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Background.  Advanced liver disease due to hepatitis C virus (HCV) is a leading cause of human immunodeficiency virus 
(HIV)-related morbidity and mortality. There remains a need to develop noninvasive predictors of clinical outcomes in persons with 
HIV/HCV coinfection.

Methods.  We conducted a nested case-control study in 126 patients with HIV/HCV and utilized multiple quantitative 
metabolomic assays to identify a prognostic profile that predicts end-stage liver disease (ESLD) events including ascites, hepatic 
encephalopathy, hepatocellular carcinoma, esophageal variceal bleed, and spontaneous bacterial peritonitis. Each analyte class was 
included in predictive modeling, and area under the receiver operator characteristic curves (AUC) and accuracy were determined.

Results.  The baseline model including demographic and clinical data had an AUC of 0.79. Three models (baseline plus amino 
acids, lipid metabolites, or all combined metabolites) had very good accuracy (AUC, 0.84–0.89) in differentiating patients at risk of 
developing an ESLD complication up to 2 years in advance. The all combined metabolites model had sensitivity 0.70, specificity 0.85, 
positive likelihood ratio 4.78, and negative likelihood ratio 0.35.

Conclusions.  We report that quantification of a novel set of metabolites may allow earlier identification of patients with HIV/
HCV who have the greatest risk of developing ESLD clinical events.

Keywords.   biomarker; end-stage liver disease; metabolomic; hepatic decompensation; accuracy.

Advanced liver disease is a leading cause of human immunodefi-
ciency virus (HIV)-related morbidity and mortality, accounting 
for 13% of all deaths in the large, prospective, multinational 
D:A:D (data collection on adverse events of anti-HIV drugs) 
observational cohort [1, 2]. In the United States, chronic hep-
atitis C virus (HCV) infection is the leading cause of liver dis-
ease and related mortality in HIV-infected individuals and has 
a synergistic effect on liver disease pathogenesis [1]. In a large, 
well-designed study in the Veterans Health Administration, 
compared with HCV monoinfected patients, HIV/HCV 
coinfected patients had a higher rate of hepatic decompensation 
(hazard ratio, 1.56; confidence interval, 1.31–1.86), and this risk 
occurred despite maintaining excellent HIV control [3]. The 
recent introduction of direct acting antiviral (DAA) therapies 
is expected to improve liver-related outcomes for all persons 
living with HCV infection, including those with HIV infection 
[4]. However, recent studies suggest that HIV-infected patients 

may continue to suffer adverse consequences of liver disease, 
with the majority experiencing events after HCV eradication if 
they have moderate (Metavir F2) fibrosis or greater at the time 
of treatment [5].

There remains a need to develop noninvasive means of as-
sessment of liver disease severity and progression in persons 
living with HIV. The currently available noninvasive assess-
ments for liver fibrosis are based on serum markers or imaging 
elastography, but have poor diagnostic performance character-
istics for disease progression, and have not been validated for 
predicting end-stage liver disease (ESLD)-related outcomes 
in patients with HIV/HCV coinfection [6, 7]. Although these 
noninvasive tools are frequently used in clinical practice for 
all chronic liver diseases, they were not designed to provide 
insight into specific disease pathogenesis, such as HIV-HCV 
coinfection [8]. This is of particular importance in patients with 
HIV infection due to the multiple etiologies of liver injury, in-
cluding viral hepatitis coinfections, direct and indirect HIV ef-
fects, and antiretroviral-related toxicity.

Lipids play multiple important roles in biological systems 
and have a vast repertoire in pathogenesis of human diseases, 
including cancer, atherosclerosis, and insulin resistance [9]. 
Multiple bioactive lipids and metabolites have been impli-
cated in liver disease pathogenesis, including sphingolipids 
[10–15] and oxidized polyunsaturated fatty acids (PUFAs) 
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[16–20]. Sphingolipids, in particular ceramides, are reported to 
modulate the hepatocellular susceptibility to stress and death 
ligands-induced cell death via the tumor necrosis factor (TNF) 
signaling pathway [13, 21, 22]. Oxylipins are some of the key 
metabolites of PUFA oxidation, and they are important ef-
fectors of inflammation, coagulation, and vascular regulation. 
In particular, cytochrome P450-dependent arachidonic acid 
metabolites have been targeted for study in cirrhosis and portal 
hypertension because the liver has the highest total cytochrome 
P450 content and contains the highest levels of individual cyto-
chrome enzymes involved in the metabolism of PUFAs [17, 18]. 
In animal models of cirrhosis, metabolites of both the ω and 
ω-1 hydrolase and epoxygenases, which include the oxylipins 
hydroxyeicosatetraenoic acids and epoxyeicosatrienoic acids, 
are associated with increased portal resistance [17, 18]. In addi-
tion, epoxyeicosatrienoic acids have been reported to contribute 
to liver regeneration [23] and are hypothesized to contribute to 
regenerative nodules in patients with cirrhosis.

