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Metallothioneins (MTs) are a family of cysteine-rich metal-binding proteins
that are important in the chelating and detoxification of toxic heavy
metals. Until now, the short length and the low sequence complexity of
MTs have hindered the inference of robust phylogenies, hampering the
study of their evolution. To address this longstanding question, we applied
an iterative BLAST search pipeline that allowed us to build a unique dataset
of more than 300 MT sequences in insects. By combining phylogenetics
and synteny analysis, we reconstructed the evolutionary history of MTs
in insects. We show that the MT content in insects has been shaped by
lineage-specific tandem duplications from a single ancestral MT. Strikingly,
we also uncovered a sixth MT, MtnE in the model organism Drosophila
melanogaster. MtnF evolves faster than other MTs and is characterized by a
non-canonical length and higher cysteine content. Our methodological
framework not only paves the way for future studies on heavy metal
detoxification but can also allow us to identify other previously unidentified
genes and other low complexity genomic features.

1. Introduction

Heavy metals like copper (Cu) and zinc (Zn) have been co-opted over time
as essential components of numerous transcriptional factors and catalytic
enzymes [1]. However, high concentrations of heavy metals can be cytotoxic,
and organisms have evolved intricate strategies to detoxify and excrete heavy
metals. Over time, these detoxification strategies have also been used to detox-
ify other non-essential heavy metals such as cadmium (Cd) [2]. Detoxification
strategies are diverse and can often be taxon-specific [3,4]. However, a
common mechanism among many organisms is the use of low molecular
weight, cysteine-rich peptides known as metallothioneins (MTs) to chelate
and regulate the concentration of heavy metals in the cell [1].

Since their seminal discovery in the horse kidney [5], MTs have been discov-
ered in both eukaryotes and prokaryotes. However, because of their short
sequences (approx. 60 amino acids) and low sequence complexity due to their
high cysteine content, it has been claimed that obtaining robust phylogenies is
very difficult [6,7]. Instead, MTs have been classified into 15 families according
to the organism they are isolated from [7] or classified by their function
as either Zn- or Cu-thioneins [8]. While most organisms have Cu-thioneins, Zn-
thioneins have only been found in higher organisms such as the Metazoa [9,10].
Another reason that makes phylogenetic analyses of MTs difficult is the scarcity
of annotated MT sequences in sequenced genomes. Indeed, in silico gene predic-
tions often fail to identify MT-encoding genes that contain very small exons
separated by large introns [11,12].

MTs have been intensively studied in the fruit fly Drosophila melanogaster.
MtnA was the first member of this gene family cloned from copper-fed larvae
[13], followed by MtnB cloned from a cadmium-resistant Drosophila cell line
[14]. More than a decade later, the release of the D. melanogaster genome [15]
allowed the identification of MtnC and MtnD by sequence similarity [16]. The
four MtnA-D genes are inducible by copper and cadmium through the binding
of the transcription factor MTF-1 [16]. Further work showed that MtnA
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knockout flies are sensitive to copper, MtnB knockout flies are
sensitive to cadmium, whereas MtnC and MtnD knockout flies
do not show any differences in copper or cadmium resistance,
suggesting that these MTs have distinct roles in heavy metal
detoxification [17]. In 2011, a fifth member, MtnE, was discov-
ered in the D. melanogaster genome through bioinformatic
analysis [18]. MtnE is also inducible by heavy metals such as
copper [18], and it is classified as a Cu-thionein like the other
four Drosophila MTs [4,19]. A striking feature is the absence
of Zn-thioneins in D. melanogaster, and more generally in
insects, whereas they are found in all other metazoans [20].
Outside the Drosophila genus [21], only 14 MT genes have
been published in insects (electronic supplementary material,
table S1). There is only one MT in the honeybee Apis mellifera
[12], two MTs in the Chinese grasshopper Oxya chinensis [22],
but five MTs in sequenced Drosophila species genomes [21].
These studies suggest that the number of MTs in species is
dynamic and evolves rapidly across insects. Furthermore,
insects live in diverse environments with different heavy
metal challenges [4,23,24], offering a good model to study
how heavy metal detoxification evolves.

