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Background: Nuclear receptor-interacting protein 1 (NRIP1), also named NR140, has been observed 
differentially express in multiple cancers, but the expression levels and the prognostic role of NRIP1 in 
stomach adenocarcinoma (STAD) remain unclear.
Methods: We used the Gene Expression Profiling Interactive Analysis (GEPIA) to analyze the NRIP1 
expression levels in STAD, subgroups analysis of expression of NRIP1 via the UALCAN dataset. Further, 
cBioPortal was used to investigate the aberration type, co-mutations status, and located mutation of NRIP1. 
Correlated genes, and kinases, microRNA (miRNA), and transcription factor (TF) targets were identified 
using LinkedOmics. The Kaplan-Meier (K-M) plotter was used to analyze the prognosis of NRIP1 and the 
significantly correlated genes in STAD. Then, the tumor immune estimation resource (Timer) was used to 
explore the relation between NRIP1 and the immune cell infiltration, and the role of immune cells in STAD. 
The Human Protein Atlas (HPA) was used to confirm the NRIP1 protein express in STAD stomach tissue 
and normal stomach tissue.
Results: NRIP1 significantly overexpress in STAD, and the NRIP1 expression levels were impacted by 
clinical features. Overexpression of NRIP1 indicated the poor prognosis of STAD. Functional enrichment 
analysis showed the NRIP1 mainly enriched in immune response-regulating signaling pathway, cell-substrate 
adhesion, mRNA processing, and pathway in cancer. Overexpression USP25, SNYJ1 indicated the poor 
outcome of STAD, but the overexpression of BACH1 indicated protective biomarker. MIR-331 and MIR-
132 have important role in STAD. Further, NRIP1 had a significant relation with immune infiltrates and 
other defined genes that significantly impact immune infiltrates. Immunohistochemical showed NRIP1 
protein was higher in STAD than normal sample.
Conclusions: In this study, we revealed that overexpression of NRIP1 in the STAD sample compared to 
normal samples, NRIP1 significantly associated with macrophage. The high expression levels of NRIP1 and 
more macrophage infiltration led to poor prognosis of STAD.
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Introduction

Last century, gastric cancer (GC), also named stomach 
adenocarcinoma (STAD), was the most common cancer 
type in the United States. With the development of therapy 

and diagnostic methods, the incidence and mortality of GC 

have decreased in the past five decades, but GC remains the 

primary cause of cancer-associated death. Each year, there 

are about 1 million individuals be newly diagnosed with 
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GC, and 782,685 people die of this cancer worldwide (1).  
With the high morbidity and mortality, GC is a considerable 
challenge for global public health. Thus, it is urgently 
needed the explore the more sensitive and efficient 
biomarker for diagnosing, even as the targeted therapy 
of STAD. Nowadays, combination surgery with systemic 
multi-line chemotherapy could prolong the longevity of 
STAD patients, but these treatment regimens only saved 
less 30% STAD patients’ life (2). For the metastatic STAD, 
the cornerstone is remaining cytotoxic chemotherapy. To 
date, there were several studies that investigated the efficacy 
of target therapy for STAD such as apatinib, trastuzumab, 
and ramucirumab (3-5). With the rapid development of 
immunotherapy in cancer therapy, several studies also 
explored the efficacy and safety of immunotherapy for 
STAD as well (6,7).

