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Today massive amounts of sequenced metagenomic and metatranscriptomic
data from different ecological niches and environmental locations are avail-
able. Scientific progress depends critically on methods that allow extracting
useful information from the various types of sequence data. Here, we will
first discuss types of information contained in the various flavours of bio-
logical sequence data, and how this information can be interpreted to
increase our scientific knowledge and understanding. We argue that a
mechanistic understanding of biological systems analysed from different
perspectives is required to consistently interpret experimental observations,
and that this understanding is greatly facilitated by the generation and
analysis of dynamic mathematical models. We conclude that, in order to
construct mathematical models and to test mechanistic hypotheses, time-
series data are of critical importance. We review diverse techniques to ana-
lyse time-series data and discuss various approaches by which time-series of
biological sequence data have been successfully used to derive and test
mechanistic hypotheses. Analysing the bottlenecks of current strategies in
the extraction of knowledge and understanding from data, we conclude
that combined experimental and theoretical efforts should be implemented
as early as possible during the planning phase of individual experiments
and scientific research projects.

This article is part of the theme issue ‘Integrative research perspectives
on marine conservation’.

When discussing the process of generating useful information from sequences, it
is helpful to agree on some basic definitions. First, we need to clarify what exactly
we consider a sequence and what we understand as information. When speaking
about sequences, most biologists understand a sequence found in biological
macromolecules, such as the sequence of nucleotides within a DNA or RNA mol-
ecule or the sequence of amino acids within a protein. Strictly speaking, sequences
are far more general and describe any set of objects (real: such as chemical com-
pounds, or abstract: such as numbers) arranged in some sequential order. In this
work, we will mostly refer to biological sequences given by the order of chemicals
arranged in a sequential order within a macromolecule, but would like to stress
that measurements obtained at various time points also represent a sequence,
from which plenty of useful information can be extracted. Such sequences were
in particular important before the advent of high-throughput technologies that
allow macromolecular sequences to be read efficiently. As we will discuss,
sequences of sequences, i.e. time-series of biological sequence data, are a valuable
method to infer information from sequences.

While sequences are rather straightforward to define in a very general sense, it
is far more challenging to capture the notion of information in a simple definition.
In information theory, information—or rather the generation of information—is
quantified by the information entropy (or Shannon entropy, named after
Claude Shannon who introduced the concept in 1948 [1]). The concept of
information entropy is highly useful to determine, for example, bounds for
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lossless compression, and helps in quantifying the capacity of
transmission systems to transmit data.

The difficulty is that in this theory data are inherently
considered to be identical with information, and the encoding
and decoding processes during communication are concer-
ned primarily with the problem of encoding, transmitting
and decoding a sequence of bits—the fundamental unit of
information. The important question whether the receiver
actually understands the transmitted information is not
considered in this theory at all.

It is very simple to calculate the Shannon entropy of an
arbitrary text, and the resulting number will tell us how ran-
domly (or non-randomly, and thus surprisingly) the letters are
arranged into a sequence. However, the same information (for
example as contained in a user manual of a microwave or any
other technical device) can be written in many languages. The
Shannon entropies of all these texts may be the same, or at
least very similar. But for me as a receiver it makes a great deal
of difference whether the text is written in English (which I
understand) or in Finnish (which I don’t). This example illus-
trates that the information content of data, as quantified by the
Shannon entropy, does not help us to predict how much useful
information we can extract. It further illustrates that, in addition
to the data themselves, knowledge about the decoding system
(here, knowledge of a language) is required to actually make
use of the information. In the following, information is inter-
preted as ‘knowledge obtained from investigation, study, or
instruction’,! which entails that besides the pure information
content also the associated decoding mechanisms are
considered.

Our text is structured as follows. First, we survey which
information is contained in various biological sequences,
and illustrate how the information content changes when con-
sidering different levels of biological organization. We would
like to note here that there exist a much higher number of bio-
logical organization levels than we address in this article, and
we have selected the most fundamental ones to briefly exem-
plify this process. Further, we outline how information is
transmitted and decoded, and discuss what kind of useful
information, or knowledge, can be obtained from the data. We
then proceed towards time-series data, which, as mentioned
above, also represent a sequence containing useful infor-
mation, and illustrate how new knowledge and insight are
produced by different types of analysis. The multiple layers
encompassing different information content are illustrated in
figure 1. We conclude by suggesting that experiment and
theory need to collaborate more intensely, and that this collab-
oration, and in particular interdisciplinary communication,
need to be implemented as early as possible, during the
planning and experimental design phase.