To investigate how insect MTs evolve, we built a large
dataset of MT sequences encompassing the main insect
orders. We took advantage of the recent release of a large
amount of genomic and transcriptomic data in insects [25,26].
To avoid dealing with large introns in genomes, we applied
an iterative BLAST search pipeline on available insect transcrip-
tomes on the InsectBase [26], NCBI NR and NT databases. In
total, we identified and annotated more than 300 insect MTs
from about 100 insect species based on available sequenced
genomes and transcriptomes. Using a combination of phyloge-
netic and synteny analyses, we showed that the insect MTs
evolved from one single ancestral MT gene prior to the diversi-
fication of insects. We also discovered MtnE a putative sixth
metallothionein in the Diptera, including D. melanogaster in
spite of previous intensive work in this model species. MtnF
possesses non-canonical features compared with other insect
MTs, suggesting putative different binding specificities.

2. Results and discussion

(a) Combined phylogenetic and synteny analyses reveal
a single ancestral metallothionein in insects

To facilitate comparative studies of MTs in insects, we reasoned
that a large sampling should be of help. We applied an
exhaustive BLAST search to around a hundred insect available
transcriptomes. We identified more than 300 MT sequen-
ces encompassing 13 orders across different insect species
(table 1), whereas the number of published MTs was 19 prior
to this study (electronic supplementary material, table S1).
One caveat of this approach is that using data mainly from tran-
scriptomics may miss lowly expressed MTs as well as remnants
of MT pseudogenes that are not expressed. The coverage of the
135 insect transcriptomes available from InsectBase is biased
towards the orders Diptera, Hymenoptera, Lepidoptera,
Coleoptera and Hemiptera (electronic supplementary material,
figure S1A), which might explain the overrepresentation of
these orders in our dataset. However, we found that
the InsectBase coverage does reflect the species richness
across extant insect orders (electronic supplementary material,
figure S1B) according to the ‘Catalogue of life” [27].

Table 1. Summary of MT content in sampled insect species.

number of sampled number of
order species MTs
Blattodea 2 3
(oleoptera N 13
Dermaptera 1 2
Diptera 46 195
Hemiptera 7 8
Hymenoptera 31 35
Lepidoptera 27 73
Neuroptera 1 2
Odonata 1 2
Orthoptera 2 3
Phasmatodea 4 6
Plecoptera 1 3
Siphonaptera 1 1
total 135 346

After preliminary phylogenetic analyses, we removed some
overrepresented dipteran sequences to avoid sampling bias,
and highly divergent sequences to avoid long branch attraction.
We performed maximum-likelihood phylogenetic reconstruc-
tion on the resulting 202-taxon MT dataset. The tree obtained
clarifies the number of main MT lineages in insects. In this
tree, the coleopteran MTs are clustered in a single clade, like
the hymenopteran MTs, suggesting they derive from a single
MT in the last common ancestor of the extant Coleoptera and
Hymenoptera, respectively. The lepidopteran MTs split into
three main clades, which we named clades o, B and y (figure 1a).
This result suggests that at least three MT genes were present in
the last common ancestor of the extant Lepidoptera. Similarly,
the dipteran MTs split into several clades, suggesting multiple
ancestral MTs in the Diptera. The obtained tree also showed
that the lepidopteran clade y groups with dipteran clades
(figure 1a). The branch leading to this Lepidoptera-Diptera
superclade is well supported with a bootstrap value of 73
(figure 1a; electronic supplementary material, figure S2A).
Because Lepidoptera and Diptera are two closely-related
orders [28], our data support a MT gene duplication prior to
the divergence between Lepidoptera and Diptera.