In 1995, nuclear receptor-interacting protein 1 (NRIP1) 
was the first time be found in the cancer cell, and the 
NRIP1 function is it interacts with estrogen receptor α (ER-
α) (8). From then on, the interaction of NRIP1 and other 
nuclear receptors and transcription factors (TFs) had been 
found. Further, studies also found that NRIP1 expressed 
in multiple cancer types and served as a critical role in 
tumorigenesis, treatment response, and prognosis. For 
breast cancer, the NRIP1 downregulation may be associated 
with basal-like tumors (9). Turashvili et al. revealed the 
NRIP1 higher expression in ductal carcinomas than lobular 
carcinomas (10). The role of NRIP1 was the regulator or 
interactor of ER signaling and E2F signaling to affect breast 
cancer progression (11,12). The inhibition of NRIP1 can 
decrease the growth of breast cancer cells (13). Compared 
with normal samples, the NRIP1 was downregulated in 
hepatocellular carcinoma (HCC), and downregulation 
of NRIP1 leads to improve growth and migration ability 
HCC cancer cells (14). And the cir-NRIP1 accelerates 
the glycolysis and tumor progression via regulating miR-
186-5p/MYH9 axis in STAD (15). This indicated the 
circulating NRIP1 also as the oncogenic roles. NRIP1 
not only play a key role in cancer process but also acts as a 
significant part in the other diseases. NRIP1 also severed as 
an important regulator of energy metabolism and coronary 
artery disease (16,17). These results showed that NRIP1 
expression levels had a significant role in cancer patients’ 
prognosis. However, the NRIP1biological functions 
in these cancers and the NRIP1 expression levels and 
prognostic role in STAD still unclear. With these, we found 
the expression levels and prognostic role of NRIP1 and 
further analyzed the potential biological functions in STAD 

via comprehensive bioinformatics analysis. We present the 
following article in accordance with the MDAR reporting 
checklist (available at http://dx.doi.org/10.21037/atm-20-
6197).

Methods

The Gene Expression Profiling Interactive Analysis 
(GEPIA) analysis

GEPIA is a web-based tool to deliver fast and customizable 
functionalities from The Cancer Genome Atlas (TCGA), 
and Genotype-Tissue Expression (GTEx) project provides 
essential interactive functions, including differential 
expression analysis, profiling plotting, correlation analysis, 
and patient survival analysis (18). We used the GEPIA to 
analyze the NRIP1 expression levels in STAD. 

UALCAN database analysis

The UALCAN (http://ualcan.path.uab.edu) is an easy-
to-use, interactive web-portal that can perform in-depth 
analyses of TCGA gene expression data (19). To further 
analyze the factors that affect the NRIP1 expression in 
STAD. We use the UALCAN dataset to perform the 
subgroup analysis. In our study, UALCAN, as used to 
confirm the expression data of NRIP1, has examined via the 
“Expression Analysis” module and the “STAD” dataset. 

Analyzing the mutation types, mutated location, and the 
structure of NRIP1 through cBioPortal

The cBioPortal for Cancer Genomics (http://cbioportal.
org) provides a Web resource for exploring, visualizing, and 
analyzing multidimensional cancer genomics data (20). We 
explored the aberration type of subgroups and investigated 
the location and structure of NRIP1 in GC via cBioPortal.

Kaplan-Meier (K-M) plotter analysis

The K-M plotter is capable of assessing the effect of 54 k 
genes [mRNA, microRNA (miRNA), protein] on survival 
in 21 cancer types, including breast, ovarian, lung, and 
GC. Sources for the databases include GEO, EGA, and  
TCGA (21). The primary purpose of the tool is a meta-
analysis-based discovery and validation of survival biomarkers. 
We used KM plotter to confirm the prognostic values of 
NRIP1 and the significantly correlated genes in STAD.
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Protein-Protein network construction via GeneMANIA

GeneMANIA is a commonly used website for performing 
protein-protein interaction (PPI) network analysis and 
predicting the function of preferred genes (22). This user-
friendly online tool can display gene or gene lists using 
bioinformatics methods, including gene co-expression, 
physical interaction, gene co-location, gene enrichment 
analysis, and website prediction. We constructed the NRIP1 
PPI network via GeneMANIA.

The LinkedOmics dataset

The LinkedOmics database (http://www.linkedomics.org) 
contains multi-omics data and clinical data for 32 cancer 
types comprising 11,158 patients from the TCGA project. 
It provides a unique platform for scholars to access, analyze, 
and compare cancer multi-omics data within and across 
tumor types (23). The “LinkFinder” module was used to 
investigate differentially expressed genes within the TCGA 
STAD cohort. The “LinkInterpreter” module was used to 
perform analysis of kinase target s, miRNA target, and TF 
target for NRIP1. Results were analyzed for significance 
using the spearman’s correlation test. The P value cutoff 
was 0.05.