All life on Earth is based on genetic sequences stored in DNA.
These sequences contain key information on how to manufac-
ture and assemble the building blocks composing an organism,
how to regulate the activity of various components in response
to the environment, and, most importantly, how to copy this
information and transmit it to future generations. Copying
information is never perfect, so information can be changed
and reassembled in different combinations.

Passing the information from ancestor to descendant, or lat-
erally between organisms, while at the same time modifying it

through random mutations, inevitably led to speciation [2—4], [ 2 |

which resulted in the enormous biodiversity on this planet.
Analysing the information stored in the genetic material is a
first step of a comprehensive investigation of the processes
required to extract and decode biological information.

Understanding information as a signal that becomes valuable
after decoding by a receiver, a DNA sequence contains more
informative content than the sequence of the four different
nucleotides that a DNA molecule is composed of.

The order of the nucleotides within the DNA sequence
reduces the information entropy. In eukaryotes for example,
the genome sequence contains several types of repeated
nucleotide sequences (repeats). This phenomenon results in a
reduction of the DNA information entropy, as was shown in
an earlier study [5]. As a beneficial result, repetitive nucleotide
sequences provide genetic redundancy and gene regulation by
DNA folding specificity, and are important for the synthesis of
proteins with similar functions [6, p. 556]. However, at the
same time the order of nucleotides increases the complexity
of information storage [7]: it is responsible for the helix struc-
ture, which itself affects the robustness [8] of the double helix
or the accessibility [9,10] of the DNA sequence for the inter-
action of organic compounds or inorganic nanomaterials [11].
For example, measuring the periodicities of 10-11 bp allows
the super-coiled state of genomic DNA to be determined
[12-14]. Supercoiling illustrates how sequential information
stored in DNA base pairs can be translated into structural infor-
mation about the DNA molecule. DNA supercoiling strongly
affects DNA metabolism, has influence on the molecular evol-
ution of the DNA [15] and is one of the most fundamental
regulators of global gene expression in bacteria [16,17]. The
next level of coiled DNA ordering is the specific chromosome
structure, which defines almost the whole library of inherited
genetic information of an organism. A disorder of this infor-
mation level can cause damage to a biological system, for
example the duplication of one chromosome in humans (e.g.
trisomy 21) results in several health problems [18]. Information
stored in the non-randomly ordered nucleotide triplets
(codons) [19-21] forms the basis for the genetic code. Only
this code allows DNA sequences to be scanned, decoded and
interpreted by the translational machinery, to be converted
into amino acids in a process that enables relocating inherited
information into proteins, another set of elementary biological
buildings blocks. The genetic code is perhaps the most illustra-
tive example for the fact that yielding useful information from
data always requires a functioning data decoding system. Inter-
estingly, this information transfer from DNA to protein is
highly dynamic. For example, identical proteins can be syn-
thesized with different molecular energies if the same amino
acid sequence is encoded by different codons [22].

Proteins, defined by the information encoded in the DNA
sequence (the gene), fulfil certain functions within a living
organism. Information gathered from specific marker genes
allows conclusions about evolutionary forces that are respon-
sible for adaptation and speciation processes. For example,
the most commonly used marker gene in prokaryotes is 16S
ribosomal RNA (rRNA) [23]. Because this gene is considered
to have an essential function, it is ubiquitous, and it exhibits



Figure 1. From sequence to information. This figure shows the different levels of information, from DNA to environment. Each layer depicts a different level of
information that can be obtained from sequences. The DNA sequence encodes the genetic information that is decoded by the translational machinery into amino
acid sequences. These in turn fold into functional proteins. The protein functions provide information about the capabilities of an organism such as its metabolism.
Combined information of many organisms and environmental parameters characterize ecosystem dynamics. All these information layers can be used to infer different
relationships, for example, in the form of networks or models. Including the temporal aspect (big blue 3D arrow), another dimension of information is gained, from
which temporal correlations and interactions can be determined. A major task of time-series analysis and mechanistic modelling is to predict the future from
information collected from the past. The more distant the future is that we try to predict, the more the uncertainty (question marks) increases.