Owing to their short size and high divergence, MTs are
markers with limited phylogenetic information. To provide
further evidence for our aforementioned observations, we
also investigated the conservation of synteny at MT loci as
an independent and supplementary approach [29,30]. We
found that the MT sequences are flanked by the same genes
in the Isoptera (Zootermopsis nevadensis and Cryptotermes
secundus), in the Hymenoptera (Apis mellifera and Orussus
abietinus), in the Coleoptera (Aethina tumida and Tribolium cas-
taneum) and in the Lepidoptera (Danaus plexippus and Bombyx
mori) (figure 1b). No evidence of such conservation was
found in available hemipteran genomes. Along with the
presence of orthologues between Lepidoptera and Diptera,
this deep conservation of microsynteny across the insects
suggests the existence of a single MT gene in the last
common ancestor of extant insects.
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Figure 1. Phylogeny and synteny of MT genes in Insecta. (a) Phylogram of the 202-taxon analyses obtained through PhyML maximum-likelihood reconstruction.
Analyses were conducted using the LG + 1" model. Support value is shown for selected branches (all branch supports are shown in electronic supplementary
material, figure S2A). Scale bar indicates number of changes per site. (b) The conservation of synteny was found for several MT genes in the Coleoptera, Hymen-
optera, Lepidoptera and Isoptera, suggesting a single MT locus in the last common ancestor of extant insects. No evidence of synteny conservation was found in the

Hemiptera. Orthologous genes have the same colour.

It is noteworthy that dipteran MT genes are not located at
the same genomic locus shared with other insects. Neverthe-
less, the shared flanking genes mesh, HDACI11, Isn and
CG11975 have been identified on the chromosome 3R in
D. melanogaster, where the MTs are located. The high rate of
chromosomal rearrangement in the Diptera [31-34] might
explain the breakdown of the ancestral MT locus in the
Diptera. In particular, the genomic locus surrounding MtnF
is deeply rearranged in Drosophila buzzatii [35]. On the contrary,
the conservation of microsynteny at the MT locus in the
Lepidoptera is in line with low rates of change in gene order
that have been found in this order based on coarse-scale

mapping data [36-38]. Whereas conservation of microsynteny
between Hemiptera and other insects has been reported
[39,40], we did not find clear evidence of microsynteny at the
MT locus in Hemiptera. Future increase of the currently
scarce genomic data in Hemiptera should help to conclude
whether the MT locus has been translocated.

(b) Insect metallothionein repertoire originated through

tandem duplication
A widespread feature of the insect MT gene family is the
presence of several copies in tandem in sequenced insect
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genomes. For example, the moth B. mori has four MT genes in
tandem (figure 1b) and the housefly Musca domestica has four
clustered copies of MntA (see below). This is also true for
earliest-diverging lineages of insects like C. secundus, for
which we identified two MT copies in tandem (figure 1b).
Similar results were obtained for the genes of the clade B-E
in Drosophila [16,21]. Those observations suggest that the
MT content of insect genomes is mainly shaped by many
lineage-specific duplication events.

Among the insects we investigated, lepidopteran insects
show a high number of duplicated MTs, with an average
of 2.7 copies in tandem per species. Whereas an ancient
whole-genome duplication in Lepidoptera might explain
the extant MT content [41], recent studies support the occur-
rence of segmental duplications rather than a whole-genome
duplication in Lepidoptera [42,43]. Tandem duplications are
associated with evolutionarily relevant traits in the butterflies
and moths such as host plant detoxification [44], gustatory
and odorant receptor diversification [45,46], vision [47], and
wing colour variation [46,48]. Extensive tandem duplication
and retention of MT genes in the Lepidoptera reinforces the
putative adaptive role of these proteins. Our findings raise
the question about the specific high number of MT genes in
lepidopteran insects. Caterpillars feed on plant leaves, but
also on seeds and flowers of a large or restricted range of
host species according to their lifestyle. After metamorphosis,
butterflies and moths feed primarily from floral organs and
rewards, in which heavy metals can accumulate [49]. In line
with the increase in MT copies that correlates with augmen-
ted metal tolerance in Drosophila [50-52], having a richer
repertoire of MT proteins might be an advantage for the fit-
ness of Lepidoptera which occupy and feed on a wide
variety of host species/tissues during their life cycle.

