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Studies of altitudinal and latitudinal gradients have identified links between
the evolution of insect flight morphology, landscape structure and micro-
climate. Although lowland tropical rainforests offer steeper shifts in
conditions between the canopy and the understorey, this vertical gradient
has received far less attention. Butterflies, because of their great phenotypic
plasticity, are excellent models to study selection pressures that mould flight
morphology. We examined data collected over 5 years on 64 Nymphalidae
butterflies in the Ecuadorian Chocó rainforest. We used phylogenetic
methods to control for similarity resulting from common ancestry, and
explore the relationships between species stratification and flight mor-
phology. We hypothesized that species should show morphological
adaptations related to differing micro-environments, associated with
canopy and understorey. We found that butterfly species living in each stra-
tum presented significantly different allometric slopes. Furthermore, a
preference for the canopy was significantly associated with low wing area
to thoracic volume ratios and high wing aspect ratios, but not with the rela-
tive distance to the wing centroid, consistent with extended use of fast
flapping flight for canopy butterflies and slow gliding for the understorey.
Our results suggest that microclimate differences in vertical gradients are a
key factor in generating morphological diversity in flying insects.
1. Introduction
Flight has been fundamental to the evolution of insects [1–3]. As a result, morpho-
logical flight traits have been studied by ecologists in the context of spatial and
temporal variationaspotential adaptations to landscape structure,weather, disper-
sal and migration (e.g. [4–8]). Indeed, certain morphological traits predict flight
performance [9–12]. For example, sincemore than 96% of insect thoracicmass con-
sists of flight muscles [13,14], larger thoraxes have been associated with higher
power outputs, leading to an increase in flight thrust and better manoeuvring
during flapping flight [15,16]. Thoracic power can be characterized by measures
that account for differences in body size, such as wing loading, flight muscle
ratio, or the wing area (WA) to thoracic volume (TV) ratio [17–19], which are posi-
tively associated with wingbeat frequency [20,21] and metabolic activity [10,22].

Changes in wing shape also influence flight performance [22,23]. Long and
narrow wings are aerodynamically more efficient than short and wide wings,
because the former morphology reduces induced drag, economizing power at
gliding [9,16]; these traits are represented by the aspect ratio, the proportion
of wing length to the mean wing chord. A larger distance from the wing cen-
troid (WC) to the wing base is associated with a better body response in the
pitching plane and to increased manoeuvrability and force production [23–25].

Allometry, the relationship between size and shape, can also vary drastically
between closely related species as a function of physiological and life-history
traits [26–28]. It describes how different spatial niches can exert distinct selective
pressures on flight behaviour, leading to changes in body proportions [29,30].

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2020.1071&domain=pdf&date_stamp=2020-10-21
mailto:dsmenag@gmail.com
mailto:mfcheca@puce.edu.ec
https://doi.org/10.6084/m9.figshare.c.5170571
https://doi.org/10.6084/m9.figshare.c.5170571
http://orcid.org/
http://orcid.org/0000-0001-7361-5127
http://orcid.org/0000-0001-8980-3173
http://orcid.org/0000-0002-0375-9384
http://orcid.org/0000-0001-8825-3675


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20201071

2
For example, the energetic cost of flight increases inversely
with organism size [31]. Nevertheless, many insects and
small birds successfully migrate over long distances despite
their size, minimizing the energetic cost of locomotion
through allometric shifts, allowing the use of alternating
flapping–gliding flight modes [32,33].

Ecological factors driving morphological diversity and
flight ability can be studied most effectively in diverse tropical
habitats. As noted byMcArthur [34]: ‘increasing complexity of
communities toward the equator may result in stronger
species interaction, thus increasing species interdependence
and intensifying selection for adaptive patterns’. In tropical
rainforests, biotic and abiotic factors, such as temperature,
light, humidity, wind and species, change significantly along
a vertical gradient ranging from the ground level to the
upper canopy [35–41]. Such variation results in a diversity of
microhabitats, which support assemblages adapted to each
range of conditions [42–44]. Niche partitioning along vertical
scales has accordingly been suggested to contribute to the
high biological diversity in these ecosystems [36,45–49].