a low mutation rate, comparative analyses of the DNA
sequences allow reconstruction of the evolutionary history of
species. Such phylogenetic reconstructions can identify clades
specific to certain ecosystems, such as the SAR11 clade [24],
or some archaeal species that have been identified in the eupho-
tic zones of marine ecosystems [25]. However, interpreting
results based on marker genes like 165 rRNA and thus extract-
ing accurate information are complicated by various factors
[26,27], including the experimental amplification bias, as
shown by Hong et al. [28], or its presence in multiple copies
[26]. Alternative single-copy markers like chaperonin-60 [29]
or the rpoB gene provide more phylogenetic resolution
than the 165 rRNA gene and are often used in gathering
evolutionary information [23].

Proteins resulting from the translation of the DNA
sequence may, in the simplest case, perform exactly one
function. However, there are multiple known examples
where this simple one-to-one relation is not accurate. Multi-
functional proteins, the so-called ‘moonlighting proteins’,
perform more than one biochemical or biophysical function
[30,31]. Protein moonlighting means that a gene may acquire
and maintain a second function without gene duplication
and without loss of the primary function. As a result, such
a gene is under two or more entirely different selective con-
straints [32]. In a nutshell, we observe that the information
stored in a gene sequence is much larger than is recognized
by standard comparative methods. Therefore, the optimal

yield on the information stored in sequences is best obtained
by the agglomeration of different research methods. Wrap-
ping particular experimental studies in the laboratory with
theoretical predictions obtained from mathematical and stat-
istical analyses is one promising path forward to maximize
the information extraction process.

(c) Genome

Zooming out from the level of single genes to the whole
library of genes stored in an organism’s genome allows
extraction of information from the sequence in a different
context. Considering the whole genome as information
source, several sequence characteristics can be scanned to
coax out functionality encoded in the genome structure.
Focusing on the GC content variation between organisms,
for example, points to genomic adaptations that might have
played a significant role in the evolution of the Earth’s con-
temporary biota [33]. In addition, genomic GC comparison
allows identification of recombination events that are respon-
sible for shaping the information flow along the genomes in
an evolutionary context [34-36]. Besides the specific distri-
bution of the nucleotides within a genome sequence, the
order of genetic blocks itself entails information that is decod-
able and allows conclusions about mechanisms that are
responsible to populate the genome with new information.
Genome synteny analysis (the relative gene-order conservation
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between species) can provide key insights into evolutionary
chromosomal dynamics and the rearrangement rates
between species [37-40]. Today, information based on com-
plete genome sequences is mainly obtained by comparative
genomic approaches. Investigation methods focusing on the
pan-genome (genes present in all strains) [41] of a species
elevates information mining to a new perspective. Pan-
genome studies allow investigation of the plasticity of a
genome at species level. For example, insertions, deletions,
and recombination events, as well as single-nucleotide poly-
morphisms (SNPs), are only visible at pan-genome level,
highlighting the consequences of evolutionary forces [41-45].