(c) Evolution of the metallothionein repertoire
in the Diptera

As our large-scale analysis suggested substantial changes in the
Diptera, we focused on the evolution of MTs in this particular
insect order. We performed maximum-likelihood phylogenetic
reconstruction using an alignment of 141 MT proteins restricted
to the Diptera, including more dipteran sequences than the 202-
taxon dataset. The tree obtained clarifies the number of main
MT clades and their relationships (figure 24; electronic sup-
plementary material, figure S2B). In this tree, MT sequences
split into three main clades: clade A contains orthologues of
the D. melanogaster gene MtnA [13], clade B-E contains homol-
ogues of the D. melanogaster MinB-like cluster genes [16,18]
and clade F contains orthologues of the uncharacterized
D. melanogaster open reading frame (ORF) CG43222. Clade E
which represents a new clade of MT previously unidentified,
is discussed in detail in the next section. Clade B-E contains
sequences from the early-diverging Culicidae (mosquitoes),
indicating that clade B-E can be traced back to the origin of
Diptera. Clades A and F contain sequences that encompass sev-
eral families of Diptera, suggesting that clades A and F could
also be traced back to the origin of Diptera. According to the
tree topology, it is reasonable to propose that the last
common ancestor of extant Diptera possessed at least three
MT genes. As noted, several MT copies have been generated
through tandem gene duplication events, and such copies
may be subject to regular gene conversion events. For example,
the clustering of D. yakubaB and D. yakubaC likely results from

gene conversion (figure 2a). The cases of gene conversion [ 4 |

remain, however, rare in our dataset, and should not deeply
obscure true evolutionary histories.

We also investigated the conservation of synteny at the
MT loci. Genomic data were available for eight sequences
that group into clade A in the species D. melanogaster,
M. domestica, Lucilia cuprina and Zeugodacus cucurbitae. All
these MT sequences show a high level of synteny conservation
with a recurrent handful of flanking genes (figure 2b—d). Our
results confirm that sequences clustered in clade A correspond
to orthologues of MtnA. We found such a pattern of conserved
microsynteny for sequences within clade F (figure 2c). The
synteny of the genes of the MtnB-like cluster is less conserved
at microscale, but well conserved at a larger genomic scale
(figure 2d). Our finding suggests that the numerous MT
genes are clustered on the same part of the chromosome in
atleast L. cuprina (Calliphoridae) and M. domestica (Muscidae),
as is the case in Drosophilidae [21]. Our syntenic approach
also confirms that the last common ancestor of extant Diptera
possessed at least three MT genes.

(d) Identification of MtnF, a new metallothionein

member in the Diptera

Our phylogenetic analysis reveals a new clade of MT in the
extant Diptera (figures 1a and 24). With regard to the MT reper-
toire already known in D. melanogaster, we subsequently named
it MtnF in this species, in which it corresponds to the uncharac-
terized ORF CG43222. This finding is even more remarkable in
the model species D. melanogaster, where the MT family has
been studied since the 1980s. Following the cloning of its first
MT [13], the D. melanogaster genome had been reported to con-
tain four MT genes (MtnA, MtnB, MinC and MtnD) that are
clustered on the right arm of the third chromosome [16]. In
2011, the fifth MT gene, MtnE, was identified and shown to
locate inside the MinB-like cluster in D. melanogaster [18].

The alignment of the N-terminal end of MtnF with its
Drosophila homologues highlights the conservation between
the different MT members (figure 3a), suggesting that
MtnF is a member of the MT family. To better characterize
this new MT member, we use I-TASSER to predict the 3D
structure of the protein MtnF in D. melanogaster. The best
model (C-score = —0.63) predicts two possible B-sheet second-
ary structures (figure 3b) and fits well (TM-score=0.538)
to the crystal structure of the rat Mt2 (purple structure,
figures 3¢,d), supporting the hypothesis that MtnF might func-
tion as a MT. Another piece of evidence supporting MtnF as a
MT-encoding gene is the presence of two putative MTF-1 bind-
ing sites in its upstream region (electronic supplementary
material, figure 53). We found one core consensus sequence
of metal response element TGCRCNCG [53,54] in the non-
coding 5 region of the MtnF locus, and one in the coding
region of the 5 flanking gene puffyeye.

(e) Might MtnF be a Zn-thionein in the Diptera?