The aim of the present study was to utilize a series of targeted 
metabolomic assays in a broad-spectrum discovery approach to 
identify a metabolic profile that predicts ESLD events in a well 
characterized cohort of persons with HIV/HCV coinfection 
(Figure  1). To accomplish this, we utilized a long-standing 

research biorepository of patients with HIV/HCV coinfection 
to (1) identify samples preceding ESLD events and (2) develop 
a case-control study to assess differences in metabolite expres-
sion between patients who develop incident ESLD events and 
those who do not experience ESLD-related complications, and 
(3) assess the impact of adding metabolomic biomarkers to pre-
dictive clinical models of incident ESLD to improve prognostic 
performance characteristics.

METHODS

This is a retrospective, nested case-control study in which adult 
patients (aged  ≥  18  years) with HIV and HCV coinfection 
were identified from the Duke HIV Research Database and 
Biorepository, which has >60 000 longitudinal plasma samples 
stored at −80°C from patients engaged in HIV care at the Duke 
Infectious Diseases clinic since 1998. All subjects provided in-
formed consent for use of their personal health information 
and plasma samples for future research purposes. The research 
project was approved by the Duke Institutional Review Board.

A potential case was defined as any patient with HIV/
HCV coinfection and with a plasma sample available in the 
biorepository 1–5 years prior to the date of development of an 
incident ESLD event. Exclusion criteria included: a prior history 
of ESLD (decompensation) event, autoimmune disease, recent 
(past 12  months) HIV or HCV infection, solid organ trans-
plantation, active malignancy, chronic hepatitis B virus infec-
tion (positive HBsAg), failed HCV treatment within 6 months 
of index sample collection or successful HCV treatment at any 
time, other chronic liver disease, use of systemic immuno-
suppressants, and/or daily use of a nonsteroidal anti-inflam-
matory drug (except low-dose aspirin). Incident ESLD events 
were defined as the first diagnosis or presentation of ascites, 
hepatic encephalopathy, esophageal variceal bleed, sponta-
neous bacterial peritonitis, or hepatocellular carcinoma (HCC). 
Cases were identified through DEDUCE, a web-based clinical 
research query tool that allows for searching the Duke Health 
data set, which currently covers over 3.4 million patients, span-
ning 37 years of care. A  total of 565 patients with HIV/HCV 
coinfection were queried for ICD9/10 codes (Supplementary 
Table 1) for ESLD and the date of the first encounter with an 
ESLD ICD9/10 code. Encounters were from outpatient, emer-
gency department, or inpatient visits. When an encounter in-
cluded multiple ESLD diagnoses, the primary diagnosis was 
used as the defining incident event. All case charts were manu-
ally reviewed by a single individual (M. M.) to confirm the ESLD 
event was the first presentation. When needed, cases were dis-
cussed and reviewed independently by 2 physicians (S. N. and 
K. P.). Controls were matched 1:1 to cases by age (within 5 years 
of age), sex, race/ethnicity, and HIV RNA (suppression defined 
as <200  copies/mL versus viremia) at the time of the sample 
collection. Controls were defined as patients with HIV/HCV 
coinfection but without ESLD events and the same exclusion 

Sample Collection

Sample Preparation

Quantitative Metabolomics

Data Analysis

A
na

ly
te

/I
S 

R
at

io

Analyte (um)

