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Coral reefs are degrading globally due to increased environmental stressors
including warming and elevated levels of pollutants. These stressors affect
not only habitat-forming organisms, such as corals, but they may also
directly affect the organisms that inhabit these ecosystems. Here, we explore
how the dual threat of habitat degradation and microplastic exposure may
affect the behaviour and survival of coral reef fish in the field. Fish were
caught prior to settlement and pulse-fed polystyrene microplastics six
times over 4 days, then placed in the field on live or dead-degraded coral
patches. Exposure to microplastics or dead coral led fish to be bolder,
more active and stray further from shelter compared to control fish. Effect
sizes indicated that plastic exposure had a greater effect on behaviour than
degraded habitat, and we found no evidence of synergistic effects. This pat-
tern was also displayed in their survival in the field. Our results highlight
that attaining low concentrations of microplastic in the environment will
be a useful management strategy, since minimizing microplastic intake by
fishes may work concurrently with reef restoration strategies to enhance
the resilience of coral reef populations.
1. Introduction
Organisms all over the world are subject to increasing levels of stress as a
consequence of exponentially increasing human populations and the push for
economic growth [1,2]. For aquatic species, some stressors, such as elevated
temperature, lowered pH and increased levels of pollutants, have direct impacts
on the physiology of organisms and the viability of their progeny [3]. Other
stressors have indirect consequences for individuals, species and communities,
including habitat modifications or changes to the quality of available resources
[4]. Historically, when researchers have explored the impact of stressors on the
biology and ecology of organisms, they have looked at stressors in isolation [5].
However, stressors are most likely to occur concurrently and this co-occurrence
can lead to additive, antagonistic or synergistic effects [6–11]. Accordingly, com-
bined stressor effects have become an increasing focus in recent years [12,13].
Given the complexity of natural systems, manipulative experiments have
proven key for characterizing multi-stressor interactions, and these findings
inform us of the potential trajectory of future communities.

Species inhabiting tropical latitudes are particularly sensitive to new
and increasing stressors because they have evolved in relatively stable
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environmental conditions [14]. For example, tropical hard
corals, which often exist at the edge of their thermal
maxima, are particularly sensitive to increasing water temp-
eratures. Recent warming events (2016, 2017 and 2019) have
led to large-scale coral bleaching and mortality [15–17] with
subsequent losses in coral fecundity, which can undermine
the recovery of reefs through time [18]. Because corals are
ecosystem engineers, this has led to a degradation of the
habitat, with flow-on effects for all organisms that live
within this ecosystem [19–21]. Recent studies have found
that many fishes that live on coral reefs are adversely affected
by the changes in chemistry that accompany shifts from coral
to algal-dominated seascapes. Research shows that some
species can no longer use critically important alarm cue
mediated mechanisms of gauging threats and learning new
dangers or updating information on risk, leading to increased
mortality rates on degraded coral habitats [22–24].

In addition to the threats of warming waters and habitat
degradation, tropical ecosystems are under increasing
pressure from rapid population and economic growth and
with that come the escalating problem of waste disposal
[25]. Plastic waste has been generated at an exponential rate
over the past decades with 60% of the world’s mismanaged
plastics waste originating from tropical East Asia-Pacific
countries (data 2010, [26–28]). Once in the marine environ-
ment, larger plastic fragments break up into smaller more
numerous pieces via mechanical processes, photo-oxidation
and biodegradation [29]. In addition, small plastic particles,
used to increase abrasion in beauty and cleaning products
(i.e. microbeads), also end up in aquatic environments in
large quantities via wastewater systems [30]. Smaller particles
have a larger relative surface area [31], resulting in the
increased potential to leach chemicals that are either con-
tained within them or adsorbed to their surface from the
surrounding water [32,33]. Two decades of marine research
demonstrates that these small particles or microplastics
(less than 5 mm in size, Kroon et al. [34]) are common at all
trophic levels, and both oceanic surveys and experiments
clearly show microplastic transfer between trophic levels
[28,35,36]. Ingestion of large plastic items may lead to
occlusion or abrasion of the alimentary tract [35] and even
small plastic particles that are able to pass through the
gut are capable of producing adverse physiological and
behavioural effects that may lead to greater mortality in the
wild [33,37–39].