There is abundant evidence of community niche partition-
ing among strata in Neotropical butterflies, usually occurring
at the subfamily level [50–57], but also among species and
populations [58]. Butterflies, due to their great phenotypic plas-
ticity and strong sensitivity to environmental factors [59–63],
are excellent models to study selective pressures moulding
morphology to optimize flight performance across forest
strata. However, few studies have examined the morphological
differences across vertical strata in tropical butterflies. Among
Amazonian Riodinidae, Hall & Willmott [64] found two
groups of specieswith significantly different slopes for the allo-
metric relation between WA and TV. They argued that if these
groups corresponded to butterflies from different forest strata,
then metabolic restrictions driven by differences in heat
availability among used microhabitats might explain this pat-
tern. Although field observations suggest differences in
morphology among some Nymphalidae butterflies inhabiting
canopy versus understorey [25,64–66], whether there is an
evolutionary trend between stratification, allometry and
flight morphology at a community level remains unknown.

The goal of this study was therefore to explore variation in
allometry and flight morphology between the canopy and
understorey, using a Nymphalidae butterfly community as a
study model. The Nymphalidae is the most diverse butterfly
family, one of the best studied, and shows the remarkable
variation in size, morphology and ecology across the group,
and is relatively easy to sample. Our data comes from a long-
term butterfly monitoring program in the Ecuadorian Chocó
biogeographic region, a locality broadly representative of Neo-
tropical lowland rainforests [67]. We hypothesized that
butterflies in the understorey should have a hypoallometric
slope of WAs versus TVs compared with canopy butterflies,
due to more restricted metabolic activity associated with
lower temperatures in the understorey [64]. Consequently,
we predicted an evolutionary trend between microhabitat
specialization and morphology: as conditions in the canopy
are favourable for higher wingbeat frequencies than in the
understorey, an increasing preference for the canopy was
hypothesized to be associated with butterflies with a lower
ratio of WA to TV (i.e. extended use of fast flapping flight
for canopy butterflies and slower gliding for understorey
butterflies). Because these adaptations may affect speed
and manoeuvrability in understorey butterflies, we also
hypothesized that understorey butterflies may have shifted
their wing shape as a means of compensation, towards higher
aspect ratios and shorter distances to the WC (wings more
elongated, wider towards the tip) compared with canopy
butterflies.
2. Material and methods
(a) Sampling
We used ecological and morphological data from a long-term
butterfly monitoring project (years 2006–2007, 2011–2013) at
Reserva Río Canandé (00°280 S, 79°120 W), an Ecuadorian low-
land rainforest within the Chocó biogeographic region (see
[68,69]), one of the most diverse, threatened and least studied
biomes on Earth [70–73]. The sampling design consisted of 32
Van Someren-Rydon traps [74] distributed in two transects,
each about 280 m long. Along each transect, eight sampling
sites were established, with each pair of sites spaced 40 m
apart. At each site, one trap was positioned in each of the two
strata: understorey (1–1.5 m) and canopy (20–30 m). All sites
were similar in terms of altitude (approx. 500 masl) and topogra-
phy (ridges with 10% inclination). The baits used were rotting
banana (2 days of fermentation) and rotten shrimp (15 days of
fermentation), based on Checa et al. [75]. Each sampling period
consisted of 6 days and the traps were checked daily. Sampling
was performed every two months. The collected butterflies
were deposited at the Museum of Zoology, Invertebrates Section
(QCAZ), of the Pontificia Universidad Católica del Ecuador,
Quito, Ecuador, and identified using specialist literature
(e.g. [30,76]) and consultation with taxonomists.

(b) Morphological traits
Because few females are capturedwith our samplingmethod [75],
we only used males for analyses in this study. We selected 8–10
individuals of each species that were in the best physical con-
ditions (i.e. undamaged wings and thoraxes) to be measured ex
situ. Due to the limited number of individuals collected, we
measured fewer individuals of the following species: Adelpha
naxia (n = 5), Memphis aulica (n = 6), Siproeta stelenes (n = 5),
Heliconius hecale (n = 2), Hamadryas arinome (n = 2), Archaeoprepona
demophon (n = 6), Catoblepia xanthicles (n = 7) and Magneuptychia
mycalesis (n = 6) (see [30] for a list of taxonomic authorities for all
species). The morphological variables measured were WA, forew-
ing length, thorax length, thorax height, thorax breadth and
distance to centroid (see electronic supplementary material,
appendix S3 for details of each measurement). Thorax breadth
wasmeasuredwith amanual calliper to the nearest 0.2 mm (Mitu-
toyo Corporation, Japan). To measure the remaining variables,
digital images of individual specimens were used. Specimens
were placed in a lightbox with the wings closed and the forewing
and hindwing overlapped in a position similar to that seen during
flight (using scale melanisation as proxies of wing overlapping;
electronic supplementary material, appendix S3) [25,61]. Photo-
graphs were taken with a Canon EOS-1100 digital reflex camera
(Canon Inc., Tokyo, Japan) with an 18–55 mm (at 55 mm) lens
(Canon Inc., Tokyo, Japan) placed on a tripod and orientated in
the same plane as the wings. Constant exposure parameters
were used (shutter speed = 1/6; ISO = 100; diaphragm = f13).
Measurementsweremade on the digital images using themeasur-
ing tool in ImageJ software [77]. WA (mm2) was obtained using
the Measure function, after the thoraxes were digitally removed.

