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Recent decades have seen an explosion in the amount of data available on all
aspects of biodiversity, which has led to data-driven approaches to under-
stand how and why diversity varies in time and space. Global repositories
facilitate access to various classes of species-level data including biogeogra-
phy, genetics and conservation status, which are in turn required to study
different dimensions of diversity. Ensuring that these different data sources
are interoperable is a challenge as we aim to create synthetic data products to
monitor the state of the world’s biodiversity. One way to approach this is to
link data of different classes, and to inventory the availability of data across
multiple sources. Here, we use a comprehensive list of more than 200 000
marine animal species, and quantify the availability of data on geographical
occurrences, genetic sequences, conservation assessments and DNA bar-
codes across all phyla and broad functional groups. This reveals a very
uneven picture: 44% of species are represented by no record other than
their taxonomy, but some species are rich in data. Although these data-
rich species are concentrated into a few taxonomic and functional groups,
especially vertebrates, data are spread widely across marine animals, with
members of all 32 phyla represented in at least one database. By highlighting
gaps in current knowledge, our census of marine diversity data helps to
prioritize future data collection activities, as well as emphasizing the impor-
tance of ongoing sustained observations and archiving of existing data into
global repositories.

This article is part of the theme issue ‘Integrative research perspectives
on marine conservation’.
1. Introduction
The explosion in the availability of data describing the natural world has, in
recent decades, transformed the kinds of questions that we can now ask as
ecologists. Efforts to reconstruct the evolutionary relationships between all
living species (e.g. Open Tree of Life; [1,2]) can draw upon over 200 M
sequences (https://www.ncbi.nlm.nih.gov/genbank/statistics/) from over
170 000 metazoan species stored in GenBank [3,4]. In 2018, the Global Bio-
diversity Information Facility (GBIF; [5]) passed a billion species occurrence
records (https://www.gbif.org/news/5BesWzmwqQ4U84suqWyOQy/big-
data-for-biodiversity-gbiforg-surpasses-1-billion-species-occurrences), providing
an unparalleled resource for students of biogeography. The conservation status
of more than 116 000 species has now been formally assessed [6]. Significant
efforts are underway to collate data on biological, physiological, metabolic
and thermal traits [7–11] across multiple species, as well as information on
animal movement [12,13] and ecological interactions [14].

Against this background of increased data availability, the oceans are still
often characterized as the data-poor relative of the data-rich land. Various
autonomous platforms operating throughout the world’s oceans do now
enable vast quantities of physical and biogeochemical data to be transmitted
[15] but marine biodiversity data remain more challenging to collect. In part,
the vastness of the oceans precludes routine and casual observation by the
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Table 1. Data sources used to link different dimensions of diversity across all marine animals.

dimension of
diversity data source data type reference

taxonomy WoRMS authoritative classification and catalogue of marine taxonomic names [37]

functional groups WoRMS classification of marine species into broad ecological groups [37]

biogeography OBIS global database of marine species occurrence records [22]

genetics GenBank the NIH genetic sequence database, an annotated collection of all publicly available

DNA sequences

[3]

molecular taxonomy BOLD barcode of life data system for DNA barcodes [38]

conservation status IUCN Red List the IUCN red list of threatened species [6]
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citizen scientists who have contributed so much to the collec-
tion of terrestrial biodiversity data [16,17], except in some
more accessible coastal areas [18–20]. However, coordinated
global initiatives have made enormous progress in collating
existing data and promoting systematic new data collection.
The Census of Marine Life [21] drove this effort from 2000
to 2010, and its legacies include the Ocean Biodiversity Infor-
mation System (OBIS; [22]), which currently holds nearly
60 M occurrence records from over 120 000 marine species.
Initiatives like this have built on sustained observations of
marine ecosystems [23] and continue to be developed to deli-
ver the Essential Biodiversity Variables that we need to
monitor progress towards Sustainable Development Goals
(e.g. [24]). Application of technologies from satellites and
drones to biologgers and molecular methods such as eDNA
continue to expand the range of data available to marine bio-
diversity scientists [25]. Crucially, the accumulation of data
has proceeded in parallel with massive improvements in
data infrastructure, and much better tools (taking advantage
of the improved computing power available even to casual
users) with which to access and analyse it [26,27]. This is
important because the challenge now is to extract meaning
from the sea of data, to deliver effective outcomes for
marine conservation and monitoring of the state of the
global ocean [19,24].

Although access to biodiversity data of different types is
now much improved, to extract full value from existing
data requires linking together different datasets that were
often collected for different purposes, by different organiz-
ations and at different times. This kind of interoperability
of diversity data is central to the vision of a ‘macroscope’ to
sample and monitor the entire biosphere [25], and is a funda-
mental principle of the Bari Manifesto of best practice in
biodiversity informatics [28]. Progress towards such intero-
perability requires comparable coverage across multiple
classes of data and dimensions of diversity, as well as parallel
measures of the abiotic environment and of human pressures.
An exemplar of successful data integration for terrestrial
plant communities is the Botanical Information and Ecology
Network [29], which combines standardized information on
plant distributions, traits and evolutionary relationships
with the computational tools needed to work with them.
An important step towards this kind of model is to fully
understand the gaps and biases in available data. In the
marine environment, key gaps in the overall knowledge
of marine biodiversity have been documented [30–32],
including estimates of the extent of unknown biodiversity
[33] and undocumented extinction risk [34]. Efforts to quan-
tify these gaps across different key variables and data
sources have been limited to the regional scale, but have
shown for instance that the species and taxonomic groups
that we know most in one dimension (e.g. global occurrences)
tend to be those that we also know most about in another (e.g.
biological traits, extinction risk; [34,35]). To date, we lack a
global overview of how data (and gaps) are co-distributed
across axes of marine diversity, to compare for example with
previous global analyses of terrestrial plants [36].