(d) Gene expression

Whereas the genomic content stored in the DNA remains
rather constant throughout the lifespan of an organism, the
rates with which individual genes are transcribed vary strongly
over time. Transcription is regulated by multiple factors,
including environmental stimuli. The result of this regulation
can be observed by measuring the quantity of the messenger
RNA transcripts (mMRNA) under different conditions or over
time. These data provide additional information that cannot
be obtained from the DNA sequence alone. Transcriptomics
techniques allow analysis of the entirety of all transcripts
available from one organism in different tissues, under differ-
ent conditions or at different time points. Information
obtained by transcriptomics allows conclusions about the regu-
lation of gene expression. There are two key contemporary
techniques in the field: use of microarrays, which quantify
a set of predetermined sequences, and RNA sequencing
(RNA-Seq), involving high-throughput sequencing to capture
all sequences [46]. For medical applications, expression data
have been successful in providing a molecular basis for the
diagnosis of otherwise difficult to distinguish pathologies
[47—49]. In addition, co-expression profiles analysed using net-
work and machine learning approaches [47,49,50] helped to
discover functionally linked genes that are associated with
specific diseases [51]. In microbiological research, co-evolution-
ary aspects of bacteria and their viruses (phages) are an
impressive example where gene expression analysis helped in
understanding the mechanistic interactions in greater detail
[52,53]. Co-expression analysis is not limited to a specific
genome, but can be also observed among different species,
where it displays remarkably similar synchronous patterns of
gene expression over time [54]. Nevertheless, the expression
profile extracted and evaluated by common methods will not
necessarily provide information about interactions between
genes or proteins. For example, the two-component signal
transduction system in bacteria is able to recognize and
respond to a variety of environmental stimuli. This basic
system is composed of a sensor histidine kinase that catalyses
its autophosphorylation and subsequently transfers the
phosphate group to a response regulator, which can then trig-
ger different physiological changes [55-57]. This regulatory
mechanism cannot be understood just by scanning the infor-
mation written in the genetic sequence nor by studying its
expression profile. This complex mechanism is best explored
by experimental work that can be integrated in the framework
of mathematical models [58-60]. Such combined interdisciplin-
ary approaches have been successfully applied to the
analysis of the MAP kinase pathway, which was performed
by a combination of mathematical modelling, integrated

phosphoproteomic technology and Western blotting [61]. In [ 4 |

summary, gene expression analysis is a major contributor for
our understanding of gene regulation.

(e) Functional profiling

One of the main goals of sequence analysis is the determination
of functional properties. The corresponding methods are often
referred to as ‘functional profiling’. This process usually begins
by comparative analyses of sequences of interest with anno-
tated databases. For instance, after sequencing the protein
coding gene of interest, the obtained reads are mapped on a
reference database like the Kyoto Encyclopedia of Genes and
Genomes (KEGG) orthology [62-64], Clusters of Orthologous
Groups (COGs) [65,66], Non-supervised Orthologous Groups
(NOGs) [67], Pfam [68] and UniProt Reference (UniRef) clus-
ters [69]. These databases are used in order to classify only
protein coding sequences into a putative functional category.
Efficient search methods like BLAST [70] provide a putative
classification into a functional category through sequence simi-
larity. For the assumption that similar sequences perform
similar functions, this approach is very successful if a
reference protein or gene/genome exists.

If the same function is encoded in highly identical protein
sequences, then we would consider the information entropy
of such sequences in general as very low. Sometimes
sequences may perform the same function but are different
in their content, e.g. in amino acid compositions. An example
is the LSR2 protein, which is a transcriptional silencer found
in Actinobacteria, where it binds AT-rich DNA and silences
its transcription [71-73]. This example illustrates how
information stored in a sequence can drastically differ
depending on the level of organization that is considered:
the information entropy based on the arrangement of the
amino acids in the sequences is extremely high, which results
from the diversity between the sequences. On the other hand,
the same sequences exhibit a low information entropy when
their functional properties are considered. This can be best
observed when the secondary structure of the sequences is
considered [71].

Functional profiling of genes and proteins is an important
step in understanding the role of a sequence in the context of
the whole genetic repertoire of an organism. How genes
interact on the functional level is yet a higher level of
information, from which new knowledge can be extracted.

(f) Pathway reconstruction

Understanding biological systems presupposes investigating
how matter and energy are converted in order to maintain
their functions. How exactly these processes work is very
likely written in the genetic sequence. To decode it, we need
more understanding than the information from sequence
content alone, or how strong a gene is expressed. Rather,
the interplay between various gene functions is essential.
Metabolic pathway reconstruction, molecular interaction and
reaction network analysis, followed by mapping processes to
reference pathways, increase our understanding about a
higher-level function of an organism [74-76]. Once a reaction
network has been reconstructed, it can be analysed using
various structural analysis techniques, such as the method
of network expansion [77], or dynamic approaches based on
ordinary differential equations (ODEs) [78,79]. Such approaches
allow us to systematically investigate the effect of changes in
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parameters that are not easily accessible experimentally, and
thus to draw general conclusions about regulatory principles
[80-82]. In addition, two more promising concepts for pathway
analysis that assesses inherent properties in biochemical reac-
tion networks [83,84] rely on the related concepts of
elementary flux modes [85,86] and extreme pathways [87-90].
Pathway analysis undoubtedly has great potential to gain a
better understanding of cellular metabolism. For example, the
potential of micro-algae to uptake large quantities of phos-
phorus (P) and to use it as biofertilizer has been regarded as a
promising way to redirect P from waste water to fields. This
also makes the study of molecular mechanisms underlying P
uptake and storage in micro-algae of great interest [91]. Pathway
reconstruction efforts in general uncover dynamic processes that
take place at cellular level and are written down in the genetic
code by an evolutionary process subject to environmental
adaptation pressures. Considering additional information by
including environmental parameters is a necessary step towards
a comprehensive understanding of the ecological processes
including niche adaptation.