With these variables, we calculated the following flight-
related parameters: aspect ratio, WA to TV ratio and relative
distance to WC. Aspect ratio (AR) was calculated as 2 × forewing
length2 ×WA−1 [22]. The TV (mm3) was estimated as thoracic
length × thoracic breadth × thoracic height. The WA to TV ratio
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Figure 1. Non-metric multidimensional scaling plot. Each character rep-
resents a sampling period (one week) between 2011 and 2013. Canopy
species assemblages are represented by circles, and triangles represent under-
storey assemblages. p < 0.001. Stress = 0.21 under a Bray–Curtis distance
matrix.

Table 1. Number of species in canopy, understorey and non-significant
stratification (NS), categorized according to the binomial test.

subfamily canopy understorey
non-
significant total

Biblidinae 11 2 2 15

Charaxinae 9 2 4 15

Heliconiinae 1 3 4 8

Limenitidinae 5 1 0 6

Nymphalinae 1 1 5 7

Satyrinae 2 13 3 18

Total 29 22 18

Significant levels of two-tailed probabilities for the binomial tests are
**p < 0.01, *p < 0.05, n.s. = not significant, at α = 0.05.

Table 2. Results of the phylogenetic signal tests for stratification and flight
morphology traits. P for Pagel’s λ is the calculated p-value when λ is
compared with λ = 0.

trait

Pagel’s λ Bloomberg’s K

value P value P

stratification 0.660 <0.001 0.434 0.011

WA : TV 0.968 <0.001 0.829 <0.001

AR 0.858 <0.001 1.020 <0.001

RDC 0.984 <0.001 1.380 <0.001
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(WA : TV) was estimated as: WA× TV−2/3 [64]. The WC was
obtained using the Centroid function in ImageJ (calculated as
the average value of the central pixels of x and y coordinates of
all pixels inside the WA) [77]. The distance of this vector from
the wing base to the WC was measured digitally using ImageJ
(DWC). This distance was subtracted from the square root of
WA to correct for differences in wing size. The resulting value
was named ‘relative distance to wing centroid’ (RDC). A total
of 606 individuals were measured, from 67 species belonging
to six subfamilies: Limenitidinae, Heliconinae, Nymphalinae,
Satyrinae, Biblidinae and Charaxinae (electronic supplementary
material, appendix S2).

(c) Stratification patterns
To test whether canopy and understorey butterfly assemblages
were different in their structure and composition, a non-metric
multidimensional scaling (NMDS) ordination was performed
using data from canopy and understorey abundance for each
species in each sampling period. A Bray–Curtis dissimilarity
matrix and a Wisconsin double standardization were employed.
We performed an analysis of similarities (ANOSIM) to test the sig-
nificance of the difference. A SIMPER analysis was employed to
evaluate how much each species contributes to the difference in
assemblages between the strata. These analyses were performed
using the Vegan package [78] in R [79]. Because traps were not
placed in the same sites between 2006–2007 and 2011–2013, only
data between 2011 and 2013 were used for these three analyses.

(d) Allometry and stratification
To test whether Nymphalidae species had a relationship between
flight height and the ratio of WA to TV, as hypothesized by [64],
we plotted both variables against each other (raising TV to the
2/3 power to control for geometric differences as area increases
versus volume [64]). Since the plotted data appeared to show
two distinct trends among species, we quantitatively assessed
whether these trends were associated with preference for forest
stratum by categorizing species as canopy (C) or understorey
(U) according to a binomial test in SPSS v. 12 (IBM Corporation,
Chicago, USA), using 0.5 as the theoretical value of the expected
distribution of observations. We excluded the non-significant
(NS) species and used an analysis of covariance (ANCOVA) in
PAST v. 3.14 [80] to test if canopy and understorey butterflies
differed in terms of their WA and TV regression slopes. To
meet the assumptions of this test, data were log transformed,
linearity of data was confirmed using least-square linear
regressions, and normality of residuals was checked using a
Shapiro–Wilk test ( p > 0.05).