Risk Stratification

Low High

R
is

k

Figure 1.  Schematic of approach to comprehensive metabolomic profiling to im-
prove risk stratification of patients with liver disease.
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criteria were applied. Control charts were manually reviewed by 
M. M. to confirm there was no history of ESLD events. Subjects 
did not have to have cirrhosis for inclusion. Potential predictive 
variables including: body mass index, tobacco use, alcohol use, 
antiretroviral medications, comorbidities including diabetes 
mellitus, use of cholesterol-lowering medications, and rou-
tine laboratory values (aminotransferases, bilirubin, albumin, 
creatinine, HIV viral load, CD4, and platelet count) were ex-
tracted from the research database. Alcohol use was character-
ized as none, mild (occasional or social drinking), moderate 
(3–7 weekly standard drinks for women and 5–14 for men), 
or heavy (≥8 weekly drinks for women and ≥15 for men). 
The Centers for Disease Control and Prevention definition of 
1 standard drink = 14 g of alcohol was used for quantification 
of intake. A plasma sample was identified for cases 1–5 years 
prior to the date of the incident ESLD event and for controls, 
a plasma sample was identified for the year of the age used for 
matching. When more than 1 plasma sample was available for 
a case during the 1–5 year period, choice of sample was deter-
mined by availability of a paired control, prioritizing samples 
2–3 years in advance of the ESLD event and in the order 2, 3, 4, 
5, and then 1 year prior to ESLD event.

Targeted Metabolomics Analysis

The Duke Proteomics and Metabolomics Shared Resource 
performed metabolite quantification with 4 separate mass 
spectrometry-based methods quantifying >500 metabolites in 
plasma including amino acids, amines, lipids, oxylipins, free 
fatty acids, and bile acids. AbsoluteIDQ p400HR and Bile Acids 
kits (Biocrates AG) were used for the majority of these ana-
lyte classes, while custom targeted assays were developed for 
oxylipins (n = 109) and free fatty acids (n = 17). AbsoluteIDQ 
p400HR targets over 400 metabolites from 11 analyte groups: 
amino acids, biogenic amines, acylcarnitines, monosaccharides 
(hexose), diglycerides, triglycerides, lysophposphatidylcholines, 
phosphatidylcholines, sphingomyelins, ceramides, and 
cholesteryl esters. The Biocrates Bile Acids assay quantifies 20 
bile acids, 16 of which are normally detected in human plasma. 
Full method details as well as analytes targeted in each of these 
panels are in the Supplementary Material. Samples for cases 
and controls were deidentified and randomly distributed on the 
plates and the laboratory was blinded to case-control status and 
sample position on the plates.

Statistical Analysis

Our initial sample size calculation was based on pilot data of 
oxylipin profiling in patients with HIV/HCV coinfection. Based 
on our cohort of 565 patients, we originally assumed we would 
have at least 90 patients meeting case definition, in which case 
we estimated we would be able to detect effect sizes as small as 
0.42 with 80% power and type I error rate 0.05. Our final case 
number was lower than expected (n = 62); however, with top 

effect sizes of 0.96, 1.02, and 1.35 in the pilot study we were still 
sufficiently powered to identify multiple lipid metabolites asso-
ciated with ESLD complications.

Routine laboratory values were log2 transformed and means 
were imputed for missing values. Values were standardized by 
subtracting the mean and dividing by the standard deviation. 
Analyte expression levels were log2 transformed and lower 
limit of detection (LOD) values were imputed for missing and 
<LOD values. LASSO regression was used to predict scores 
for each patient. In the absence of an independent validation 
dataset, predictive accuracy was assessed by c-statistic using 
leave-one-out cross-validation to control for overfitting [24]. 
Multiple models were built to predict the composite of all inci-
dent ESLD events. First a clinical baseline model was built using 
demographic (age, sex, and race) and clinical variables (FIB-4 
index, bilirubin, albumin, creatinine, HIV viral load, CD4, al-
cohol use, diabetes, cholesterol medications, aspirin, and an-
tiretroviral medication) from the time of sample collection. 
Additional models were built from the baseline model for each 
metabolite panel and an overall model built of baseline plus all 
metabolite variables. Area under the receiver operator char-
acteristic curves (AUCs) were created and compared for each 
model. Optimal performance characteristics for each model are 
also reported as sensitivity, specificity, and positive and nega-
tive likelihood ratios. We used the Youden index to determine 
the optimal performance characteristics for the models. The 
Youden index is the sum of sensitivity and specificity (techni-
cally, Youden = sensitivity + specificity − 1) at a given threshold, 
and the optimal threshold it determined by the largest value of 
this sum, which effectively maximizes both sensitivity and spec-
ificity (while giving both an equal weight).

 Top predictors were also sought to identify the most pre-
dictive permutations of combinations of 3 or 4 analytes. Only 
analytes with individual AUC ≥ 0.65 were included. Exploratory 
models were also built for the most common individual ESLD, 
that is ascites and hepatic encephalopathy.