(g) Meta-omics: what information is there?
Fundamental research in biology heavily relies on model
organisms. They have been used to uncover mechanisms that
synthesize, modify, repair and degrade the genetic sequence
and its encoded product, the signalling pathways that allow
cells to communicate, the mechanisms that regulate gene
expression and the pathways underlying diverse metabolic
functions [92-96]. In order to describe many aspects of infor-
mation retrieved from sequences obtained at specific time
points and/or conditions, or to understand the evolutionary
history of non-cultivable organisms, ‘omics’ data-integration
techniques are essential [97,98]. Meta-omics pools the knowl-
edge of how to read and decode the information from a
sequence, as described in the previous paragraphs, together
with environmental parameters that are collected with the
sequences. High-throughput ‘omics’ techniques allow obser-
vation of metagenomes, metatranscriptomes and proteomes
and thus are important to describe the behaviour of popu-
lations of uncultured microorganisms and give hints on their
population genetics and biogeochemical as well as ecological
interactions, which cannot easily be studied or modelled in lab-
oratory systems [99]. High-throughput DNA sequencing
enabled investigation of diverse environmental and host-
associated microbial communities, thus identifying for
example several new virophages [100,101] or even discovering
completely new prokaryotic phyla [102]. The discovery of the
Asgard superphylum, a group of uncultivated archaea includ-
ing the Loki-, Thor-, Odin- and Heimdallarchaeota, and the
proteins with similar features to eukaryotic coat proteins
involved in vesicle biogenesis, which are present in this
phylum, altered significantly our understanding of the origin
of life [102,103]. These organisms were isolated from marine
sediments that were sampled near Loki’s Castle (a field of
five hydrothermal vents that are located in the middle of the
Atlantic Ocean between Greenland and Norway) [104].
Metatranscriptomics allows researchers to quantify com-
munity gene expression in an environmental sample using
high-throughput sequencing technology. Today we have
several pipelines (e.g. SAMSA?) to analyse the huge amount
of data efficiently using high-performance computational
utilities [105]. Such analyses enable quantification of gene

expression and its regulation within multiple organisms
in order to derive conclusions about specific molecular
interactions [106]. Combining metatranscriptome and gene
sequencing with time-series design allows us to collect infor-
mation about the dynamics of different organisms in an
environmental context [107].

Metaproteomics (community proteomics) characterizes all
the proteins expressed at a given time within an ecosystem.
This allows us to create hypotheses and draw conclusions
about microbial functionality. Further it makes it possible to
study the adaptive responses of microbes to environmental
stimuli or their interactions with other organisms or host cells
[108-110]. Analysis of communities in natural environments
has contributed immensely to our knowledge of microbial
functions, such as nutrient cycling, mutualistic endosymbiosis,
organic matter degradation, metal utilization and eutrophication
response [108,111-113]. Despite the additional information
that is gathered through ‘omics’ analysis, understanding
biological processes as a whole is incomplete without consid-
ering their dynamic aspects. Therefore, only by including a
temporal dimension will we be able to understand and
model bio-ecological processes in detail [114].