Tumor Immune Estimation Resource (Timer) analysis 

TIMER web server is a comprehensive resource for 
systematical analysis of immune infiltrates across diverse 
cancer types. The abundances of six immunes infiltrate 
(B cells, CD4+ T cells, CD8+ T cells, Neutrophils, 
Macrophages, and Dendritic cells) are estimated by the 
TIMER algorithm. TIMER web server allows users to 
input function-specific parameters, with resulting figures 
dynamically displayed to conveniently access the tumor 
immunological, clinical, and genomic features (24). 
We investigated the relation NRIP1 between immune 
infiltration, the association prognosis with immune cell 
infiltration, and the effect factors of immune infiltration and 
outcomes of STAD via TIMER dataset.

The analysis of Human Protein Atlas (HPA)

The HPA (http://www.proteinatlas.org) aims to map all 
the human proteins in cells, tissues, and organs using 
the integration of various omics technologies, including 
antibody-based imaging, mass spectrometry-based 

proteomics, transcriptomics, and systems biology (25). All 
the data in the knowledge resource is open access to allow 
scientists both in academia and industry to access the data 
for exploration of the human proteome freely. Finally, we 
used the HPA database to investigate the NRIP1 expression 
levels in normal and STAD tissue. 

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Statistics analysis

The statistics analysis of NRIP1 expression levels and 
the prognostics values for STAD via the public database 
statistics analysis methods.

Results

Expression analysis

To explore the NRIP1 differentially express in different 
cancer types and GC. We used the GEPIA primarily to 
investigate the NRIP1 expression in human cancers, and 
independently used GEPIA to perform NRIP1 expression 
levels in GC. Further, we used the UALCAN database 
to analyze the relationship between clinical features and 
the NRIP1 expression. NRIP1 was found significantly 
express in six cancer types that including cervical squamous 
cell carcinoma and endocervical adenoma (ESCA), 
glioblastoma multiform (GBM), brain lower-grade glioma 
(LGG), pancreatic adenocarcinoma (PAAD), STAD, and 
thymoma (Figure 1A), and we independently performed 
the expression of NRIP1 in STAD (Figure 1B). These 
results showed that NRIP1 is an upregulated expression 
in multiple cancers. Further, we used the UALCAN to 
perform a subgroup analysis of NRIP1 expression of 
STAD. These results showed that the NRIP1 significantly 
overexpressed in the STAD samples compared to normal 
samples. On the clinical features, we also reanalyzed the 
NRIP1 expression levels in different clinical status. The 
results showed that the NRIP1 was the higher expression in 
STAD samples compared with normal samples (Figure 2A),  
the more tumor burden the higher NRIP1 expression 
(Figure 2B). NRIP1 expression levels may affect H. pylori 
infection, with H. pylori infection would have lower NRIP1 
expression than without infection (Figure 2C). Histological 
subtypes influence NRIP1 expression as well. The intestinal 
adenocarcinoma (Papillary) does not have a difference in 
NRIP1 expression between tumor tissue and normal tissue 
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(Figure 2D). The patient’s race did not have a deep influence 
on NRIP1 expression (Figure 2E). There was no difference 
found between nodal metastasis status and NRIP1 
expression (Figure 2F). The co-mutated status of TP53 
also affected the NRIP1 expression that co-mutation with 
TP53 led to downregulation (Figure 2G). Gender did not 
have any impact (Figure 2H). Tumor grade was associated 
with NRIP1 expression. The grade 1 and grade 3 had a 
significant difference (Figure 2I).