RESULTS

Patient Characteristics

Overall, 124 patients with HIV/HCV coinfection were included 
in this case-control study (62 cases and 62 controls). All patients 
had compensated liver disease at baseline. Overall, the cohort 
was 37% female, 77% black race, and median age was 49 years 
(SD 7.8) at the time of the sample collection (Table 1). Incident 
liver events incurred by cases during this study period included 
ascites (50%), bleeding esophageal varices (3.2%), hepatic en-
cephalopathy (33.9%), hepatocellular carcinoma (11.3%), and 
spontaneous bacterial peritonitis (1.6%). Samples used for the 
metabolomics profiling preceded the incident liver event by a 
mean of 2 years (SD 1.1). Cases with ESLD events were numeri-
cally more likely to report alcohol (40.3% vs 33.9%; P = .57) and 
tobacco use (71% vs 56.5%; P =  .13), and were more likely to 
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have a diagnosis of diabetes (14.5% vs 8.1%; P = .40) (Table 1). 
Cases were more likely to have an FIB-4 index consistent with 
severe fibrosis (>3.25) than controls (61% vs 23%). The median 
model for end-stage liver disease (MELD) score at baseline for 
cases was 9.9 (interquartile range [IQR], 5.7–16.9) and for con-
trols 6.3 (IQR, 2.9–8.0) (P = <.01). Overall, 86% of patients were 
on antiretrovirals and 53% had HIV RNA <200 copies/mL at 
the time of sample collection. The median CD4 count was 358 
cells/mm3.

Lipid Metabolite Models for All Clinical Outcomes

The clinical variables retained in the baseline model included: 
body mass index, laboratory values at the time of sample col-
lection (albumin, total bilirubin, creatinine, international 
normalized ratio [INR], and CD4 absolute count), FIB-4 index, 
and tobacco use (AUC = 0.79). Metabolites were then added to 
the baseline model with the following results: baseline + amino 
acids (AUC = 0.84), baseline + bile acids (AUC = 0.82), base-
line + fatty acids (AUC = 0.78), baseline + lipids (AUC = 0.85), 

Table 1.  Baseline Demographics and Clinical Characteristics of Study Population

Characteristics Cases (n = 62) Controls (n = 62) Overall (n = 124)

Female, No. (%) 23 (37.1) 23 (37.1) 46 (37.1)

Race, No. (%)    

  Black 48 (77.4) 47 (75.8) 95 (76.6)

  White 11 (17.7) 12 (19.4) 23 (18.5)

  Other 3 (4.8) 3 (4.8) 6 (4.8)

Ethnicity    

  Hispanic or Latino, No. (%) 2 (3.2) 2 (3.2) 4 (3.2)

Age at sample, y, median (Q1, Q3) 48 (45, 54)  48 (44, 53) 48 (44, 54)

Height, cm, median (Q1, Q3) 170 (165, 178) 170 (165, 177) 170 (165, 178)

Weight, kg, median (Q1, Q3) 75 (64, 91) 78 (67, 88) 76 (65, 88)

BMI, m2/kg, median (Q1, Q3) 26 (22, 29) 26 (23, 30) 26 (22, 29)

Comorbidities, No. (%)    

  Diabetic 9 (14.5) 5 (8.1) 14 (11.3)

  Alcohol 25 (40.3) 21 (33.9) 46 (37.1)

  Tobacco 44 (71.0) 35 (56.5) 79 (63.7)

Liver event, No. (%)    

  Ascites 31 (50.0) 0 (0.0) 31 (25.0)

  Esophageal varices 2 (3.2) 0 (0.0) 2 (1.6)

  Hepatic encephalopathy 21 (33.9) 0 (0.0) 21 (16.9)

  Hepatocellular carcinoma 7 (11.3) 0 (0.0) 7 (5.6)

  Spontaneous bacterial peritonitis 1 (1.6) 0 (0.0) 1 (0.8)

  None 0 (0.0) 62 (100.0) 62 (50.0)

Laboratory results    

  HIV RNA < 200 copies/mL, No. (%) 31 (50.0) 35 (56.5) 66 (53.2)

  CD4, cells/µL, median (Q1, Q3) 344 (196, 513) 375 (228, 680) 358 (200, 589)

  Albumin, g/dL, median (Q1, Q3) 3.2 (2.7, 3.7) 3.8 (3.3, 4.0) 3.4 (3.0, 3.9)

