Skip to main content
. 2020 Oct 29;8(10):e20578. doi: 10.2196/20578

Table 2.

Performance of different algorithms trained on the testing data set.

Models Precision, % Sensitivity, % Specificity, % F1 score Balanced accuracy, % AUCa (95% CI) Accuracy, %
Model 1







Adaptive boosting 43.34 55.37 89.29 0.4862 72.33 0.81 (0.77-0.82) 84.92

Decision tree 68.61 35.47 97.55 0.4676 66.51 0.78 (0.76-0.80) 89.41

Extra trees 78.56 59.95 97.53 0.6800 78.74 0.83 (0.77-0.83) 92.60

Gradient boosting 52.58 49.35 93.29 0.5091 71.32 0.82 (0.77-0.83) 87.53

k-nearest neighbor 47.32 50.92 91.45 0.4905 71.18 0.76 (0.76-0.84) 86.14

Linear discriminant analysis 14.02 82.46 23.74 0.2397 53.10 0.75 (0.74-0.84) 31.43

Light gradient boosting 91.76 62.70 99.15 0.7449 80.92 0.82 (0.77-0.83) 94.37

Logistic regression 14.16 85.47 21.84 0.2430 53.66 0.68 (0.68-0.85) 30.18

Multiple layers perception 16.64 78.80 40.44 0.2748 59.62 0.80 (0.68-0.85) 45.47

Random forest 90.62 40.45 99.37 0.5593 69.91 0.81 (0.78-0.83) 91.64

Extreme gradient boosting 79.34 71.86 97.18 0.7541 84.52 0.83 (0.78-0.84) 93.86
Model 2







Adaptive boosting 61.83 72.33 93.45 0.6667 82.89 0.83 (0.80-0.84) 90.75

Decision tree 78.50 63.52 97.45 0.7022 80.48 0.81 (0.80-0.82) 93.11

Extra trees 74.48 60.59 96.96 0.6682 78.77 0.84 (0.80-0.85) 92.30

Gradient boosting 83.08 67.92 97.97 0.7474 82.95 0.84 (0.82-0.85) 94.13

k-nearest neighbor 87.37 52.20 98.89 0.6535 75.55 0.82 (0.81-0.86) 92.92

Linear discriminant analysis 16.33 82.81 37.76 0.2728 60.29 0.76 ()0.76-0.86 43.52

Light gradient boosting 77.97 75.68 96.86 0.7681 86.27 0.85 (0.80-0.85) 94.15

Logistic regression 16.12 81.76 37.58 0.2692 59.67 0.73 (0.73-0.86) 43.23

Multiple layers perception 16.19 80.08 39.21 0.2694 59.65 0.71 (0.71-0.86) 44.44

Random forest 66.67 70.02 94.86 0.6830 82.44 0.82 (0.80-0.85) 91.69
  Extreme gradient boosting 78.95 78.62 96.92 0.7878 87.77 0.85 (0.81-0.86) 94.58

aAUC: area under the curve.