 

c-BioPortal analysis

There are many mutation types for genes, including 
missense, amplification, and deep deletion. The different 
mutated types may be distinct functions of genes. We used 
c-Bioportal to analyze the mutated-types, co-mutations, and 
the structure of NRIP1. The results showed that the mutate 
types of NRIP1, including missense mutation, truncating 
mutation, amplification, and deep deletion (Figure 3A). 
The aberration types in different histological subtypes and 
microsatellite instability (Figure 3B,C). The most often 
co-mutated genes, including TTN, ARID1A, SYNE1, 
MUC16, RYR2, MDN1, KMT2D, LRP1B, TP53, SACS 

for the altered group and unaltered group of NRIP1  
(Figure 3D). The located mutation of NRIP1 was performed 
via cBioPortal as well (Figure 3E).

Survival analysis of NRIP1 

We used the K-M plotter to confirm the NRIP1 prognostics 
role in STAD. We analyze the relationship between NRIP1 
expression levels and post-progression survival (PPS), free-
progression (FP), and overall survival for STAD via K-M 
plotter. The results showed that overexpression of NRIP1 
led to shortening the OS (HR =1.49, log-rank P=1.8e−05), 
FP (HR =1.56, log-rank P=4e−05), PPS of STAD patients 
(Figure 4A,B,C). 

Correlated significant genes analysis

Tumorigenesis is a complicated process; this process may 
include many genes aberration. So, we use the LinkedOmics 
to find the top 50 associated genes of NRIP1, further 
selected the correlated significant (cor ≥0.6) genes of NRIP1 
to conduct prognosis analysis. The results showed that the 
top 50 positively and negatively correlated significant genes 
(Figure 5A,B,C). There were three correlated significant 

Figure 1 NRIP1 expression levels in different human cancers. (A) Increased or decreased NRIP1 in data sets of different cancers compared 
with normal tissues in the GEPIA. (B) NRIP1 expression in STAD samples and paired normal samples determined by GEPIA. NRIP1, 
nuclear receptor-interacting protein 1; GEPIA, Gene Expression Profiling Interactive Analysis; STAD, stomach adenocarcinoma.
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Figure 3 Aberration types, located mutation, the co-mutation status of NRIP1, and the relation between microsatellite instability and 
NRIP1 mutations. (A) Aberration types and frequency of NRIP1 in STAD; missense and deep deletion mutation types are the most 
common, 6% mutations of NRIP1 in STAD. (B) The aberration types and histological subtypes. (C) The relation between microsatellite 
instability and NRIP1 mutations; NRIP1 mutations may have higher levels microsatellite instability. (D) Co-mutations with NRIP1. (E) 
Locations of NRIP1 mutations. NRIP1, nuclear receptor-interacting protein 1; STAD, stomach adenocarcinoma.
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genes of NRIP1 that USP25 (Spearman correlation =6.432-
01, P value =1.176e−36), BACH1(Spearman correlation 
=6.429e−01, P value =1.300e−36), and SNYJ1 (Spearman 
correlation =6.134e−01, P value =1.325e−32)consistent with 
the selected threshold (Figure 6A,B,C). The prognostics 
value of selected genes in STAD showed that overexpression 
USP25, SNYJ1 indicated the poor outcome of STAD 
(Figure 7A,B,C,D,E,F), but the overexpression of BACH1 
indicated a satisfactory prognosis (Figure 7G,H,I).

Enrichment functions of NRIP1

To investigate the potential biological functions of NRIP1. 
We used the Linkomics dataset to analyze the biological 
process (BP), cellar component (CC), molecular function 
(MF), and the KEGG pathway. The results showed that the 
functions of NRIP1, including regulation of small GTPase 
mediated signal transduction, immune response-regulating 
signaling pathway, cell-substrate adhesion, mRNA 

Figure 4 The prognostic role of the NRIP1 gene (Kaplan-Meier plotter). (A,B,C) High NRIP1 expression was correlated with poor 
prognosis of OS, PPS, and FS in STAD. NRIP1, nuclear receptor-interacting protein 1; STAD, stomach adenocarcinoma; os, overall 
survival; PPS, post-progression survival; FS, free-progression.
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processing, and protein production (Figure 8A,B,C). And 
NRIP1 may take part in the crucial pathways, including 
a pathway in cancer, ribosome, carbon mentalism, and 
phosphatidylinositol signaling system (Figure 8D). 