  Bilirubin, mg/dL, median (Q1, Q3) 0.8 (0.6, 1.5) 0.6 (0.5, 1.1) 0.7 (0.5, 1.3)

  Creatinine, mg/dL, median (Q1, Q3) 1.0 (0.8, 1.7) 0.9 (0.8, 1.1) 1.0 (0.8, 1.2)

  INR, median (Q1, Q3) 1.1 (1.0, 1.3) 1.1 (1.0, 1.1) 1.1 (1.0, 1.3)

  MELD, median (Q1, Q3) 9.9 (5.7, 16.9) 6.3 (2.9, 8.0) 9.4 (5.2, 16.6)

  AST, U/L baseline, median (Q1, Q3) 78.5 (50.3, 118.0) 53 (36.5, 73.8) 65.5 (42.0, 93.3) 

  ALT, U/L baseline, median (Q1, Q3) 47.0 (27.3, 68.8) 49.0 (33.3, 63.8) 48.5 (31.0, 65.3)

  Platelets, 109/L, baseline, median (Q1, Q3) 145 (102, 204) 199 (148, 247) 183 (112, 225)

  FIB-4, baseline, median (Q1, Q3) 4.0 (2.2, 7.3) 1.9 (1.3, 3.1) 2.6 (1.6, 5.4)

  FIB-4 > 1.45, No. (%) 57 (91.9) 43 (69.4) 100 (80.6)

  FIB-4 > 3.25, No. (%) 38 (61.3) 14 (22.6) 52 (42.0)

Medications, No. (%)    

  Aspirin 9 (14.5) 13 (21.0) 22 (17.7)

  Cholesterol 3 (4.8) 3 (4.8) 6 (4.8)

  Entry inhibitors 1 (1.6) 1 (1.6) 2 (1.6)

  Integrase inhibitors 4 (6.5) 9 (14.5) 13 (10.5)

  NNRTI 14 (22.6) 10 (16.1) 24 (19.4)

  NRTI 56 (90.3) 62 (100.0) 118 (95.2)

  PI 32 (51.6) 28 (45.2) 60 (48.4)
Abbreviations: ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; HIV, human immunodeficiency virus; INR, international normalized ratio; MELD, model for 
end-stage liver disease; NNRTI, nonnucleoside reverse transcriptase inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; PI, protease inhibitor.
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baseline + oxylipins (AUC = 0.79), and baseline + all metab-
olites (AUC  =  0.89) (Figure  2). The top predictive variables/
metabolites for each model are presented in Table  2. Three 
models had AUC > 0.84 and the highest accuracy was from the 
all-metabolites model. The all-metabolites model included top 
predictive metabolites from amino acids, bile acids, and lipids 
including valine (a branched-chain amino acid), deoxycholic 
acid (DCA) and taurochenodeoxycholic acid, and multiple 
lipids including lysophosphatidylcholine (LPC), phosphatidyl-
choline (PC), and sphingomyelin. The all-metabolites model 
had a sensitivity of 0.70, specificity of 0.85, positive likelihood 
ratio of 4.78, and negative likelihood ratio of 0.35. The amino 
acid model had the best test characteristics with a sensitivity 
of 0.70, specificity of 0.86, positive likelihood ratio of 5.38, 
and negative likelihood ratio of 0.34. Test characteristics for all 
models are provided in Table 3.

Lipid Metabolite Models for Individual Liver-Related Events

Exploratory models of the most commonly observed individual 
ESLD events were also built for ascites and hepatic encephalop-
athy. These event-targeted models resulted in variations in the 
AUC (Figure 3A and B). For the model of ascites (Figure 3A), 
the all-metabolites model had an AUC of 0.88 with top metab-
olites including valine, acylcarnitine, and 5 lipid metabolites 
(Supplementary Table 2). Eight of these metabolites were also 

in the composite outcome all-metabolites model. For the model 
of hepatic encephalopathy (Supplemental Figure 1B), the amino 
acid model AUC increased to 0.91 and the all-metabolites 
model AUC increased to 0.92. The top amino acids included 
arginine, methionine, histamine, valine, and methionine sulf-
oxide, which were also in the composite outcome amino acid 
model (Supplementary Table 3).