As previously mentioned, a striking feature is the absence of
Zn-thioneins in insects whereas they are found in all other
metazoans [20]. The identification of a sixth MT member in
D. melanogaster naturally raises the question of whether
MtnF could act as a Zn-thionein. We found that MinF ortho-
logues evolve faster than MtnA and MtnB-E orthologues.
On average, MinF orthologues have longer branch lengths
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Figure 2. Synteny and phylogeny of MT genes in Diptera. (a) The phylogram of the 141-taxon analyses was obtained through PhyML maximum-likelihood recon-
struction. Subclade A’ is a subclade with different features like longer length and higher cysteine content in clade A. Analyses were conducted using the LG + I”
model. Support values obtained after 1000 bootstrap replicates are shown in electronic supplementary material, figure S2B. Scale bar indicates number of changes
per site. (b) Deep conservation across the Diptera at the MtnA locus. The copie M. domestical0 and M. domesticall have been identified in the genome of
M. domestica, but not in the transcriptomes. The truncated copy M. domesticay is likely a pseudogene. (c) Deep conservation across the Diptera at the MtnF
locus. (d) Conserved chromosomal clustering of the MtnA, MinB—E and MinF loci. Broken lines indicate non-contiguous genomic positions. In the D. melanogaster
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than MtnA (t-test: d.f. = 23, p = 0.0003) and MtnB-E (t-test: d.f. =
23, p=0.0001) orthologues (figure 3e). Because paralogues are
present in our dataset, the clades with more paralogues are
expected to show overall shorter branch lengths. We performed
the same analysis on an alternative dataset without paralogues.
We obtained very similar results. MinF sequences have longer
branch lengths than MinA (t-test: d.f.=18, p=0.0005) and
MtnB-E (t-test: d.f. =18, p=0.0002) sequences (electronic sup-
plementary material, figure S4). This higher divergence might
explain why previous searches failed to identify CG43222 as a
MT-coding gene.

With an average length of 62 amino acids, the proteins of
the clade F are the longest MTs in insects (figure 4a). The align-
ment of the MtnF protein sequence with the other five MTs
in D. melanogaster shows the longer length is due to extra
amino acid residues in the C-terminus (figure 3a). This obser-
vation raises the question of the origin of these residues.
BLASTP and PSI-BLAST searches identified similar motifs in
bacteria (Candidatus magasanikbacteria, Kribbella albertano-
nige), apicomplexan protozoans (Eimeria maxima), fungus-like

oomycota (Phytophthora parasitica) and fungi (Delitschia
confertaspora). Interestingly, the proteins Ema_XP013335943
and Ppa_ETL84510 are a putative copper transporter and a
putative heavy-metal-translocating P-type ATPase, respect-
ively. However, the conservation of the N-terminus across
Drosophila MTs does not really support an acquisition of the
C-terminal peptide by horizontal transfer.

The augmented length of the clade F proteins goes along
with a richer cysteine content. We counted the number of
cysteines per MT protein for each clade (figure 4b). On aver-
age, proteins of the MtnF clade contain 13.4 cysteines, which
is statistically higher than the average number of 12 cysteines
found in insects in our whole dataset (t-test: d.f.=13,
p<1.4x107*. We also unravelled a bimodal distribution of
the number of cysteines within clade A. Whereas most of
the clade A proteins contain an average number of 10
cysteines (figure 4b), a subgroup of sequences, subclade A’,
contains an average number of 16 cysteines (figure 4b),
which is statistically higher than the cysteine average content
in clade A (t-test: d.f. =17, p< 1.0 x 107%) and in insects (t-test:
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df.=17, p<1.0x 107%). The embedded position of subclade
A’ within clade A suggests that the average gain of six
cysteines results from a unique event during the evolution
of the clade A. Similarly, we observed a cysteine enrichment
in the hymenopteran MTs (t-test: d.f. =33, p < 1.0 x 10~°) com-
pared with the average cysteine content in insects. Our study
suggests that the enrichment in cysteine is a derived MT
feature that appeared several times independently during
the course of evolution.

What could be the biological function(s) of MtnF? Deter-
mining the specificity of metal binding properties of MTs has
been a prevalent question for many years. Because of their
longer size and higher cysteine content, the MTs of clade F
are reminiscent of the vertebrate MTs (figure 44,b). Vertebrate
MTs contain two metal-thiolate clusters, named the B-domain,
with three binding sites for divalent ions involving nine cystei-
nyl sulfurs, and a-domain, capable of binding four divalent
metal ions involving 11 cysteinyl sulfurs [55,56], and are able
to bind divalent Zn(II) in contrast to insect MTs. According to
its structural and evolutionary peculiarities, we propose that
MitnF might be a putative Zn-thionein in the Diptera.