The goal of the present study was to explore, for the
first time, how two key stressors facing tropical ecosys-
tems—habitat degradation and microplastic pollution—may
interact to affect the behaviour of coral reef fish and their sur-
vival in the field. Pre-settlement coral reef fish were pulse-fed
polystyrene microplastics over a 4-day period and then
placed in the field on live or dead-degraded coral patches
where their behaviour and survival was monitored over
3 days. The experimental scenario used in the present study
will likely be analogous to the microplastic levels found
near inshore fringing reefs and inshore reefs near urban
areas within the more populated parts of the tropical
Indo-Pacific. Our predictions from previous research were
that (i) dead coral would negatively impact risk assessment
and survival, (ii) microplastics consumption may have a simi-
lar effect due to toxins or a starvation effect and (iii) together,
the stressors may interact to further reduce the fitness of the
affected individuals.
2. Material and methods
(a) Study system and species
Our current study was conducted at Lizard Island (14°400 S,
145°280 E), on the northern Great Barrier Reef, Australia. Fish
were collected at the end of their larval phase using light traps
at night, returned to the laboratory in covered 60 l tanks at
dawn, sorted by species and transferred to 35 l tanks of aerated
flow-through seawater. Light traps were moored at least 30 m
from the nearest reef edge and the fish caught had not yet experi-
enced the specific predators that awaited them upon settlement
[40]. The study species, the Ambon damselfish Pomacentrus
amboinensis, is a common damselfish within coral reef fish com-
munities of the Indo-Pacific. It is planktivorous when it first
settles to the reef and rapidly becomes omnivorous feeding on
a mixture of planktonic and benthic food items [41,42]. Pomacen-
trus amboinensis are 10.3–15.1 mm long (standard length, SL) and
15–23 days old at settlement [43]. They are commonly preyed
upon by a variety of predatory fishes, including the sand lizard-
fish (Synodus dermatogenys), dusky dottyback (Pseudochromis
fuscus) and the moonwrasse (Thalassoma lunare) [44–47].

One day after capture in light traps, fish were batch tagged
with a fluorescent elastomer (following Hoey and McCormick
[48]) so that they could be identified from natural recruits that
may have settled on to the same patch reef. Individually
tagged recruit-sized damselfishes exhibit minimal movement
between patches, and so any loss from the patch reefs can be
attributed to predation [49–51]. All research was conducted in
accordance with the James Cook University Animal Ethics guide-
lines with approval from the JCU Animal Ethics Committee
(approval A2408). Ethical details concerning transport and tag-
ging of fish can be found in the electronic supplementary
material file (Part 1).
(b) Laboratory conditioning
In this study, we decided to pulse expose fish to microplastic con-
centrations that may be similar to an area of reef offshore of an
urban centre (see electronic supplementary material, Part 2 for
logic). Still, the employed concentrations are low compared to
the majority of past microplastic exposure studies (e.g. [52]).

Fish were held in 35 l tanks for 1 day prior to being randomly
allocated to groups of 10 individuals within 1.2 l glass tanks of
aerated seawater that had been filtered through a 1 µm bag-
filter. Each day, over a 4-day period, four tanks were set up;
two tanks had approximately 1000 newly hatched Artemia spp.
nauplii and 200 microplastics (200–300 µm transparent poly-
styrene spherical beads, the density of 1.04 g/ml; Polysciences
Inc. Lot 577635; catalogue number 19825) added to them at
each feeding time (i.e. a microplastic density of 167 particles
per litre), while the remaining two tanks only had 1000 Artemia
spp. added to them. Microplastic beads were used to reduce
the number of variables being manipulated and thereby enhance
interpretation. The microbeads were used as received. Chemical
analyses support the manufacture’s claim that these beads are
composed of polystyrene. Leaching of organic contaminants
was not observed over the time frame of the experiment (elec-
tronic supplementary material, Part 3). Feeding occurred each
day at approximately 08.30 and 16.30 h. After 15 min, fish were
carefully transferred to separate tanks while the holding tank
was rinsed and refilled with filtered seawater. The remaining
food and beads in the tanks were not quantified, but we did
notice on several occasions that there was food remaining in
the jar. This seemed to occur more frequently on overcast days.
Fish were fed using this protocol for six consecutive feedings
with the final feeding occurring in the morning of the fourth day.