(e) Evolution of flight morphology and stratification
To test whether there were any significant associations between
stratification and morphology, we used phylogenetic generalized
least-squares models (PGLS) [81]. We fitted three PGLS models
in Caper (after finding a significant phylogenetic signal for
all morphological variables; see ‘Accounting for phylogenetic
bias’ below) setting stratification values as our independent vari-
able and WA : TV, AR and RDC as our respective dependent
variables using maximum-likelihood estimation of the lambda
escalation parameter.

To provide a continuous measure of the vertical distribution,
we ran a hierarchical Bayesian model with 10 000 Markov chain
Monte Carlo permutations using butterfly occurrence in either
canopy or understorey for each sampling period [57], using the
Bayespref package [57] in R [79]. We used the median of
the canopy probability distribution as trait value: a value close
to 0 indicated preference for understorey and a value close to
1 indicated preference for canopy. Only species with more than
10 captured specimens were considered. Sixty-four species had
morphological, stratification and phylogenetic data, and thus
were included in this analysis.
( f ) Accounting for phylogenetic bias
We analysed our data in a phylogenetic context to account for the
influence of phylogeny on traits and resulting potential loss of
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Figure 2. Phylogeny of the 64 Nymphalidae species collected at Reserva Río Canandé. Stratification values and means of the WA to TV ratio (WA : TV), aspect ratio
(AR) and relative distance to wing centroid (RDC) are shown. Scale bar indicates time in MY.
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statistical independence among our species data points [82,83].
We built a time-calibrated phylogeny using eight published
[84] and 56 newly obtained partial sequences of the mitochon-
drial gene cytochrome oxidase subunit I (COI) from the species in
our butterfly community (see [69] for details on DNA extraction,
marker amplification and sequencing). COI sequences were
aligned in CLUSTALW (0.9% missing data and 304 distinct
alignment patterns). A maximum-likelihood phylogeny was esti-
mated in RAxML v.8.2 using a GTR + gamma model of DNA
sequence evolution; a separate partition for third codon positions
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to account for the variation in rates of substitution; and 800 boot-
strap replicates. The novel COI data enabled us to investigate
species without existing sequence data, but the use of a single,
fast-evolving marker and the inclusion of a limited fraction of
all Nymphalidae may result in poor estimates of the deeper top-
ology due to saturation and long-branch attraction. To account
for these problems, we constrained the ML tree search-space
with a backbone topology (TreeBase 26598) representing 21 pre-
viously resolved splits above the genus level [85,86]. The
resulting tree was ultrametricized using the RelTime procedure
in MEGA7 [87,88] using 18 secondary calibration points derived
from previous studies as reported in Timetree [89] (electronic
supplementary material, appendix S5).

We tested the phylogenetic signal (the tendency for related
species to resemble each other more than they resemble species
drawn at random from a phylogeny, [90]) for stratification
using Pagel’s λ [91] and Blomberg’s K [92] using, respectively,
the Geiger [93] and Caper [94] packages in R [79].
mial test. Canopy and understorey regression slopes were significantly
different (ANCOVA, p < 0.001). The three butterflies with the strongest
preference for each stratum (according to the Bayesian analysis) are noted.

c.B
287:20201071
3. Results
(a) Stratification patterns
The composition and abundance of butterfly assemblages
were different between canopy and understorey (NMDS,
figure 1). These differences between the strata were highly sig-
nificant (ANOSIM, p < 0.001), and 30 species explained greater
than 75% of the variation (SIMPER; electronic supplementary
material, appendix S4). Twenty-nine species were significantly
associated with canopy (C) (electronic supplementary
material, appendix S1, binomial test). Of these, 11 belong to
the Biblidinae and 9 to the Charaxinae. Five of 6 Limenitidinae
were categorized as canopy species. Six species (Hamadryas
amphinome, Callicore atacama, Smyrna blomfildia, Eunica
pomona, Heliconius hecalesia and Adelpha erotia) had the highest
preference for the canopy as indicated by the Bayespref analysis
(stratification > 0.9). Twenty-two species were significantlymore
likely tobe found in theunderstorey (U). Thirteenof thosebelong
to Satyrinae (table 1, binomial test). The species showing the
highest preference for the understorey (stratification< 0.1) were
Antirrhea philaretes, Caligo atreus, C. eurilochus, C. zeuxippus, Cato-
blepia orgetorix, Cithaerias pireta, Dulcedo polita, Eresia clara, Haetera
piera, Heliconius eleuchia, H. erato and Pierella helvina. Five out of 7
Nymphalinae showed no stratification (NS) (binomial test;
table 1). Phylogenetic signal for stratification was highly signifi-
cant (λ= 0.660, p< 0.001; K = 0.434, p= 0.011; table 2), meaning
that closely related butterflies in our community tend to fly at
similar heights above the ground.