Kinase targets, TFs targets, and miRNA targets of NRIP1

Gene expression is affected by many factors, the most 
important regulators, including kinase, TFs, and miRNA. 
To incite regulators that regulate NRIP1 expression in 
STAD, we used the LinkedOmics database to find the 
significant kinase, TFs, miRNA targets of NRIP1. The 
results showed the significant miRNAs targets including 
(TGAATGT)MIR-181A, MIR-181B, MIR-181C, MIR-
181D, (GCACTTT)MIR-17-5P, MIR-20A, MIR-

106A, MIR-106B, MIR-20B, MIR-519D, (TTGCACT)
MIR-130A, MIR-301, MIR-130B, (TTGGAGA)MIR-
515-5P, MIR-519E, (TAGGTCA)MIR-192,MIR-215, 
(CACTGTG)MIR-128A, MIR-128B, (GACTGTT)MIR-
212, MIR-132, (ACCGAGC)MIR-423, (CCAGGGG)
MIR-331, (CGGTGTG)MIR-220, and (GGCGGCA)
MIR-371 (Figure8E). The kinases target including spleen 
associated tyrosine kinase (SYK), epidermal growth factor 
receptor (EGFR), ATM serine/threonine kinase, cyclin-
dependent kinase 2 (CDK2), p21 (RAC1) activated kinase 
1, and other important kinase targets (Figure 8F). TFs 
targets results showed that TTGTTT_V$FOXO4_01, 
YTATTTTNR_V$MEF2_02 ,  RCGCANGCGY_
V$NRF1_Q6, V$SP1_Q6_01, V$MYCMAX_01, and 
SCGGAAGY_V$ELK1_02 are the significant TFs targets 

Figure 5 Correlated significant genes of NRIP1 (LinkedOmics). (A,B,C) Volcano plots and heat maps showing genes positively and 
negatively genes correlated with NRIP1 in STAD, respectively (top 50). Red suggests positively correlated genes and green shows negatively 
correlated genes. NRIP1, nuclear receptor-interacting protein 1; STAD, stomach adenocarcinoma.

NRIP1 association result

Spearmans rho statistic (spearman test)
0  1  2–1

35

30

25

20

15

10

5

0

–l
og

10
 (p

 v
al

ue
)

Groupz-Score

4
2
0
–2
–4
–6

>3
1
0
–1
<–3

A

B C



Annals of Translational Medicine, Vol 8, No 20 October 2020 Page 9 of 20

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(20):1293 | http://dx.doi.org/10.21037/atm-20-6197

for NRIP1 (Figure 8G). These clues further showed that 
NRIP1 functioned as an important function in various 
cancers.

PPI network analysis of NRPI1

Further, we constructed the PPI network to analyze the 
NRIP1 interacts with other genes. The PPI network 
showed that NRIP1 significantly interacted with BRCA1, 
NR0B1, AR, RARA, HDAC1, and other essential genes. 
The biological functions of these genes may include the 
transcription initiation from RNA polymerase II promoter 

DNA-templated transcription, initiation intracellular 
receptor signaling pathway, ligand-activated sequence-
specific DNA binding RNA polymerase II TF activity, 
direct ligand regulated sequence-specific DNA binding TF 
activity, intracellular steroid hormone receptor signaling 
pathway, and transcription corepressor activity (Figure 9). 
These results showed the NRIP1 played a crucial role in 
cancer.