Gut analysis of fish that had been exposed to microplastic
spheres for 1 h (at densities of 50 particles per litre with no
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additional Artemia, electronic supplementary material, file, Part
4) in a pilot study found that 85% of the fish consumed plastic
spheres (51 out of 60 fish), with ingestions rates ranging from 1
to 33 particles (out of a possible 40 particles accessible to four
fish in 0.8 l of water; electronic supplementary material, figure
S4) and a mean of 4.5 spheres per fish (median = 1.0). The distri-
bution was markedly right skewed with 60% of fish eating three
or fewer spheres (electronic supplementary material, figure S4).
Serial sampling of the same life stage of a congeneric species
(Pomacentrus chrysurus) that had been exposed to the spheres
for 1 h and then placed in clean seawater (electronic supplemen-
tary material, Part 5), showed that fish can pass the particles
through their alimentary tracts, taking up to 14 h to achieve eges-
tion of all particles (electronic supplementary material, figure S5).

(c) Field behavioural assessment
One hour after the final feeding event, fish were placed into
individually numbered 1 l plastic clip-seal bags containing
aerated water and photographed against a 1 cm grid to obtain
a size estimate. Fish in bags were then placed in a 60 l container
of seawater, covered and taken by boat to the edge of a shallow
fringing reef. Individual fish were placed by divers (MIM, MB)
on one of approximately 50 small numbered patch reefs
(approx. 25 × 15 × 20 cm; one per patch) made of either live-
healthy or dead-degraded Pocillopora damicornis, a bushy hard
coral commonly used as a settlement habitat by P. amboinensis
[42,53]. The live coral and degraded corals used had similar
structural complexity. For our purpose, we define a degraded
habitat as Poc. damicornis that had been dead for approximately
3 months to 1 year and had a similar structural complexity to
live coral, but was covered with a variety of sessile invertebrates
and algae (e.g. see Fig. 1 in [54]). Substrata were sourced from the
base of the main reef edge and were vacant of all fishes and
mobile invertebrates. A small cage (11 mm mesh size; 30 × 30 ×
30 cm) was placed over the patches to allow acclimation to the
reef without the threat of predation for the duration of 40 to
60 min. Treatments were systematically placed down the reef to
avoid any possible confound with reef position. Patch reefs
were approximately 4 m apart and 4 m from the continuous
reef edge with 32 to 42 replicate fish per treatment combination.
Due to time limitations, behavioural observations were not
undertaken on all fish (n = 28–32 per treatment).

After the cage was carefully removed, activity and space use
was assessed using a well-established protocol [51] by a single
observer (MIM) who was blind to the microplastic feeding treat-
ment. Briefly, fish behaviour was assessed in situ over a 3 min
period by the observer on SCUBA that was approximately
1.5 m away from the patch reef with the aid of a magnifying
glass. Four aspects of activity and space use were assessed:
(i) bite rate; (ii) total distance moved (estimated from knowing
the length of each reef); (iii) maximum distance ventured (max
DV) from the habitat patch and (iv) boldness. Boldness was
quantified using a continuous scale between 0 and 3 from the
3 min observation period, after which the focal fish was
approached by a pencil tip and its response observed (electronic
supplementary material, Part 6 for details).

(d) Survival monitoring
Tagged fish on live or dead-degraded hard coral patch reefs were
monitored three times per day for 72 h (approx. 07.00, 12.00,
17.00 h). If fish were missing from a reef, then a search of the
neighbouring reef edge was conducted, but none were found.
Previous studies have found that movement is rare, even when
the density on patch reefs is high [49]. Observations during
behavioural observations and censuses highlighted that when
fish strayed too far from shelter they were quickly subjected to
predation by predators such as lizardfish or wrasses. On the
rare occasion that other fishes naturally settled onto the exper-
imental patch reefs, they were removed with a small dip net at
the time of census, ensuring there was minimal disturbance to
the focal fish.