(b) Allometry and stratification
Caerois gerdrudtus (stratification = 0.29 U), Cissia confusa
(stratification = 0.57 NS) and Magneuptychia mycalesis (stratifi-
cation = 0.85 C) had the largest WA : TV ratio (62.0, 48.0 and
47.5 respectively). Memphis cleomestra (stratification = 0.75 C),
Archaeoprepona demophon (stratification = 0.55 NS) and Prepona
philipponi (stratification = 0.88 C) had the smallest ratios (11.5,
11.6 and 14.4, respectively) (figure 2). Canopy and understorey
butterflies differed significantly in their WA and TV allometric
slopes (ANCOVA, p < 0.001; figure 3).

(c) Flight morphology and stratification
Strong phylogenetic signal was found for WA : TV, AR and
RDC (table 2). PGLS analyses showed highly significant
associations between stratification and WA : TV (p < 0.001,
r2 = 0.15) and AR ( p < 0.001, r2 = 0.17). For WA : TV the
association was negative, whereas for AR the association
was positive. In other words, butterflies in the canopy have
relatively larger thoraxes and smaller, more elongated
wings than understorey butterflies. No association was
found between stratification and RDC ( p = 0.253, r2 = 0.005).
4. Discussion
The use of trait-based approaches to explore species
responses to their biotic and abiotic environment are central
to our understanding of the structure of natural assemblages
[95], proving effective in tropical rainforests (e.g. [96,97]).
Here, we report a consistent pattern of habitat specialization
linked to the evolution of flight traits.

We found strong vertical stratification, consistent with
previous studies of Neotropical butterflies [50,53–55,57,98].
Most species typically occupy a specific stratum, although
the phylogenetic signal of stratification was lower than
reported by Fordyce & DeVries [99] in Costa Rican Nympha-
lidae, in a study done at the genus level. Given the similarities
in composition and structure, this difference probably reflects
a divergence in flight height preferences within a genus,
which highlights the importance of vertical dimensions as a
niche partitioning mechanism for closely related taxa.
Indeed, Colobura dirce and C. annulata were considered a
single species until a closer examination revealed different
larval morphology and ecology, with some evidence for diver-
gence in flight height [100]. Here, we found several notable
examples of sister species that differ in flight height as well
as flight morphology, in Pyrrhogyra, Catonephele, Hamadryas
and Heliconius. Furthermore, Nice et al. [58] showed that
genetic divergence in sympatric canopy and understorey
populations of Archaeoprepona demophon is comparable with
that among isolated localities, separated by 1500 km. These
examples suggest that a shift in flight height is difficult, but
those lineages thatmanage tomove into a new vertical stratum
may find opportunities for adaptive radiation.

A number of factors, such as forest physiognomy and
structure, resource availability and behaviour, have been
associated with arthropod stratification [101], but these
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relationshipsmay be highly specific. For example, vertical stra-
tification in ants has been linked to species’ preferred food
source [102], whereas canopy fig wasps apparently use wind
to passively carry them to their hosts [103]. Flight height
was found to be correlated with the height of their larval
host plants in clearwing butterflies and arctiid and geometrid
moths [52,104], although it remains unclear if larval resource
availability actually influences adult stratification. Within
Morphini and Haeterini butterflies, a relationship between
sex-specific behaviours, flight height and wing morphology
has been reported [25,66]. Although each taxon has its own
ecological niche, which may exert differential selection
pressure, our results showed that a relationship between
flight height and morphology can arise at a community
level. This suggests that microhabitat preference may be an
important factor contributing to the evolution of flight
morphology [25,66,105].