Timer analysis

The immune cell infiltration has a deep influence on the 

Figure 6 Gene correlation expression analysis for NRIP1 (LinkedOmics). (A,B,C) The scatter plots show spearman-correlation of NRIP1 
expression with expression of USP25, SYNJ1, and BACH1 in STAD. NRIP1, nuclear receptor-interacting protein 1; STAD, stomach 
adenocarcinoma; SYNJ1, Synaptojanin 1; BACH1, BTB and CNC homology 1, basic leucine zipper transcription factor 1; USP25, 
ubiquitin-specific protease 25.
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Figure 7 Prognostic analysis of genes correlated with NRIP1 in STAD (Kaplan-Meier plotter). (A,B,C) The overall survival, post-
progression survival, free-progress curves of SYJN1. (D,E,F) The overall survival, post-progression survival, free-progress curves of USP25. 
(G,H,I) The overall survival, post-progression survival, free-progress curves of BACH1. NRIP1, nuclear receptor-interacting protein 1; 
STAD, stomach adenocarcinoma. 
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Figure 8 Functions enrichment and miRNA targets, transcription factors targets, kinases targets of NRIP1 (LinkedOmics). (A) Biological 
process (BP) of NRIP1 in STAD. (B) Cellar component (CC) of NRIP1 in STAD. (C) Molecular functions (MF) of NRIP1 in STAD. (D) 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway in STAD. (E) Kinases targets of NRIP1. (F) miRNA targets of NRIP1. (G) 
Transcription factors of NRIP1. NRIP1, nuclear receptor-interacting protein 1. STAD, stomach adenocarcinoma.
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prognosis of some cancer types. We aimed to investigate the 
relationship between NRIP1 and immune cell infiltration 
and to explore further whether immune cell infiltration 
is associated with the prognosis of STAD via Timer. The 
results showed that NRIP1 had a positively significant 

correlation with macrophage(cor =0.633, P=9.05e−43) 
and dendritic (cor =0.544, P=6.61e−30) cell infiltration, 
and NRIP1 had the positive relation with CD8+ T Cell 
(cor =0.298, P=4.90e−09), CD4+ T Cell (cor =0.342, 
p=1.72e−11), and neutrophil (cor =0.42, P=2.79e−17) as 

Figure 9 Protein-protein interaction network of NRIP1 (GeneMANIA). Protein-protein interaction (PPI) network and functional analysis 
showing the gene set enriched in the target network of NRIP1. Distinct colors of the network edge indicate the bioinformatics methods 
applied: physical interactions, co-expression, predicted, co-localization, pathway, genetic interactions, and shared protein domains. The 
distinct colors for the network nodes show the biological functions of the sets of enrichment genes.
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well (Figure 10A). Further, we investigated the relationship 
between somatic copy number aberration (CAN) and 
an abundance of immune infiltrates. The results showed 
that arm-level gain and arm-level deletion were the most 
significant impactors for immune infiltrates, and high 
amplification affected the CD8+ T Cell and neutrophil 
infiltration (Figure 10B).  Finally, we explored the 
relationship between immune cell infiltration and prognosis 
for STAD. The results showed that high macrophage cell 
infiltration and overexpression NRIP1 indicated the poor 
outcome of STAD (Figure 10C). Further, the relation 
between immune cell filtration and other important genes 
was performed (Figure 11)

HPA analysis

To investigate the difference, NRIP1 protein expression 
levels between normal and STAD tissue. We used the HPA 
to analyze. Interestingly, the results showed the NRIP1 
protein downregulation in STAD (Figure 12A) compared to 
normal tissue (Figure 12B).

Discussion

Although the advance of diagnosing and therapy methods, 
the STAD is still one of the significant cancer-related death 
causes worldwide. The underlying mechanisms of STAD 
tumorigenesis are still unclear, resistance therapy, and the 
tumor immune response, leading to the STAD patients, 
could not have been managed. Therefore, a more sensitive 
and specific novel biomarker for diagnosing STAD, even 
as the therapy target is urgently needed. From the past, 
many studies’ results showed that genetic changes acted as 
one of the most critical promotors for tumorigenesis and 
therapy resistance. Among the genetic changes, the NRIP1 
had been observed aberration in multiple cancer types 
(9,14). The fundamental function of NRIP1 in cancer is still 
unclear. The functions of NRIP1 may be the regulator of 
the WNT signaling pathway, E2F signaling pathway, and 
ER signaling. And these signaling pathways play a crucial 
role in multiple cancers. 