Top Predictors of ESLD

With the goal of identifying a limited set of metabolites that 
optimize the predictive power of the model while increasing 
the feasibility that the biosignature could be applied in a clin-
ical setting, combinations of 3 or 4 optimal predictors of the 
composite outcome of incident ESLD events were evaluated. 
Multiple permutations of metabolites with and without base-
line variables were completed. Multiple models were identi-
fied with AUC = 0.84, with a predominance of the predictive 
model AUCs resulting from lipid metabolite only combinations 
(Table 4).

DISCUSSION

As more patients access DAAs and achieve cure of chronic HCV 
infection, the need for a clinical prediction tool or biomarker to 
differentiate patients with increased risk of liver-related compli-
cations is increasingly important. This is the first study to report 
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Table 3.  Classification Performance Metrics for Composite End-Stage Liver Disease Models

Model AUC Sensitivity, % Specificity, % Positive Likelihood Ratio Negative Likelihood Ratio

Baseline 0.79 57 85 3.89 0.50

Baseline + amino acids 0.84 70 86 5.38 0.34

Baseline + bile acids 0.82 67 80 3.42 0.41

Baseline + fatty acids 0.78 68 81 3.82 0.38

Baseline + lipids 0.85 70 81 3.91 0.36

Baseline + oxylipins 0.79 67 83 4.10 0.39

Baseline + all metabolites 0.89 70 85 4.78 0.35
Abbreviation: AUC, area under the curve.

1.0

0.8

0.6

T
ru

e-
po

si
tiv

e 
ra

te

T
ru

e-
po

si
tiv

e 
ra

te

0.4

0.2

0.0
0.0 0.2 0.4 0.6

True-positive rate True-positive rate

0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

A B
1.0

0.8

0.6

0.4

0.2

0.0

1.0

Baseline (AUC = 0.77)
Baseline + Amino Acids (AUC = 0.83)
Baseline + Bile Acids (AUC = 0.79)
Baseline + Fatty Acids (AUC = 0.76)
Baseline + Lipids (AUC = 0.84)
Baseline + Oxylipins (AUC = 0.78)
Baseline + All Metabolites (AUC = 0.88)

Baseline (AUC = 0.80)
Baseline + Amino Acids (AUC = 0.91)
Baseline + Bile Acids (AUC = 0.86)
Baseline + Fatty Acids (AUC = 0.81)
Baseline + Lipids (AUC = 0.84)
Baseline + Oxylipins (AUC = 0.80)
Baseline + All Metabolites (AUC = 0.92)

Figure 3.  Receiver operating characteristic curves for predictive models of (A) ascites and (B) hepatic encephalopathy. Light blue, baseline clinical variables model; purple, 
baseline + amino acid metabolites model; green, baseline + bile acid metabolites model; pink, baseline + free fatty acid metabolites model; red, baseline + lipid metabolites 
model; dark blue, baseline + oxylipin metabolites model; orange, baseline + all-metabolites model. Abbreviation: AUC, area under the curve.

Table 2.  Composite End-Stage Liver Disease Models Variables

Baseline Baseline + Amino Acids Baseline + Bile Acids Baseline + Fatty Acids Baseline + Lipids Baseline + Oxylipins Baseline + All Metabolites

(AUC = 0.79) (AUC = 0.84) (AUC = 0.82) (AUC = 0.78) (AUC = 0.85) (AUC = 0.79) (AUC = 0.89)

INR INR INR INR ALBUMIN INR CREAT

ALBUMIN CREAT ALBUMIN ALBUMIN CREAT ALBUMIN DCA

CREAT FIB-4 CREAT CREAT FIB-4 CREAT TCDCA

CD4 Arg CD4 CD4 AC(3:0) FIB-4 12S-HHTrE

FIB-4 His FIB-4 FIB-4 AC(14:2-OH) 12S-HHTrE AC(3:0)

Phe CDCA FA 16:1 (palmitoleic) LPC(15:0) 5(S)-HEPE LPC(17:0)

Val DCA FA 20:4 omega-6 (AA) LPC(17:0) 14-HDoHE LPC-O(16:1)

Met-SO TCDCA FA 22:5 omega-6 (Osbond) LPC(20:4) PC(42:7)

TUDCA LPC-O(16:1) PC-O(36:1)

PC(32:0) PC-O(40:8)

PC(42:7) SM(35:1)

PC-O(36:1) DG(39:0)