For small ectotherms that operate at the scale of microhabi-
tats, microscale climate systems are especially important
[106,107]. It has been suggested that differences in available
light and temperature influence butterflies inhabiting different
microhabitats [50,57], as the microhabitat conditions select for
distinct morphologies, which in turn determine flight modes
[25,65]. In tropical lowland rainforests, vertical strata at the
same location may have even steeper climatic gradients than
those found across the dimensions of latitude and elevation
[41]. Whereas there is a global theoretical drop in temperature
of 1°C for every 100 m increase in altitude [108], or a drop of
1°C for every 154 km shift from northwards the equator
[109], a lowland tropical forest can experience canopy-
understorey daytime differences of 4–10°C in Gamboa,
Panama [110], or 5.8°C at midday in Durango, Ecuador
(100 km NW from our study area; P. A. Salazar & S. Mena
2014–2016, unpublished data); with light availability in the
understorey being 1% that of the canopy [111].

Because butterflies are poikilotherms, their metabolic
rates are limited by available environmental heat [112].
Insect wingbeat frequencies increase with environmental
temperature and hence higher heat availability [113,114].
A reduction in wing area is typically compensated for by an
increase in wingbeat frequency, which increases energetic
requirements [115]. Experimental reductions in WA signifi-
cantly increased wingbeat frequencies in Pontia occidentalis
and Pierella helvina [116,117]. Canopy butterflies might tend
to have low WA : TV ratio because these morphologies are
more suited for high performances in environments with
high heat availability. Likewise, understorey butterflies may
make more use of gliding flight, which is less energetically
expensive than flapping flight [118,119] andwould not require
such high amounts of heat energy. Because acceleration is
dependent on wing size and wing beat frequency [120], an
increase in wing size in understorey butterflies may help to
compensate for a decrease in thorax size. An elevated wing :
thorax size ratio has been proposed to be adaptive for flight
at cold temperatures in Drosophila [115,121], and large hindw-
ings have been shown to enhance gliding performance in
Haeterini (Nymphalidae) butterflies [118]. Moreover, because
wings participate in thermoregulation by circulating haemo-
lymph through their veins and thus gaining heat from the
sun when they are opened [112], it is likely that a larger
wing area is also advantageous for increasing body tempera-
ture in understorey butterflies. Consistent with these
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arguments, Xing et al. [122] found butterflies with larger wing-
spans and darker colours in cool, closed-canopy rainforests
than in adjacent and hotter open woodlands in Australian tro-
pical–rainforest ecosystems (after accounting for phylogenetic
relationships). Furthermore, they found such butterflies to be
more active in the shade and during crepuscular hours,
while brighter and small-winged butterflies were more
active in the sun and midday hours (temperature differences
of 2.3°C at crepuscular hours and 3.4°C at midday; figure 4).

We hypothesized that shifts between morphological traits
might help compensate for performance constraints imposed
by habitat in understorey butterflies. Studies have shown a
negative relation between butterfly WA : TV ratio (or analo-
gous parameters) and flight speed [9,10,64,123]. First,
because having a high aspect ratio (AR) when using gliding
flight reduces metabolic costs compared with those of pow-
ered flight [118], understorey butterflies were expected to
have high ARs as a possible compensation for a more limited
metabolic energy availability. Second, because a centroid
located distally to the body improves flapping flight perform-
ance, the RDC was expected to be positively associated with
strata preference [16,61,123]. However, AR was higher for
canopy butterflies and no consistent relation was found for
RDC. Because high values of AR and low WA : TV ratios
were found to be associated with high performance in terms
of speed and manoeuvrability both in temperate [9,59,60]
and tropical butterflies [10], it is tempting to think that the
evolution of butterfly morphology in the canopy might, in
general, favour a faster and more agile flight compared
with the understorey. If this is the case, aspects of ecology
related to flight may shift consistently between the strata.
For example, in a Bornean butterfly community, predator
abundance was higher in the canopy, creating a selective
pressure towards fast and agile flight [44]. Nevertheless,
other morphological traits, such as having a dark, hairy and
large absolute thorax (to dissipate heat more slowly), com-
bined with behavioural strategies, such as a short flight
duration, shifts in wing coupling, or basking in sunlit
gaps, may permit high flight performances in understorey
butterflies [124,125]. These and other aspects remain to
be explored to fully understand the links between flight
performance and ecology.

In conclusion, our results support the hypothesis that
butterfly habitat preference for canopy and understorey is
associated with a set of morphological flight traits. These
results highlight the importance of vertical dimensions in
the generation of morphological and ecological diversity.
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