From these, we used bioinformatics to investigate the 
difference of NRIP1 expression level between normal 
and cancer samples, further analyze the relationship of 
NRIP1 expression level with STAD outcomes. The results 
showed that NRIP1 significantly overexpressed in STAD 
samples compared to normal samples, and the STAD 
patients’ clinical features, including age, cancer status, nodal 

metastasis, and co-mutations, had an influence on NRIP1 
expression as well. And the higher expression of NRIP1 
indicated the poor prognosis of STAD. To date, there is 
not any study that investigated the fundamental function 
of NRIP1 in STAD. The significantly correlated genes, 
including USP25, BACH1, and SYNJ1. The overexpression 
of USP25 and SYNJ1 indicated the poor prognosis of 
STAD, but the overexpression of BACH1 lead to positive 
outcomes. Upregulations of BACH1 was found in prostate 
cancer, and the high expression of BACH1 improved the 
invasion and migration of cancer cell (26). Ou et al. study 
revealed that overexpression of BACH1 was associated with 
poor prognosis of breast cancer patients (27). No study 
investigates the functions of USP25 and SYNJ1 in any 
cancer. The association these defined correlated significant 
genes with NRIP1 is not evident now. The fundamental 
biological functions of NRIP1 are needed to be further 
classified. 

The PPI network and the enrichment functions of 
NRIP1 showed that the essential biological functions, 
including GTPase mediated signal transduction, immune 
response-regulating signaling pathway, cell-substrate 
adhesion, DNA transcription, mRNA processing, and 
transcription corepressor activity. Among these biological 
processes, the immune response, and the cell-substrate 
adhesion is one of the critical functions in cancer 
(28,29). With these, NRIP1 further is an integral part of 
tumorigenesis and progression.

Tumorigenesis is a complicated process. Many factors 
regulate oncogene expression, including TFs, kinases, and 
miRNAs. So, we further explored the TFs, kinases, and 
miRNAs potential targets of NRIP1. From the kinase 
targets of NRPI1, we can see that SYK, EGFR, CDK2, 
and P21 activated kinases (PAKs) targets of NRIP1. The 
overexpression of SYK indicated the poor prognosis of 
defined solid tumor types (30). In squamous cell carcinoma 
of the head and neck (SCCHN), higher expression SYK led 
to more mortality (31). These show SYK may function as 
the promoter of cancer progression. EGFR mutation was 
observed in multiple cancer types, including lung cancer (32), 
head and neck cancer (33), and pancreatic cancer (34), and 
use inhibitor of EGFR can improve the prognosis of these 
patients. According to CDK2, it is an essential regulator of 
normal or cancer cell cycle, and its activity is vital for loss of 
proliferative control during oncogenesis. The aberration of 
CDK2 is found in various cancers, including glioblastoma (35)  
and B cell lymphoma (36). CDK2 promotes breast cancer 
progression via phosphorylating and activating hormone 
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Figure 10 The relation between immune cells infiltration and NRIP1 in STAD (Timer). (A) Association between NRIP1 and several types of immune cell infiltration. (B) Relation between aberration types and immune cell infiltration. (C) The prognostic role of various immune cells in STAD. Timer, 
Tumor Immune Estimation Resource; STAD, stomach adenocarcinoma.
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Figure 11 The relations between the defined significant genes of immune cell infiltration and STAD. STAD, stomach adenocarcinoma.
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receptors (37). The PAKs are a family of serine-threonine 
kinases that consist of 6 members, PAKs 1-6. In colorectal 
cancer cells, PAK1 knockdown resulted in inhibiting 
cell growth, cell survival, and cell invasiveness (38). 
Overexpression of PAK1 was observed in pancreatic ductal 
adenocarcinoma (PDAC), and the upregulation of PAK1 
was related to aggressiveness (39). These results showed that 
the significant kinases target of NRIP1 might play a key role 
in STAD. Regrettably, the apparent relationship between 
NRPI1 and these significantly correlated genes remains 
understood, no study investigates these genes in STAD.