PC-O(40:8) His

SM(35:1) Val

SM(36:2) Met-SO

CE(22:5) SDMA

DG(39:0)
Abbreviations: AC, acylcarnitine; AUC, area under curve; CDCA, chenodesoxycholic acid; CE, cholesteryl ester; CREAT, creatinine; DCA, deoxycholic acid; DG, diacylglycerol; FA, fatty acid; 
LPC, lysophosphatidylcholine; HDoHE, hydroxy-docosahexaenoic acid; HEPE, hydroxyeicosapentaenoic acid; HHTrE, hydroxyheptadecatrenoic acid; INR, international normalized ratio; 
Met-SO, methionine sulfoxide; PC, phosphatidylcholine; SDMA, symmetric dimethylarginine; SM, sphingomyelin; TCDCA, taurochenodeoxycholic acid.
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that quantification of a novel set of lipid metabolites may allow 
earlier identification of patients with HIV/HCV coinfection at 
greatest risk of developing clinically significant ESLD events. 
Our composite liver-events models accurately identified pa-
tients at the greatest risk of hepatic decompensation or HCC 
over the subsequent 2 years, which could allow for individual-
izing clinical care pathways for these highest-risk patients, in-
cluding the potential for closer surveillance and individualized 
education on risk reduction.

Multiple lipid pathways have been implicated in liver disease 
pathogenesis including sphingolipids [10–15] and oxidized 
PUFAs and their metabolites [16–20]. In addition, bile acids 
and branched chain amino acids have also been investigated in 
liver disease and metabolic end-organ complications [25–27]. 
One of the strengths of our study is that we utilized established 
and validated multitargeted metabolomic discovery platforms 
to identify a metabolic risk profile that predicts ESLD events, 
in a well-characterized single-center cohort of persons with 
HIV/HCV coinfection. Three models, baseline + amino acids, 
baseline + lipid metabolites, and baseline + all metabolites, had 
excellent accuracy (AUC 0.84, 0.85, and 0.89, respectively) in 
differentiating patients with HIV/HCV coinfection who are at 
risk of developing an ESLD complication. The accuracy of our 
metabolite models are better than other published predictors of 
liver-related events, liver biopsy [28], and FIB-4 index [29] in 
people with HIV/HCV coinfection. The accuracy was similar 
to that of transient elastography, which is a diagnostic not avail-
able in many clinical practices [30].

Due to the number of metabolites remaining in the top per-
forming models we also looked for permutations of limited (3 
or 4)  metabolite combinations, which improve the feasibility 
(throughput time and potential cost) of the clinical develop-
ment of a metabolite biosignature. Multiple permutations, many 
of which shared common lipid metabolites, LPC(15:0) and 
PC(32:0), had good accuracy (AUC 0.84) in differentiating pa-
tients with HIV/HCV coinfection at risk of ESLD complications.

Earlier identification of patients at the greatest risk of devel-
oping ESLD outcomes could allow for a more patient tailored 

approach to clinical management and education, as well as 
the potential to limit the cost of unnecessary testing that may 
otherwise be done in those patients identified as lowest risk. 
Patients stratified as high risk may benefit from more frequent 
clinical follow-up, more aggressive education and counseling 
on other liver injuries such as alcohol and tobacco use, met-
abolic risk for fatty liver disease, and potentially may benefit 
from higher-resolution imaging or more frequent imaging for 
HCC screening. In addition, patients stratified as low risk could 
be provided reassurance regarding their liver health and sur-
veillance strategies modified based on comorbid risk factors for 
disease progression.

In addition to improving the prognostic accuracy of ESLD 
complications in people with HIV/HCV coinfection, discovery 
of metabolomic predictors of outcomes may also provide in-
sight on the mechanisms of ongoing liver fibrogenesis and/
or impaired fibrosis regression pathways resulting in the in-
creased risk. For example, sphingolipids such as ceramides are 
reported to modulate the hepatocellular susceptibility to stress 
and death ligands-induced cell death via the TNF signaling 
pathway [13, 21, 22]. In both our lipid and all-metabolite 
models, lysophosphatidylcholines, phosphatidylcholines, and 
sphingomyelins (including ceramides) were highly predictive 
of clinical events, and have been previously associated with risk 
of hepatocellular carcinoma [31] and cirrhosis [10]. Valine, a 
branched chain amino acid, was retained in multiple models, 
and has been previously identified as a biomarker of obesity-
associated conditions such as insulin resistance, type 2 diabetes, 
and other cardiometabolic diseases such as nonalcoholic fatty 
liver disease [25]. While total bile acids have been long-standing 
biomarkers of liver injury and function, the investigation of in-
dividual bile acids to help differentiate types of liver injury re-
mains novel, particularly in cohorts with HIV. Although not 
independently predictive of clinical events, several bile acids 
were retained in the composite all-metabolite model as well 
as others, including DCA and taurochenodeoxycholic acid, 
metabolites of cholic acid and chenodeoxycholic acid, respec-
tively, the 2 primary bile acids secreted by the liver [27]. DCA 

