Table 2.
Models | Precision, % | Sensitivity, % | Specificity, % | F1 score | Balanced accuracy, % | AUCa (95% CI) | Accuracy, % | |
Model 1 |
|
|
|
|
|
|
|
|
|
Adaptive boosting | 43.34 | 55.37 | 89.29 | 0.4862 | 72.33 | 0.81 (0.77-0.82) | 84.92 |
|
Decision tree | 68.61 | 35.47 | 97.55 | 0.4676 | 66.51 | 0.78 (0.76-0.80) | 89.41 |
|
Extra trees | 78.56 | 59.95 | 97.53 | 0.6800 | 78.74 | 0.83 (0.77-0.83) | 92.60 |
|
Gradient boosting | 52.58 | 49.35 | 93.29 | 0.5091 | 71.32 | 0.82 (0.77-0.83) | 87.53 |
|
k-nearest neighbor | 47.32 | 50.92 | 91.45 | 0.4905 | 71.18 | 0.76 (0.76-0.84) | 86.14 |
|
Linear discriminant analysis | 14.02 | 82.46 | 23.74 | 0.2397 | 53.10 | 0.75 (0.74-0.84) | 31.43 |
|
Light gradient boosting | 91.76 | 62.70 | 99.15 | 0.7449 | 80.92 | 0.82 (0.77-0.83) | 94.37 |
|
Logistic regression | 14.16 | 85.47 | 21.84 | 0.2430 | 53.66 | 0.68 (0.68-0.85) | 30.18 |
|
Multiple layers perception | 16.64 | 78.80 | 40.44 | 0.2748 | 59.62 | 0.80 (0.68-0.85) | 45.47 |
|
Random forest | 90.62 | 40.45 | 99.37 | 0.5593 | 69.91 | 0.81 (0.78-0.83) | 91.64 |
|
Extreme gradient boosting | 79.34 | 71.86 | 97.18 | 0.7541 | 84.52 | 0.83 (0.78-0.84) | 93.86 |
Model 2 |
|
|
|
|
|
|
|
|
|
Adaptive boosting | 61.83 | 72.33 | 93.45 | 0.6667 | 82.89 | 0.83 (0.80-0.84) | 90.75 |
|
Decision tree | 78.50 | 63.52 | 97.45 | 0.7022 | 80.48 | 0.81 (0.80-0.82) | 93.11 |
|
Extra trees | 74.48 | 60.59 | 96.96 | 0.6682 | 78.77 | 0.84 (0.80-0.85) | 92.30 |
|
Gradient boosting | 83.08 | 67.92 | 97.97 | 0.7474 | 82.95 | 0.84 (0.82-0.85) | 94.13 |
|
k-nearest neighbor | 87.37 | 52.20 | 98.89 | 0.6535 | 75.55 | 0.82 (0.81-0.86) | 92.92 |
|
Linear discriminant analysis | 16.33 | 82.81 | 37.76 | 0.2728 | 60.29 | 0.76 ()0.76-0.86 | 43.52 |
|
Light gradient boosting | 77.97 | 75.68 | 96.86 | 0.7681 | 86.27 | 0.85 (0.80-0.85) | 94.15 |
|
Logistic regression | 16.12 | 81.76 | 37.58 | 0.2692 | 59.67 | 0.73 (0.73-0.86) | 43.23 |
|
Multiple layers perception | 16.19 | 80.08 | 39.21 | 0.2694 | 59.65 | 0.71 (0.71-0.86) | 44.44 |
|
Random forest | 66.67 | 70.02 | 94.86 | 0.6830 | 82.44 | 0.82 (0.80-0.85) | 91.69 |
Extreme gradient boosting | 78.95 | 78.62 | 96.92 | 0.7878 | 87.77 | 0.85 (0.81-0.86) | 94.58 |
aAUC: area under the curve.