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The role of non-gametic components of the ejaculate (seminal fluid) in
fertility and sperm competitiveness is now well established. Surprisingly,
however, we know far less about female reproductive fluid (FRF) in the
context of sexual selection, and insights into male-FRF interactions in
the context of sperm competition have only recently emerged. Despite this
limited knowledge, evidence from taxonomically diverse species has
revealed insights into the effects of FRF on sperm traits that have previously
been implicated in studies of sperm competition. Specifically, through the
differential effects of FRF on a range of sperm traits, including chemoattrac-
tion and alterations in sperm velocity, FRF has been shown to exert positive
phenotypic effects on the sperm of males that are preferred as mating
partners, or those from the most compatible or genetically diverse males.
Despite these tantalizing insights into the putative sexually selected
functions of FRE we largely lack a mechanistic understanding of these
processes. Taken together, the evidence presented here highlights the likely
ubiquity of FRF-regulated biases in fertilization success across a diverse
range of taxa, thus potentially elevating the importance of FRF to other
non-gametic components that have so far been studied largely in males.

This article is part of the theme issue ‘Fifty years of sperm competition’.

1. Introduction

Sperm competition was originally conceived as an extension of male-male
(intrasexual) competition, but in this case through a contest that plays out
among ejaculates from rival males after mating has occurred [1]. More recently,
the burgeoning field of cryptic female choice [2,3], defined as female-mediated
mechanisms that bias fertilization toward the sperm of specific males, emphasizes
the critical role that females play in moderating the outcome of sperm competition
to suit their reproductive interests. As highlighted in this special issue, the
definitions of sperm competition and cryptic female choice have now been
broadened considerably to include externally fertilizing species and those with
less well-studied mating systems ([4], see also [5]).

The formal definitions for sperm competition and cryptic female choice
emphasize how selection acts on, and targets, sperm cells, respectively. Yet an
increasing body of evidence highlights the important role that non-gametic ejacu-
late components (seminal fluids) play during postmating sexual selection.
Seminal fluids play a role in moderating the success of sperm when they compete
to fertilize eggs, or in influencing or manipulating females’ mating behaviour and
the way they subsequently use sperm from different males [6]. For example, in
Drosophila melanogaster, seminal fluid proteins have effects on female postmating
responses, including changes in egg production, sexual receptivity and activation
of the immune system, all of which serve to bias sperm utilization patterns [7].

While research on seminal fluid continues apace [see 8,9], we know far less
about the potential sexually selected roles of female reproductive fluid. For the
purposes of the present review, we define female reproductive fluid (hereafter
FRF) as the medium, arising from females, through which sperm must pass on
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Figure 1. A schematic representation of the general mechanism by which female reproductive fluid (FRF) can affect sperm competition among ejaculates from two
males (indicated by yellow and blue sperm, respectively). (a) Depicts a situation in which sperm competition occurs with no effect of FRF, or where FRF has been
experimentally removed. Sperm are transferred/released (left side) and will fertilize eggs (right side) based on a fair raffle or their intrinsic quality. (b) Depicts the
same situation but with FRF present. As an example, FRF differentially influences sperm velocity from the two males, increasing the velocity of the yellow sperm,
which then go on to fertilize more eggs than sperm from the other male. (c) Summarizes the successive steps from gamete transfer/release to fertilization and

highlights what we have yet to learn about this process. (Online version in colour.)

their way to fertilize eggs. In external fertilizers, the females
release FRF along with the eggs; in internal fertilizers, the FRF
remains inside the female reproductive tract. Components of
the FRF may include (but are not limited to) ovarian, follicular,
oviductal or coelomic fluid, egg chemoattractants, peripheral
surfaces to eggs (e.g. egg jelly or cumulus cells), etc.

The aim of the present review is to broadly synthesize the
recent literature on FRF and sexual selection, which together
highlights the putative role that this fluid plays in postmating
sexual selection (see figure 1 for a graphical overview of the
role of FRF in postmating sexual selection). First, we briefly

discuss the role that FRF plays before gametes are released,
including its effect on males and eggs, and after fertilization,
during the early stages of embryo development. Second, we
examine the specific ways in which FRF influences sperm
traits. Third, we explore the emerging evidence that FRF can
play a role in moderating the selection of compatible/ preferred
sperm when ejaculates compete for fertilization (i.e. sexual
selection). Fourth, we consider the putative mechanistic pro-
cesses that underlie such sexually selected functions of FRF.
Finally, we conclude by highlighting key gaps in our knowledge
and provide a potential roadmap for future research in this area.