Table 4.  Optimization Model Performance of Top Predictors of Composite End-Stage Liver Disease

Top Predictor Metabolites AUC Sensitivity, % Specificity, % Positive Likelihood Ratio Negative Likelihood Ratio

SM(37:1), PC(32:0), LPC(16:0) 0.84 63 83 3.9 0.43

LPC(15:0), PC(32:0), Cer(41:1) 0.84 55 85 3.78 0.52

LPC(15:0), SM(37:1), PC(32:0) 0.84 65 88 5.71 0.39

TCA, PC(32:0), LPC(16:0) 0.84 68 80 3.5 0.39

PC(32:0), LPC-O(16:1), DG(39:0) 0.84 65 83 4 0.41

LPC(20:4), PC(32:0), Val 0.84 62 90 6.33 0.42

LPC(15:0), PC(32:0), Cer(43:1) 0.84 63 83 3.9 0.43

LPC(15:0), PC(32:0), DG(39:0) 0.84 68 81 3.82 0.38

LPC(15:0), PC(32:0), SM(39:1) 0.84 59 83 3.6 0.49

LPC(15:0), TCA, Val 0.84 68 83 4.2 0.37
Abbreviations: AUC, area under the curve; Cer, ceramide; DG, diacylglycerol; LPC, lysophosphatidylcholine; PC, phosphatidylcholine; SM, sphingomyelin; TCA, taurocholic acid.



Prediction of Liver Disease in HIV/HCV   •  jid  2020:222  (15 December)  •  2019

is an unconjugated form of cholic acid and is hydrophobic. 
Accumulation of DCA is thought to result in oxidative stress 
via mitochondrial damage, disruption of cell membranes, and 
production of reactive oxygen species, leading to apoptosis and 
necrosis [27].

The primary limitation of our study is the retrospective de-
sign that required identification of ESLD events via encounter 
diagnoses. We attempted to limit this weakness by doing 
manual chart review of every patient identified as having an 
ESLD event and reaching a consensus to ensure that this was a 
true incident event. In addition, due to the retrospective nature 
of the study, reporting of alcohol and tobacco use was not uni-
formly or systematically collected, and was thus obtained fol-
lowing extensive manual chart review of medical records. Cases 
and controls were not matched by stage of liver disease due to a 
lack of consistent liver disease staging available in the medical 
records. Without an independent cohort for validation, we re-
lied on the leave-one-out cross-validation resampling approach 
to reduce overfitting bias and provide generalizable estimates of 
accuracy. Further validation will be required in additional co-
horts including a cohort with reliable staging consistent with 
cirrhosis. Lastly, we were not able to include data on noninva-
sive tools such as imaging elastography (magnetic resonance 
elastography or vibration-controlled transient elastography), as 
these modalities were not routinely available at our center at 
the time of baseline sample collection. In spite of these limi-
tations, the work presented here is novel and promising. Our 
study provides a potential noninvasive biomarker panel that can 
predict liver disease events up to 2 years in advance, providing 
an opportunity for individualized care to patients with HIV/
HCV infection.

In conclusion, we report that quantification of a novel set 
of metabolites may allow earlier identification of patients with 
HIV/HCV coinfection who have the greatest risk of developing 
clinically significant ESLD events over the next approximately 
2  years, including incident ascites, hepatic encephalopathy, 
hepatocellular carcinoma, esophageal variceal bleed, and spon-
taneous bacterial peritonitis. Patients stratified as high risk may 
have ongoing liver injury and fibrogenesis, as suggested by differ-
ences in expression of sphingolipids including ceramide, amino 
acids, and cholic acid pathway bile acid metabolites. Further val-
idation of our findings are needed in cohorts of persons with 
HIV infection, including an independent cohort of active HCV 
coinfection and cohorts with lower overall prevalence of events, 
and importantly, for patients after DAA therapy to determine if 
this prognostic biosignature persists after HCV eradication.
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