(e) Statistical analysis
The four behavioural variables (bite rate, distance travelled,
maximum distance ventured, boldness index) were computed
into a single synthetic variable using a correlation-based princi-
pal component analysis (PCA). Variables were transformed to
improve normality (the first three square-root transformed, the
last squared) as PCA performs better when data are normally
distributed. General linear mixed models were then performed
on the first principle component, which accounted for 75% of
the variance in fish behaviour, with correlation coefficients for
individual variables being high and negative (bite rate −0.73; dis-
tance moved −0.88; max distance ventured −0.88; boldness
−0.95). Because of the strong negative relationships of the orig-
inal variables with PC1, the opposite (sign) of the mean scores
were represented in the interaction figure to aid interpretation
of the difference in behaviour among treatment combinations.
The effect of coral environment (fixed: live versus dead) and
plastic (fixed: presence versus absence) on fish behaviour was
tested with a three-factor nested generalized linear model
(GLM), using tank identity as a nested (random) factor in the
analysis (type I sums of squares). This random factor took into
account the interdependence of the fish maintained and fed in
the same tank during the plastic exposure, effectively making
tank, not fish, the level of replication for the plastic treatment.
Tukey’s HSD means comparisons for unequal sample sizes
were used to explore the nature of the significant effects found.
In the current study, there was an ordinal interaction [55], so
the significant main effects were also interpreted. Effect sizes
are given as partial-eta-squared (h2

p), which represents the pro-
portion of the total variance in a dependent variable that is
associated with the membership of different groups [56].

Survival of the P. amboinensis in relation to the four treat-
ments was compared using a Cox proportional hazard
analysis. To determine the nature of the significant treatment
effect found, data for the ‘live coral–no microplastics’ treatment
was subsequently dropped and the remaining three treatments
were retested for equality. To explore the link between survival
(h) and behaviour (as represented by PC1), Spearman’s rank
order correlation was undertaken because of the bimodal
nature of survival. Statistics were undertaken using Statistica
(v. 13.0).
3. Results
The behaviour of the fish in the field was affected by a signifi-
cant interaction between the exposure to plastic and the coral
environment in which they were released (F1,16 = 13.42, p =
0.002, h2

p ¼ 0:46; figure 1). This interaction stemmed from
an inconsistency in the effect of plastic exposure on the be-
haviour of fish between habitat types (figure 1, Tukey’s
test). In both coral types, fish pre-exposed to plastic showed
elevated behavioural activity compared to those in the no-
plastic treatments, as shown by a significant plastic main
effect (F1,17 = 27.11, p < 0.0001, h2

p ¼ 0:61; electronic sup-
plementary material, table S1). Similarly, there was a clear
effect of habitat on the behaviour of fish (F1,16 = 11.17, p <
0.004, h2

p ¼ 0:46; electronic supplementary material, table
S1), with fish placed on dead coral showing greater behav-
ioural activity compared to those on live coral when fish
had not been exposed to microplastics (figure 1, Tukey’s
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tests). Effect sizes indicate that exposure to plastic was the
dominant effect, accounting for 30%more of the total variance
in behaviour than habitat type, and 25% more variability than
the interaction. Trends in PC1 are supported by trends in
the original variables (electronic supplementary material,
figure S6). There was a significant difference among tanks in
the behaviour of fish within the plastic treatments (F19,14 =
2.78, p = 0.03) likely due to the social hierarchies established
within the confinement period, and this term also had a
large effect size ðh2

p ¼ 0:8Þ. However, these differences were
consistent among habitats (i.e. interaction: p = 0.67).

