Table 1.
Summary of prediction results of multiple models on the test set.
| Value | Models | ||||
| 
 | 
Logistic regression | AdaBoosta | GBDTb | XGBoostc | CatBoost | 
| AUCd | 0.84 | 0.9133 | 0.85 | 0.92 | 0.9133 | 
| Threshold | 0.3962 | 0.4283 | 0.4583 | 0.4478 | 0.5063 | 
| Youden index | 0.6667 | 0.7333 | 0.6333 | 0.7667 | 0.7667 | 
| 95% CI of the AUC | 0.6556-1.0 | 0.8024-1.0 | 0.6997-1.0 | 0.8142-1.0 | 0.7997-1.0 | 
| SD of the AUC | 0.094 | 0.0566 | 0.0784 | 0.054 | 0.058 | 
| P value of the AUC | .003 | <.001 | .002 | <.001 | <.001 | 
| Accuracy | 0.76 | 0.76 | 0.76 | 0.84 | 0.84 | 
| Specificity | 0.8 | 0.9 | 0.8 | 0.9 | 0.8 | 
| Sensitivity | 0.7333 | 0.6667 | 0.7333 | 0.8 | 0.8667 | 
| Positive predictive value | 0.8462 | 0.9091 | 0.8462 | 0.9231 | 0.8667 | 
| Negative predictive value | 0.6667 | 0.6429 | 0.6667 | 0.75 | 0.8 | 
| Positive likelihood ratio | 3.6667 | 6.6667 | 3.6667 | 8 | 4.3333 | 
| Negative likelihood ratio | 0.3333 | 0.3704 | 0.3333 | 0.2222 | 0.1667 | 
aAdaBoost: adaptive boosting.
bGBDT: gradient boosting decision tree.
cXGBoost: eXtreme Gradient Boosting.
dAUC: area under the receiver operating characteristic curve.