2. Effects of female reproductive fluid before
gametes are released

Before considering the effects of the FRF on sperm traits,
it is important to acknowledge that FRF can also affect
the fertilization process independently of any effects that
directly influence ejaculates. That is, FRF can have effects
prior to ejaculation. In this section, we briefly consider these
processes, with an emphasis on those effects that can be
linked to sexual selection mechanisms and ultimately affect
sperm competition.

(a) Effects on the eqgs

In internal fertilizers, FRF can play a prominent role in provid-
ing the appropriate environment for fertilization and the
development of oocytes (see [10] for a review on mammals).
FRF can also protect eggs from oxidative stress, which might
otherwise compromise embryo viability [11]. Proteomic ana-
lyses in insects and mammals showed that FRF is involved
in mitigating the deleterious effects of oxidative stress
[12,13], which may indicate that this is a highly conserved
function of the FRF in internal fertilizers. In external fertilizers,
FRF has the additional function of protecting eggs from the
adverse environmental conditions into which they are
released, thereby prolonging egg viability [14]. Recent work
indicates that FRF is also involved in protecting eggs and
embryos from pathogens. For example, proteomic analyses
of FRF in species such as fishes, insects and humans confirmed
the presence of proteins related to the immune system and ser-
ving a proteolytic function within the FRF [15-18]. In
summary, research on the effects of FRF on female gametes
has focused on naturally selected functions and predomi-
nantly those that increase egg viability. Intriguingly, some of
these effects of FRF on eggs may also indirectly influence post-
mating sexual selection. For example, recent evidence from
zebrafish (Danio rerio) suggests that FRF is also able to
extend the fertilization window (time available for fertilization
since egg activation), which may increase the opportunity for
sperm competition and cryptic female choice (L Pinzoni, MB
Rasotto, F Poli, C Gasparini 2020, unpublished data).

(b) Effects on males and ejaculates before spawning/
ejaculation

At least two lines of evidence indicate that FRF can have
a significant effect on postmating sexual selection through
mechanisms that occur before ejaculates interact with FRE.
First, by attracting males, FRF increases the opportunity for
premating sexual selection, but also for female multiple
matings, and hence for postmating sexual selection, as in the
rainbow trout (Oncorhynchus mykiss), where males increase
their upstream movement in the presence of FRF [19].
Second, by inducing an adjustment in male ejaculate invest-
ment, FRF may alter the outcome of postmating sexual
selection, as in in the brown trout (Salmo trutta), where males
exposed to FRF show increased fertilization success under
both competitive and non-competitive circumstances [20]
(and see [21] for a similar effect in goldfish, Carassius auratus).
If the adjustment of ejaculate quality requires some time,
females may indirectly favour males with whom they have
recently associated (e.g. dominant males). FRF therefore has

the potential to influence the dynamics of postmating sexual [ 3 |

selection also through its effects prior to ejaculation.

3. Effects of female reproductive fluid on sperm
traits

There is increasing evidence across a diverse range of
internally and externally fertilizing taxa that FRF has
multiple effects (compared to a neutral/control medium) on
sperm traits typically associated with sperm competition
success [22,23].

Irrespective of reproductive mode, FRF is involved at
almost every stage of the sperm’s journey towards the egg,
from activation to fertilization. In externally fertilizing
fishes, for example, the proportion of sperm that becomes
motile after release is generally higher in the presence, com-
pared to the absence, of FRF [24]. In internal fertilizers,
such as insects, FRF increases the proportion of viable
sperm [25,26], although this effect is not universal [27,28].
By contrast, the positive effect of FRF on sperm longevity is
so far proving to be ubiquitous across taxa, including both
internally and externally fertilizing fishes [29,30], birds [31],
and mammals [32,33]. In mammals, FRF induces both
sperm capacitation and the acrosome reaction, which are
necessary precursors to fertilization [34,35].