3. Ecosystem dynamics: time-series analysis

Most methods reviewed above extract and study information
from genomic sequences, either alone or in a comparative con-
text, but mostly as static structures without considering any
temporal dynamics. Gene expression information describing
the quantity of reads obtained either in different conditions
or from different time points does contain time as a factor.
Whereas comparative genomics can generate hypotheses
regarding the evolutionary dynamics of genes and genomes,
dynamics on shorter time-scales have not yet been discussed.
It is apparent that even the best meta-omics dataset obtained
for a single time point cannot yield any information regarding,
for example, the mechanisms underlying the population
dynamics observed in an ecosystem. Before we discuss recent
and ongoing approaches to analyse time-series of sequence
data and extract mechanistic information, and thus under-
standing, we briefly summarize essential concepts of time-
series analysis in general.

The main objective of time-series modelling is to carefully
collect and examine observations from the past in order to
develop a suitable model that describes the inherent structure
of the series. This model is then used to generate future
values for the series, i.e. to make predictions [115]. The pre-
diction of time-series can therefore be described as the
process of predicting the future by understanding the past.

There are many ways to analyse time-series data, depend-
ing on how much prior knowledge is available about the
underlying mechanisms. Often we first distinguish between
seasonal, cyclic and irregular components [116]. Analysing
seasonal changes in the diversity of bacterial communities
[117] has, for example, suggested that seasonal changes in
environmental variables are more important than trophic inter-
actions. Cyclic fluctuations describe recurrent medium-term
changes. The metagenome data of Biller et al. [118] contain,
for example, genomic information for a large number of bac-
teria, archaea, eukaryotes and viruses. The usefulness of the
data is enhanced by the availability of extensive physical,
chemical and biological measurements associated with each
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sample. In this way, the different cyclic changes within the
habitats could be investigated and possible causes identified.

When adapting a model to a dataset, particular attention
should be paid to selecting the most economical model. Here,
‘most economical’ refers to the simplest possible model that
can explain the data without overfitting [116]. One of the
most popular and commonly used stochastic time-series
models is the Autoregressive Integrated Moving Average
(ARIMA) [119]. This model considers each time-series as a col-
lection of linear approximation and the deviations from these
fits needs to follow a statistical distribution, representing
the noise. ARIMA’s popularity is mainly due to the flexibility
to represent several types of time-series in a simple way.
There are many examples of how to use the ARIMA model
[54,120-123]. An example are the effects of starfish wasting
diseases in the Salian Sea, a Canadian—American border area,
a marine ecosystem and global hotspot for the biodiversity of
temperate asteroids with a high degree of endemism [120].
Species- and area-specific ARIMA models and their estimated
parameter values showed that after the outbreak of the
starfish wasting disease epidemic in 2013 the incidence of
the starfish Dermasterias imbricata increased in three areas.
The observed frequency of D. imbricata until 2015 exceeded
the model prediction for population development. The serious
limitation of the model, however, is the assumed linear form
of the associated time-series, making it insufficient in many
practical situations.

A commonly applied methodology for the investigation
of nonlinear stochastic models is the use of artificial neural
networks (ANNSs). Their characteristic is the application to
time-series prediction problems by their inherent ability to
nonlinearly model without having to adopt the statistical distri-
bution. The corresponding model is formed adaptively on the
basis of the specified data. For this reason, ANNSs are inherently
data-driven and self-adaptive. The most common and popular
are multi-layered perceptrons (MLPs) characterized by a single
feed-forward network (FNN) with a hidden layer. This
method has a wide range of applicability. For example, phage
protein structures could be predicted based on the genetic
sequence [124]. In a different context, the functional roles of
interacting microbes could successfully be predicted from
environmental parameters and intramicrobial interactions [125].

The strategies to analyse time-series data discussed above are
essentially statistical methods that aim at extracting patterns
from time-series without using prior knowledge in order to
make predictions about underlying mechanisms. Mechanistic
models pursue a complementary approach. Based on exper-
imental observation and often a great deal of intuition, a
researcher formulates hypotheses on certain underlying inter-
actions that give rise to an observable macroscopic behaviour.
These hypotheses are then translated into equations captur-
ing the interactions in a quantitative way. Solving these
equations generates simulation results that can be compared
with experimental observations, thus verifying or falsifying
the initial hypotheses. This approach has been extremely suc-
cessful for relatively small systems and for very fundamental
questions. Almost a century ago, Lotka [126] and Volterra
[127] independently developed a simple mechanistic model
of two interacting species that demonstrated how oscillations

