

evaluation should also include tumor stage (ie, spread elsewhere), patient comorbidities, age, 

gender, and overall clinical debility as outcomes such as mortality will depend on these 

factors. Obviously, a debilitated, cachectic patient with widespread metastases will have a 

worse outcome following liver ablation than an otherwise well patient.

Studies have also suggested the potential complementary effects of chemotherapy and 

radiation therapy on ablation efficacy. Hence, the administration of either of these therapies 

to patients enrolled in clinical trials of ablation should be specified. This should be further 

classified as having received the conventional oncologic therapies previously, around the 
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time of ablation (within 1 month), or during the follow-up period. The specific therapy 

protocol, duration of therapy, and time interval in relation to ablation therapy should also be 

provided.

Accurate and Complete Delineation of Ablation Procedures

Substantial confusion and difficulty in comparing results has arisen regarding the success 

and complication rates due to the fact that patients may have had one or more tumors treated 

over multiple procedure sessions. Ideally, all four parameters (number of patients, tumors, 

treatment sessions, and ablations) should be reported whenever possible. Additionally, 

results are often reported for heterogeneous populations of patients for which varied 

rationales for the procedure (ie, cure vs palliation) or outcomes (ie, hepatic metastases vs 

hepatocellular carcinoma) have been reported. Stratification of patients into appropriate 

categories is therefore advised to avoid confusion and best facilitate extraction of clinically 

meaningful conclusions.

Minimizing Technical Jargon

Although substantial technical jargon and marketing terminology appear within our 

literature, these should not be used. For example, colloquial phrasing such as “lesioning” 

and “burning” are to be avoided when describing the application of thermal energy. The term 

“roll off” that describes the impedance control algorithm of a particular manufacturer’s RF 

device should not be used.

Comparison with Other Treatments

Given that many reports of image-guided therapy, particularly with newer technologies, are 

relatively small case series, a major benefit of uniform reporting standards is the ability to 

perform meta-analyses of outcomes to compare therapies. Clinical research studies should 

be reported in such a manner that the results can be directly compared with various cancer 

therapies including other forms of image-guided ablation, surgery, radiation, and 

chemotherapy. The gold/reference standard in oncology is survival, disease-free survival, 

and quality of life stratified by disease stage and patient functional status. While studies 

addressing these outcomes after ablation are becoming increasingly available, nevertheless, 

there continue to be limited data addressing these issues for many diseases treated with 

image-guided ablation (94). Thus, we wish to stress the need for studies on an organ-by-

organ and disease-by-disease basis. Randomized, controlled and blinded studies are 

considered the gold standard for pivotal studies and should be performed when possible 

(95). By the same token, we acknowledge both the very real obstacles to performing such 

studies (including patient recruitment, long periods of data collection, expense, multicenter 

organization, etc), as well as the benefit of reporting less robust forms of data including 

retrospective studies, case series, and case reports (96). Finally, in our current worldwide 

financial climate, we strongly encourage and advocate for the performance of both cost-

effectiveness analysis and comparative effectiveness studies, recognizing that these are 

essential to optimally positioning tumor ablation in comparison with other available 

treatments (97, 98).
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Statistical Evaluation

Regardless of the study type, rigorous statistical evaluation appropriate for the data collected 

should be presented. The primary and secondary study end points should be clearly stated. 

Bearing in mind that the data from individual studies may need to be treated differently, in 

general survival outcomes should be reported using life-table (Kaplan-Meier) analysis. 

Patients should be randomized, if possible, and results reported based on intention to treat, 

treated as randomized, as treated per protocol (ie, excluding protocol violations). Outcomes 

may further need to be stratified according to multiple factors (tumor type, grade and stage, 

functional status, comorbidities, etc) Appropriate methodology for assessment of quality of 

life should be likewise selected (99).

More Relevant Studies

Since the original document, many additional relevant studies have been published. 

Appendix E1 (available online at www.jvir.org) includes more relevant studies that could not 

be included because of article length limitations.

CONCLUSIONS

The original intent of this standardization of terminology was to provide an appropriate 

vehicle for reporting the various aspects of image-guided ablation therapy. Our intent 

continues to be to provide such a framework in order to facilitate the clearest communication 

between investigators, and the greatest flexibility in comparison among the many newer, 

exciting, and emerging technologies. Clearly, 10 years later, this is an ongoing process that 

will require that we adapt to our greater understanding of improving existing technologies 

and emerging novel treatments. As the original version of this document has been successful 

in providing a framework for the evaluation of ablation therapies worldwide, we encourage 

all of our colleagues to adopt the terminology and reporting strategies outlined in this 

updated proposal to facilitate worldwide communication of scientific advances.

APPENDIX E1

Given the expansion of tumor ablation–related studies since the original document, many 

additional relevant studies should be cited. Due to limitations in manuscript length for print 

publication, we have included a list of additional references on a section-by-section basis as 
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