miRNAs are critical for post-transcriptional regulation 
of gene expression and function as a significant role in 
carcinogenesis. In this study, we found several significant 
miRNAs of NRIP1, including MIR-181, MIR-331, MIR-
132, MIR-212, MIR-128, MIR-215, MIR-130, and MIR-
106. Downregulation of MIR-181b associated with drug 
resistance for AML (40), MIR-181a, and MIR-181c can 
improve the therapeutic sensitivity for chronic myeloid 
leukemia patients (CML) (41,42). Dysregulation of 
the MIR-181 family has been observed in solid cancer, 
including breast cancer (43), cervical cancer (44), and 
ovarian cancer (45). In STAD, MIR-331 acts as the inhibit 
regulator of homolog 2 (HER2), in which over-expression 
resulted in epithelial-mesenchymal transition (EMT) (46). 
Overexpression of MIR-132 was found in GC, and the 
upregulation of MIR-132 can improve cell Proliferation via 
retinoblastoma 1 targeting (47). The upregulation of MIR-
132 promotes the invasion and migration of pancreatic 
carcinoma cells by inhibiting PTEN (48). High expression 

MIR-212 functioned as tumor-suppressor of NSCLC by 
inhibition SOX4. For STAD, miR-212-3p was a regulator 
of carcinogenesis via targeting MeCP2 (49). Further 
analysis showed that MIR-212 inhibited the proliferation 
of GC by directly suppressing the retinoblastoma binding 
protein 2 (50). Liu et al. study revealed that MIR-128 had an 
association with response to chemotherapy (51). Therefore, 
MIR-106 appeared as a biomarker for STAD (52). MIR-
130a was found in STAD, and miR-130a may promote cell 
migration and invasion by targeting RUNX3 (53). Among 
the miRNA’s targets of NRIP1, there are several miRNAs 
have been approved. They correlate with STAD, but the 
fewer miRNAs’ functions in STAD remain unclear. Further 
analysis should be conducted.

Except for these factors, the cancer microenvironment 
also has a vital role in tumorigenesis and progression. The 
immune cell infiltration is one of the most critical elements 
of the cancer microenvironment. Few studies explore the 
relation of immune cell infiltration between the prognosis 
of STAD. In our study, the results showed that NRIP1 
positively significant correlation with macrophage infiltration 
in STAD, and the higher macrophage infiltration, the poorer 
outcomes of STAD patients. Tumor-associated macrophages 
(TAMs), show significant phenotypic heterogeneity and 
diverse functional capabilities under the influence of the 
local tumor microenvironment. The vital role of TAMs is 
that it accelerated the angiogenesis (54), metastasis (55), 
drug resistance, and growth of cancer cell stemness (56). 
Thus, the TAMs infiltration shows the adverse outcome of 
the defined cancer type.

Figure 12 The NRIP1 protein expression in stomach tissue (HPA). (A) NRIP1 protein expression in stomach adenocarcinoma tissue. (B) 
NRIP1 protein expression in normal stomach tissue. HPA, Human Protein Atlas.
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Conclusions

In the present study, we comprehensively analyzed the 
expression and prognostic role of NRIP1 and preliminary 
explored the BP related to STAD progression. Our study 
results showed that NRIP1 significantly expressed in 
STAD samples compared to normal samples, and the 
overexpression of NRIP1 indicated the poor prognosis 
of STAD. The results of the enrichment function of 
NRIP1 showed that NRIP1 takes part in the cell-substrate 
adhesion, DNA transcription, mRNA processing, and 
transcription corepressor activity signaling pathways. The 
significant miRNAs (MIR-130, MIR-132, and MIR-106) 
targets and kinases (EGFR, PAK1, CDK2, and SYK) of 
NRIP1 are also taken part in several cancer pathways. 
These clues indicated NRIP1 might act as an essential role 
in STAD, but there are limitations of our study, including 
cannot construct a model to explore other factors that 
potentially affect the STAD prognosis, lackingthe validation 
of NRIP1 expression levels in STAD and normal samples, 
no vitro validated experiments.
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