FRF-mediated sperm chemotaxis describes the capacity of
sperm to respond to chemical attractants in order to locate
and swim towards the egg. Much of the evidence for
FRF-mediated sperm chemoattraction comes from marine
invertebrates [36], but sperm chemoattraction mediated by
the FRF has also been demonstrated in a range of internally
and externally fertilizing taxa, including fishes [24,37],
mammals [38-40] and indeed humans [41,42], among many
other metazoans [43]. Interestingly, despite the fact that
sperm chemotaxis was one of the first components of the
FRF-ejaculate interaction to be documented, with research
on the topic dating back to the end of the nineteenth century
(see electronic supplementary material), it has rarely been
considered in the context of sperm competition until very
recently (see §4).

Finally, sperm swimming behaviour, collectively termed
‘sperm motility’, is arguably the most common trait used to
assess fertility and is commonly used as a proxy of sperm com-
petitiveness in sexual selection studies [22,44]. Many studies on
fishes have shown that sperm swimming speed is usually
higher in the presence of FRF compared to a control solution
[24/45]. The effects of FRF on parameters such as sperm
velocity and sperm trajectory (e.g. linearity) have been reported
also in marine invertebrates [36], amphibians [46], mammals
[47] and birds ([31], but see [48]).

Overall, the evidence to date indicates that FRF can
significantly alter (generally improve) sperm behaviour, includ-
ing enhanced sperm capacitation, viability and longevity,
chemoattraction, and sperm swimming velocity and trajectory.

4. Effects on sperm competitiveness and
fertilization outcome

Here, we briefly summarize the direct evidence for FRF-
mediated sexual selection from studies reporting fertilization
biases when males from the same population compete to
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fertilize the same batch of eggs, along with evidence that FRF
differentially affects sperm traits known to be associated with
competitive fertilization success. We further illustrate the role
of FRF in postmating sexual selection in species in which
males exhibit alternative reproductive tactics, and finally, we
briefly illustrate the potential role that FRF plays in repro-
ductive isolation. All these studies are reported in electronic
supplementary material tables 1 and 2.

(a) Differential fertilization success

Much of the evidence for FRF-mediated sexual selection
suggests that these mechanisms serve to bias fertilization
toward the sperm of the most compatible partner. A study
of internally fertilizing guppies (Poecilia reticulata) revealed
that FRF functions as an inbreeding avoidance mechanism,
increasing the velocity of sperm from unrelated males, ulti-
mately affecting competitive fertilization success towards
the unrelated males [49]. In the externally fertilizing mussel
(Muytilus galloprovincialis), FRF differentially attracts sperm
from specific males [50], and these preferences predict both
sperm swimming behaviour and offspring survival [51] and
ultimately determine competitive fertilization success [52].
In the chinook salmon (Oncorhynchus tshawytscha), sperm
swimming velocity measured in the FRF has been shown to
better predict competitive paternity success than sperm vel-
ocity measured in the absence of FRF [53]. Further evidence
for FRF-moderated fertilization biases comes from the ocel-
lated wrasse (Symphodus ocellatus), where FRF was shown
to decrease the numbers advantage that would otherwise
be enjoyed by sneaking males (producing more sperm),
thereby increasing the relative importance of sperm velocity
and favouring preferred male phenotypes during sperm
competition [54].

(b) Differential effects of female reproductive fluid on

sperm performance

Other studies indirectly suggest that FRF affects sperm compe-
tition, by reporting differential (male-by-female) effects of FRF
on sperm performance. These studies have been performed
predominantly on external fertilizers (notably fishes), includ-
ing arctic charr (Salvelinus alpinus) [55], chinook salmon
[56,57] and the zebrafish [30], but there is also evidence in
internal fertilizers, including guppies (see above [49]) and
humans, where FRF has recently been shown to differentially
attract sperm from different males [42]. Although many of
these studies implicate FRF as a critical moderator of sperm
competition, not all of them have revealed consistent effects.
For example, studies of the quacking frog (Crinia georgiana)
[46], lake trout (Salvelinus namaycush) [58], arctic charr [59]
and capelin (Mallotus villosus) [60] reported no evidence for
male-by-female interaction effects moderated by the FRF. Simi-
larly, in the ant (Acromyrmex echinatior), there is no evidence of
FRF-mediated inbreeding avoidance [26].