There was a significant difference between the survival
trajectories of the four treatments (x23 ¼ 39:95, p < 0.0001;
figure 2). Reanalysis after dropping the live coral–no micro-
plastics treatment from the analysis found no difference
between the three remaining treatments (x22 ¼ 3:45, p = 0.18;
figure 2). A Spearman’s rank order correlation found a mod-
erately strong positive relationship between the behavioural
index and hours surviving (ρ = 0.33, p = 0.001, n = 135). This
suggests that survival increases as fish become more conser-
vative in their behaviour (note that there are strong negative
relationships between PC1 and behavioural measures, see
Statistical analyses above).
4. Discussion
This is the first study to examine the outcome of a scenario
that may be increasingly common in the future—one of
living in a degraded marine environment in the presence of
plastic pollution. Our study shows that negative effects can
arise when fish are exposed to both stressors alone or concur-
rently. When fish were living in a habitat of healthy live coral
they stayed closer to shelter and took less risk compared to
their dead-degraded coral counterparts, leading to higher
survival from predation. However, when fish had a history
of potentially feeding on microplastic particles for a small
portion of their early life, their behaviour became even
more risk-prone and they strayed even further from shelter
than fish on dead-degraded coral without plastic exposure.
A positive relationship between mortality and travelling
further from shelter emphasizes that risky behaviour leads
to higher mortality. Exposure to microplastics accounted for
more variability in behaviour than living in degraded habi-
tats. Moreover, fish that had a history of exposure to
microplastics exhibited six times lower survival than those
that had not been exposed to microplastics when they were
living in a live coral-dominated habitat. The results of both
the behavioural and survival analyses revealed a similar
antagonistic interaction between coral habitat and plastic
treatments, which likely stem from a ceiling truncation.
Indeed, fish fed plastic exhibited an increase in risk-taking
behaviours, which was more extreme than those observed
in fish placed in dead coral alone. We also failed to see a habi-
tat difference between the two groups of plastic-fed fish,
which indicates that these fish displayed maximal risk-
prone behaviours. Similarly, fish fed plastic and fish placed
in dead coral suffered approximately 90% mortality, a
number that is mathematically capped at 100%. It is also
interesting to note that the plastic–dead coral fish were the
only ones to reach the 100% mortality, and that they did so
well before the end of the monitoring period, supporting
our ceiling truncation hypothesis. What these results imply,
however, is that plastic consumption has a behavioural (and
potentially a survival) impact that is at least as, if not more,
severe than coral degradation. Our results suggest that a
reduction of microplastics in the environment may be a
useful management strategy, since minimizing microplastic
intake by fishes will work in concert with reef restoration
strategies to enhance the resilience of coral reef populations.

A number of studies have examined the interactive effects
of microplastic consumption with other stressors, such as
herbicides and antibiotics [57]. However, few studies to
date have explored the interactive effect of microplastics
and other environmental stressors on fish behaviour [57,58]
and those that have, typically used plastic concentrations
that are intended to cause gross physiological effects, rather
than represent ecologically relevant concentrations (e.g.
Ferreira et al. [59]). Compared to most previous research,
our study used relatively conservative concentrations of
microplastics [52] in an attempt to tease out interactive effects
of microplastic pollution and habitat degradation. The pre-
sent study found what appears to be an antagonistic effect
between consuming microplastics and habitat quality in
that the effect of habitat degradation and microplastic
exposure together was actually less than the sum of the inde-
pendent effects. However, as mentioned our study likely
underestimates the combined effect of the two stressors
because of the constrained nature of the variables measured
(e.g. mortality cannot be higher than 100%). However,
there being a large influence of habitat degradation on
behaviour and survival as predicted [22,23,60], when fish
had consumed microplastics, they behaved in a similar way
regardless of habitat and displayed similarly low survival.
Fish exposed to microplastics moved further from shelter
and took more risks, exposing themselves to the predators
that have high feeding rates and are highly selective for
juvenile fish that stray from shelter [44,46]. This high risk be-
haviour dramatically reduced survival compared to fish not
exposed to plastic and living on live coral. Interestingly,
studies of interactive effects of stressors on fish life history
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and growth have generally found synergistic effects, rather
than antagonistic or additive [61–63]; however, studies
measuring growth rates, in juveniles especially, may not
suffer from ceiling truncation issues.

Only one other study has fed microplastics to juvenile
fishes and examined survival in realistic predator–prey scen-
ario. Jacob et al. [64] fed small (90 µm) microplastics at high
concentrations to settlement stage manini surgeonfish
(Acanthurus triostegus) for 8 days and then exposed them to
four lionfish (Pterois radiata) to find that there was no effect
of microplastic consumption on survival. This result may
have been due to lionfish being largely invisible to their prey
[65,66], having efficient mechanisms of prey capture [67,68]
and being crepuscular feeders [69], all of which would pro-
mote non-selective feeding among a group of similar sized
prey. Clearly more studies are required that put microplas-
tic-treated organisms into realistic scenarios to determine
how consumption may impact biological interactions and
the transfer of energy and toxins through the community.