in populations of a predator and a prey species can be
explained as an emergent property from simple underlying
mechanistic assumptions. Not surprisingly, the Lotka—
Volterra model forms the basis for a multitude of more
complex models and serves as a foundation to study funda-
mental questions, such as the conditions for co-existence of
species [128]. Generalizing the ideas and equations of Lotka
and Volterra leads to the class of generalized Lotka—Volterra
(gLV) models, which are commonly used to study the
dynamics of ecosystems [81], including the dynamics of
bacterial communities [129,130]. Whereas gLV models only
contain the interacting species as variables and thus define
direct interactions between species, consumer resource
models developed by MacArthur [131] also consider the
resources as variables. Most recently, these models have been
employed to explain which environmental factors determine
the species richness, i.e. the number of species that can co-
exist in an ecosystem [132,133]. When the first dynamic ecosys-
tem models were developed early during the twentieth century,
no information on biological sequences was available.
However, the data triggering the theories of Lotka and Volterra
were time-series, i.e. sequences of estimated numbers of preda-
tor and prey species, such as the data on numbers of pelts
collected by the Hudson’s Bay Company [134]. Now, the ques-
tion arises how time-series of biological sequence data can be
employed to construct mechanistic models that generate under-
standing about the underlying mechanisms guiding the
temporal evolution of an ecosystem.

Owing to the high throughput and the resolution, time-
resolved 165 barcoding data contain information on hundreds
of species. Barcoding is referred to a global bioidentification
system that employs DNA sequences as unique identifiers
linked mostly to a specific taxonomic unit [135]. Deriving
mechanistic models from barcoding time-series was illustrated
for example by Stein et al. [136], who developed a modified gLV
model that correctly predicted the community composition of
the intestinal microbiome of mice under different conditions.
Based on barcoding data describing the bacterial community
associated with the marine diatom Phaeodactylum tricornutum,
Mosejes et al. [137] demonstrated that four bacterial families
dominate the phycosphere, and development of a consumer
resource model illustrated the high degree of uncertainty in
deriving mechanistic explanations from time-series abundance
data, especially if the time resolution is low.

Genomic sequence, together with functional annotation,
allows the reconstruction of genome-scale metabolic network
models, which encompass the complete biochemical repertoire
encoded in an organism’s genome [138]. The most commonly
used technique to analyse such models is flux-balance analysis
(FBA) [139], which allows calculation of internal flux distri-
butions and nutrient exchange rates for given external
conditions under the assumption that the metabolism is config-
ured in order to optimise a certain objective function, such as
maximising the accumulation of biomass [140,141]. With
these and related metabolic network analysis methods, such
as elementary flux mode analysis [86] or the method of net-
work expansion [77,142], it became possible for the first time
to rigorously link the genotype to the phenotype, where of
course the view is centred on metabolism alone [143]. Not sur-
prisingly, the enormous power that genome-scale modelling
approaches provide led to an integration of such approaches
in a dynamic context. Dynamic FBA (dFBA), for example,
uses the flux predictions resulting from FBA at a given time



point to dynamically update nutrient and biomass concen-
trations [144]. This approach was successfully employed to
explain and predict the dynamics of interacting organisms
and their environment [145].

The current development of modelling techniques to simu-
late interactions of organisms on a metabolic level proceeds
with enormous momentum. Controlled mesocosm exper-
iments [146] allow for controlled environments, in which not
only the community dynamics and the temporal expression
patterns can be measured, but also the micro- and macronutri-
ents as well as cofactors in the bulk solution can be determined
to derive a deeper understanding of the metabolic interdepen-
dencies within microbial communities. This clearly illustrates
the key role controlled environments play in rigorously testing
and improving new hypotheses and theories.