(c) Female reproductive fluid and alternative

reproductive tactics
Recent studies have explored the possibility that FRF affects
sperm competition in species where males employ alternative
reproductive tactics, ultimately favouring males with ‘pre-
ferred’ mating tactics. Studies investigating FRE-by-tactic

interactions have so far focussed on fishes, where alternative n

male reproductive tactics are more common. In the chinook
salmon (O. tshawytscha), for example, FRF increases the velocity
of sperm from the dominant males but not those from sneakers,
resulting in a paternity bias that ultimately favours dominant
males [61]. Similarly, in the masu salmon (Oncorhynchus
masou), FRF increases the velocity and motility of sperm from
dominant males more than sperm from sneaky males [62].
By contrast, in the ocellated wrasse, FRF does not differentially
affect the performance of sperm from alternative male pheno-
types, but decreases the sperm numerical advantage that
would otherwise favour sneakers in sperm competition (see
above [54]).

(d) Hybridization avoidance and reproductive isolation
FRF has been shown to discriminate between conspecific
and heterospecific sperm, favouring fertilization from males
of the same species and thus serving as an anti-hybridization
strategy (see also electronic supplementary material for early
studies on sperm chemotaxis). Species-specific effects of FRF
on sperm traits have been reported in echinoderms [63],
molluscs [64,65], fishes [66,67] and birds [68]. Interestingly,
the species-specific discrimination effect of FRF seems to be
positively associated with the risk of hybridization, as
it was reported in the pied and collared flycatchers (gen.
Ficedula), which frequently hybridize [68], but this effect
was not reported among bird species with low risk of hybrid-
ization [31]. Similarly, FRF differentially affects the velocity of
sperm from sympatric and allopatric males of the same
species, suggesting that FRF-mediated effects on sperm may
be involved in reproductive isolation among populations
that ultimately leads to speciation (in guppies and Atlantic
cod [69,70]).

5. Female reproductive fluid—ejaculate
interactions: mechanisms

The search for underlying mechanisms of the FRF’s effect on
postmating sexual selection has so far focused on the compo-
sition of these fluids. The chemical characteristics of FRE,
such as osmolality, pH and ionic concentration (Na*, K7,
Mg** and Ca®*) are likely to be important in both external
[37] and internal fertilizers [6]. However, biochemical com-
ponents of FRE such as nutrients (glucose, pyruvate, lactate
and fructose), free amino acids, hormones (e.g. prostaglandins,
steroids, progesterone and growth factors), and proteins also
play a pivotal role [37]. In fruit flies, for example, female
reproductive proteomes of sibling species express unique
secreted proteins, suggesting their involvement in postmating,
prezygotic reproductive isolation [71]. Interestingly, while
some FRF proteins, like albumin and immunoglobulins, are
also found in the serum, others are FRF-specific, like many
glycoproteins [10,13,72], suggesting a specific function in
FRF-ejaculate interactions. Macromolecules, like proteins,
carbohydrates, lipids or female exosomes, bind to sperm and
affect their performance [6,73], while sugars can prolong
sperm longevity [74,75], and progesterone is a well-known
chemoattractant for mammalian sperm [76]. Mechanisms
underlying FRF-mediated paternity biases may also include
physiological or structural modifications to sperm [6],
although for the most part such functions have not been
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investigated. One known example of this comes from the
mussel M. galloprovincialis, where FRF has been shown to
induce modifications on the sperm surface glycans [77] and
hence affect the acrosome reaction to favour specific males at
fertilization [78]. Chemical and biochemical components of
FRF may interact in influencing sperm performance, as FRF
Ca*" concentration and FRF proteins may interact to modulate
the activity of Ca** sperm-specific channels such as CatSper
and pdk2, ultimately affecting sperm hyper-activation [79].

FRF can also affect competitive fertilization success by
interacting with seminal fluid in addition to, or instead of,
the sperm. Empirical evidence comes from bees and ants,
where FRF inhibits seminal fluid serine proteases found in
the seminal fluid, resulting in an increase in the viability of
sperm stored by the female [17,80]. Specific FRF protein com-
ponents putatively involved in the interactions with seminal
fluid have been identified by proteomic analysis [81,82], or
by comparing their sequence evolution rate [83,84]. For
example, mammalian oviductal glycoproteins show signs of
positive Darwinian selection [85], suggesting that they may
play a role in FRF-seminal fluid interaction [86].