The current study gave fish the opportunity to ingest
microplastics in 15 min pulses twice a day for a total of six
feeding episodes. The exact levels of microplastic capture
for each individual were unknown due to the rapid passage
of plastics through their guts. However, gut samples from
our supplementary studies of microplastic-exposed fish
suggest that the levels of ingestion were highly variable
at the individual level. There is a paucity of information
currently on the levels of microplastics within tropical
environments (electronic supplementary material, Part 1)
and their availability to marine organisms of different life
stages [70]. Concentrations of plastic waste are likely to be
greater in the shallow productive coastal areas that border
urban areas (e.g. [71]) due to terrestrial sources and coastal
current regimes. They are also likely to be greater during
periods of heavy rain and wind in tropical areas [72], causing
the inputs of new microplastics into offshore waters and
resuspending existing loads from the sediment [73]. At an
individual level, we have shown that fish ingest microplastics
when available, but it is likely that ingestion within a popu-
lation will be right skewed with only some individuals within
the population focusing on the consumption of microplastics,
possibly as a result of a search image making foraging for
like-items more efficient [74], or due to individuality of
food preferences [75].

Despite high variation in the likely number of microplas-
tic particles consumed among individuals, we found there
were marked differences in behaviour and mortality at the
treatment (i.e. sub-population) level. This suggests that
exposure to microplastics for a relatively short duration is
enough to alter their behaviour and survival. Since we
know that these small fish are able to evacuate ingested
microplastic particles (electronic supplementary material,
figure S5), it is possible that all fish within the treatment
may have at some stage ingested particles that rapidly
passed though the gut. Alternatively, the water that has
been in contact with microplastics may itself have become
toxic and lead to the behavioural changes; a possibility
demonstrated for the intertidal gastropod Littorina littorea
[38], though this study used degraded beach plastic that
may have absorbed additional contaminates. Other studies
have found toxic effects of free monomer styrene on a
number of invertebrates and fish (e.g. [76]). Chemical ana-
lyses of the leachates from the beads used in the current
study found that they were inert, suggesting that toxic effects
are unlikely in the present study. Evidence suggests that our
results are more likely due to nutritional stress promoting
risk-taking over predator vigilance [77] (possibly due to the
extremely high metabolic rates of these juvenile fish [78]),
rather than a toxicity-induced behavioural syndrome [79]. If
weathered particles had been used in the study we may
have found additional influences of products released from
the fragmented particles [80], which may have changed the
likelihood that they would be ingested by fishes [80]. Clearly,
we are only just beginning to understand the impacts that the
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ingestion of microplastics may have on animals, and the role
that microplastic weathering plays is a key component that
warrants further study.

Our results are in keeping with other studies that have
found higher mortality in dead-degraded coral compared to
live coral-dominated habitats for fish that often associate
with live coral [51,81,82]. Results from monitoring studies
show major shifts in community composition upon the loss
of live coral [19,21,83]. Experimental studies have shown
that fish on dead-degraded coral tend to stay further away
from the coral habitat [51,81,84], thereby exposing themselves
to a greater threat of predation. The reason underlying this
movement away from a shelter is debatable but may include:
being repelled by the smell of coral necrosis [51], an attempt
to enhance crypsis due to the upwelling yellow light from the
surrounding sand [51,85], or a willingness to take more risk
due to a loss of the chemical associative learning mechanisms
of learning and updating threat information [22,23,54].

The marine environment is a system under increasing
stress from plastic pollution, but also from the global
impact of ocean warming which has caused the widespread
degradation of one of the Earth’s most biologically diverse
ecosystems, coral reefs. The predictions of increasing warm-
ing, storm frequency and severity [86] have led to a
prognosis of a general decline in the quality of coral reefs
globally [87]. Evidence from our study suggests that the con-
sumption of microplastics may have a detrimental effect on
juvenile fish that is of similar magnitude, at least over small
spatial and temporal scales, to living in association with a
degraded habitat. Our study also suggests that microplastic
consumption may exacerbate the detrimental effects of coral
reef degradation to impact the survival of newly recruiting
fishes. Understanding how organisms respond to the co-
occurrence of local stressors, such as pollutants like micro-
plastics, with stressors such as global warming that are
regulated by factors outside geographic boundaries, is central
to determining useful management strategies that will pro-
mote the resilience of community members that resist change.
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