The key question for the future is how can we ensure that
ongoing data collection efforts, generating vast amounts of bio-
logical sequence data, are optimally suited for the development
of mechanistic models. These cannot only describe data, but
also rationalize what we observe based on underlying funda-
mental mechanisms. It is understandable that, when a new
and rather unknown system, such as the global marine micro-
biome, is investigated for the first time, a rather unbiased,
exploratory approach is taken, as is exemplified by the Tara
Oceans expedition [147]. The enormous mass of sequencing
data is certainly useful, because it provides us with an inven-
tory of genes that are found in marine microbes. Moreover,
by combining sequence data with physical parameters and
metadata, novel hypotheses can be generated, such as a func-
tional dependence of species richness and water temperature
[148]. Despite the size of the generated data resource, it still
only describes a snapshot of microbial abundance, albeit
with considerable detail. Thus, the information gained from
the data is mostly restricted to observing what is there. It is
hard to conceive that the dataset would allow answering
of fundamental scientific questions, such as those regarding
the underlying mechanisms guiding microbial ecosystem
dynamics. It is plausible to assume that for such an endeavour
a more targeted approach is required. For example, to collect
barcoding, metagenome and metatranscriptome data with a
high temporal and spatial resolution may be a constructive
way forward towards testing specific hypotheses regarding
the mechanisms by which key microbial species interact.
Such experiments can be designed following some successful
research guidelines from this field [149-151].

This example demonstrates that the amount of data does
not necessarily correlate with the gain of basic understanding.
In other examples, such as the dynamics of the phycosphere of
P. tricornutum [137] in controlled environments, we clearly
have too little data to test the numerous existing hypotheses
about the mechanistic interactions between species. By discuss-
ing the information content within biological sequences and
the information flow between various levels of biological
organization (e.g. amino acid sequence and corresponding sec-
ondary structure), we have shown that extracting knowledge
from different information layers can be more effective and
fruitful for sequence data analysis. For example, in order to
analyse the abundance and diversity of silencer proteins in sev-
eral environments a simple comparative sequence analysis will

fail owing to the high information entropy at the amino acid
level. Therefore, machine learning approaches using the infor-
mation stored at the different levels need to be considered as a
first step of the analysis pipeline to predict putative candidates
from different metagenomic datasets. In a second step, labora-
tory experiments need to be performed, like DNA affinity
chromatography followed by ChAP-Seq analysis. This combi-
nation of computational work and laboratory experiments
should highlight how important the theoretical envelope for
laboratory study becomes when information from different
levels is considered.

We conclude that two main aspects will become increas-
ingly important for biological research in the near future to
close the gap that currently exists between the vast amount
of high-throughput data and the actual fundamental under-
standing generated from it. Firstly methods need to be
developed, and already existing ones need to be implemented
in the daily experimental work process and refined to integrate
different types of data. Today several methods already exist for
particular sequence analysis [152-154]. A minority are avail-
able for time-series implementation on biological data
[155-157]. This refers primarily to the integration of time-
resolved sequencing data with meta-information describing
external conditions like pH, temperature, dissolved oxygen,
CO,, phosphate, nitrate, salinity, pressure, chlorophyll density,
etc. Moreover, novel approaches will be required to integrate
results from different methods of data analysis to maximise
the information gain. Secondly, after an era of mainly
exploratory data acquisition, it is of paramount importance
to strengthen hypothesis-driven experimental approaches
[158,159]. Every research question requires its own special
experimental treatment. The prevailing misconception that
data acquisition comes before (and is separated from) model
development often leads to a design of research projects in
which interdisciplinary collaborations are restricted to the
data analysis phase. In our opinion, these flaws in project
design lead to inefficiency and a sub-optimal coordination
between experiment and theory. As an example of how theoreti-
cal knowledge supports experimental biology, and moreover
enables new insights into biological processes, we mention the
studies by Marsland et al. and Goldford et al. [132,133,160]. Brid-
ging theory and experiment, in their studies the authors
monitored the assembly of hundreds of soil- and plant-derived
microbiomes in well-controlled minimal synthetic media. The
resulting communities were sequenced using 16S ribosomal
RNA, and the outcomes were modelled mathematically. Their
mathematical models could reproduce large-scale ecological
patterns observed across multiple experimental settings [133].

In fact, we are convinced that the involvement of theory
cannot begin too early. Bioinformaticians and modellers
should be involved during experimental design, because
these researchers are typically those that formulate clear
working hypotheses and have a model structure in mind,
even before a detailed mathematical model has been con-
structed. Only in close interdisciplinary discussion can the
different goals and aims of experimentalists and theorists
be harmonized, and experiments be planned so that the
resulting data are optimally suited to build mechanistic
models and test scientific hypotheses.
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