In this paper, we have identified more than 300 new insect
MT sequences and studied their evolutionary relationship
using a combination of phylogenetics and synteny analysis.
This combined approach has allowed us to leverage the con-
served microsynteny in insects to reconstruct the evolution of
sequences with limited informative sites. Our data suggest

genomic
location
Diptera derived
Lepidoptera ancestral
Coleoptera ancestral
Hymenoptera ancestral
single Hemiptera derived (?)
ancestral
MT Polyneoptera ancestral
early -diverging lineages ?

<& gene duplication | genomic translocation | Cys enrichment

Figure 5. Summary of main molecular events during insect evolution. Gene
duplication events are depicted by a yellow diamond, genomic translocations
by a vertical green bar and cysteine-enrichment by a vertical red line.

the presence of a single MT in the last common ancestor of
extant insects (figure 5). The MT content was subsequently
shaped by lineage-specific tandem duplications. We suggest
that the dynamic changes in the MT content across insects
may reflect differences in environment, diet, and past contact
with heavy metals. We also expect that the newly identified
MT sequences will allow future biomarkers of heavy metal
contamination to be developed. More importantly, our com-
bined phylogenetics and synteny analysis can allow us to
identify other previously unidentified genes and other low
complexity genomic features.



4. Material and methods

(a) Data collection

MT sequences were identified in 116 insect transcriptomes by
TBLASTN using 20 published MT sequences as queries (electronic
supplementary material, table S1). The transcriptomes were
retrieved from the InsectBase website (http://www.insect-
genome.com/) [26] and used to build a local database with BioEdit
5.0.6 [57]. The putative identified MTs were added to the set of
probes, and TBLASTN searches were iteratively repeated until
no new MTs were found. Subsequently, we used all these newly
identified MTs as probes to search for additional MT sequences
in NCBI NR (protein) and NT (nucleotide) databases using
BLASTP and TBLASTN, respectively. In order to remove false
positive MTs, we predicted ORFs of all putative MT nucleotide
sequences using the EMBOSS program getorf (http://www.bioin-
formatics.nl/ cgi-bin/emboss/getorf). Putative MT sequences for
which we failed to identify ORFs were discarded. Finally, repeated
sequences and unlikely isoforms from InsectBase and NCBI NR
and NT databases were manually removed from our dataset
based on protein sequences and conserved cysteine motifs of
MT. Species used to build the tree are found in electronic
supplementary material, table S2.

(b) Phylogenetic analysis

Amino acid sequences were aligned with MUSCLE [58] and
manually adjusted, and conserved blocks were used for phylo-
genetic reconstruction. Maximume-likelihood searches were
performed using PhyML 3.0 [59] under the LG substitution
matrix with final likelihood evaluation using a gamma distri-
bution. One-thousand bootstrap replicates were conducted for
support estimation. Molluscan MT sequences and lepidopteran
MT sequences were used to root the Insecta tree (figure 1a)
and the Diptera tree (figure 2a), respectively.

() Synteny analysis

Genomic sequences were retrieved from NCBI (http://www.
ncbi.nlm.nih.gov), InsectBase [26] and 5000 Insect Genome Pro-
ject (i5k) [60] databases by BLASTN using the corresponding
coding sequences as queries. Gene and order content of the geno-
mic scaffolds or contigs were assessed by BLASTX against the
annotated proteins of D. melanogaster (release 6.31) [61].

(d) Statistical analysis
Branch lengths (BL) were obtained as outputs of PhyML software
[59]. To consider differences in number of sequences per clade, we
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(e) Prediction of protein structure
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in D. melanogaster was predicted using the I-TASSER server
[62]. I-TASSER simulations generate a large ensemble of struc-
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higher confidence. The crystal structure of the rat Mt2 [63]
(PDB code 4mt2) was used to model the MtnF protein. Ligand
binding sites were predicted using the COFACTOR software [64].
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