The scant knowledge of FRF-mediated mechanisms means
that we can only speculate about the patterns of among-
individual variation in their composition. Three distinct,
non-mutually exclusive scenarios may be envisaged. First,
FRF composition may show little among-female variation and
instead may universally favour a preferred male phenotype
[54], thus facilitating directional (i.e. consistent) postmating
sexual selection. Second, FRF may vary among females in the
relative quantity of one or more of its components [16,70],
which in turn might differentially affect male sperm
competition success. In this way, selection would be non-
directional, in the sense that FRF would function to select the
sperm from specific males, and these preferences would not
be universal across females. Such a mechanism could act in
conjunction with among-male variation in sperm/ejaculate
characteristics (e.g. analogous to gamete reproductive proteins
in eggs and their specific sperm ligands; see [36]). For example,
variability in FRF concentration of specific ions, odorants or
amino acids could interact with ‘taste’ receptors expressed in
sperm, influencing sperm traits and ultimately fertilization
success [87,88]. Third, FRF can be involved in the recognition
of ejaculates from genetically related males, generating patterns
of disassortative postmating sexual selection [49,53]. Under
this scenario, a matched variability in the protein products of
hypervariable genes, such as MHC, odorant and taste recep-
tors, should be observed in the sperm/ejaculate and FRE. The
observed pattern of postmating sexual selection mediated by
the FRF may therefore help us to identify the mechanisms
underlying FRF-ejaculate interactions.

Our review highlights the putative sexually selected func-
tions of female reproductive fluid, which have only recently
emerged in the literature. In the same way that research on
cryptic female choice lagged a long way behind sperm com-
petition, research on FRF has lagged a long way behind that
of seminal fluid and we are only now starting to appreciate
the potential for FRF to serve a role in sexual selection.
Much of the explicit evidence for sexually selected roles of
FRF comes from a small handful of organisms, notably fishes

[49,53,54] and mussels [52]. Thus, one of the key messages of “

this review is that we require greater taxonomic breadth
in studies that search for sexually selected functions of FRF.
Similarly, the considerable evidence from diverse taxa that
FRF can promote changes in sperm traits compared to a
neutral medium (§3) has only rarely been extended to evalu-
ate the possible significance of such effects for sexual
selection (§4). Some limitations can be attributed to logistics,
with FRF being available only seasonally, or its amount being
limited. However, in some cases, these limitations can be
overcome, for example, by freezing FRF (e.g. salmon [89]),
and/or using small quantities (few pl) of FRF for the
assays (e.g. zebrafish [30] or ants [26]). The bias toward exter-
nal fertilizers (see electronic supplementary material tables 1
and 2) is attributable to the fact that FRF is easier to collect
and manipulate in external fertilizers than in internal fertili-
zers. However, FRF collection techniques have been
developed in many internal fertilizing animals (e.g.
[26,42,49,90]), making it possible to manipulate and test the
effect of FRF on sperm traits in a sperm competition context.
Furthermore, in vitro fertilization can be performed in many
internal fertilizers, making it possible to extend the research
on the effect of FRF on competitive fertilization to these
taxa. To this end, rodents are promising candidates for
further research, as in vitro fertilization techniques are well
developed and routinely used for sexual selection studies in
this group (e.g. in the mouse [91,92]). The combination of pro-
teomic studies on FRF composition, associated with genetic
manipulation, can provide another promising tool to investi-
gate the role of FRF in postmating sexual selection in model
species with internal fertilization, such as Drosophila [6].

Finally, our review highlights a number of possible
mechanisms by which FRF may function to selectively bias
fertilization towards specific males. Many such mechanisms,
which have been discussed recently in terms of their putative
roles in postmating sexual selection [6,93], involve FRE but
only a handful of studies have implicated it as an agent
of sexual selection. Moreover, evidence that extends these
studies to an understanding of the molecular and physio-
logical processes that underlie FRF-modulated processes of
sexual selection is extremely rare (e.g. [17]). Thus, we see
enormous scope for future studies that employ mechanistic
(e.g. molecular, proteomic and physiological) approaches
to understand the fine-scale processes that enable FRF
to selectively bias fertilizations. We anticipate that such
mechanisms are likely to be widespread, given that many
of these processes have been evolutionarily conserved
during the ‘cascade’ (see [94]) that led to the evolutionary
diversification of animals and the rise of pre- and postmating
sexual selection.

This article has no additional data.
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