Such a task is feasible, however, given the availability of a
standardized global taxonomy of marine species, the World
Register of Marine Species (WoRMS; [37]), which includes
links out to other key biodiversity datasets (table 1). In this
paper, we focus on key data sources that, when linked
to robust taxonomy, individually or in combination can be
used to construct different dimensions of marine diversity.
We consider geographical occurrences and nucleotide
sequences to be the fundamental building blocks of the spatial
and phylogenetic dimensions of diversity, which interact to
structure the distribution of key ecological traits across species
[39]. A first step to adding the functional dimension of diver-
sity is to classify species into broad ecological guilds, similar
to the way in which species can be classified in global theories
and models of biodiversity [40,41]. Supplementing these with
information on conservation status and molecular taxonomy
provides insights into how marine diversity is changing,
and how we might efficiently monitor this. Throughout we
use open-source computational tools to link data across
these components of marine diversity to take stock of the cur-
rent state of data availability, identifying gaps and priorities
for future work. In this way, we summarize data availability
across multiple axes for more than 200 000 marine animal
species from 32 phyla and across broad ecological guilds
(e.g. benthos, zooplankton and seabirds) and we assess the
extent to which this availability is correlated across different
classes of diversity data. Above all, our aim is to highlight
the wealth of marine biodiversity data that we have amassed
as a community over centuries, and the opportunities that we
now have to link different classes of data in order to better
understand the dimensions of marine diversity.
2. Methods
To provide an overview of the state of knowledge ofmarine animal
biodiversity, we mine the World Register of Marine Species
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(WoRMS; [37]), the most comprehensive source of taxonomic
information on marine species, consisting of over half a million
distinct names checked by expert taxonomic editors. We focus
our investigation on marine animals, and so filtered the WoRMS
database to Kingdom Animalia, retaining only those species con-
sidered to be marine by WoRMS (flag isMarine is TRUE), and
excluding any species only known from fossils. We consider only
taxa identified at the species rank, with a current accepted name
and valid WoRMS identifier (Aphia ID).

In addition to taxonomy, WoRMS has aggregated data on
species attributes including broad ‘functional groups’. In reality,
these are closer to ecological guilds, defining habitat affinity (e.g.
benthos, zooplankton) rather than ecological function, but for
transparency, we retain the terminology employed by WoRMS.
We use these attributes to assign each species to a functional
group, using a dedicated R function (https://github.com/tomj
webb/WoRMS-functional-groups) that accesses the WoRMS
API using the worrms R package [42]. We supplement these func-
tional groups with taxonomic groups to identify fish (using the
WoRMS paraphyletic Superclass Pisces; [43]), marine mammals,
seabirds and reptiles. We consolidate functional groups into
broad categories for maximum coverage; for example, our
‘benthos’ group includes all species categorized in WoRMS as
endobenthos, epibenthos, hyperbenthos, macrobenthos, meio-
benthos and microbenthos, as well as those originally classified
simply as benthos. When separate functional groups are recorded
for different life stages,we always use the group for the adult stage.
We group together categories with very few species (including
meso, macro and neuston) and species with no functional
group classification into the single category ‘other/unknown’.
For fish, we include an additional grouping variable based on
the broad habitat categories recorded in FishBase [10] accessed
using the rfishbase package [44], classifying 17 568 of 18 261
species as bathydemersal, bathypelagic, benthopelagic, demersal,
pelagic-oceanic, pelagic-nertitic or reef-associated.

The WoRMS database includes links to other major biodiver-
sity databases (table 1), and we exploit these to compare the
state of biodiversity information availability across axes of bio-
geography, genetics, conservation and molecular taxonomy.
Specifically, we record for each species its total number of occur-
rences in the ocean biogeographic information system (OBIS;
[22]) and its total number of nucleotide sequences in GenBank.
The taxonomy in OBIS is standardized to WoRMS, making
these links straightforward, and GenBank’s taxonomic infor-
mation is generally reliable for marine animals [4] meaning
that links between WoRMS and GenBank are likely to robustly
associate relevant sequences with the correct taxonomic identi-
fier. We also record for each species its IUCN conservation
assessment category (if available) and whether or not it has
DNA barcodes listed in the barcode of life data system (BOLD).

Using our tidy database linking the diversity data sources
shown in table 1, we then summarize the availability of biodiver-
sity data across all marine animals as follows. First, we consider
the two major quantitative databases, OBIS and GenBank. We
calculate the proportion of species within each phylum with
records in each of these databases, and the distribution of records
between species within each phylum. To derive an indication of
relative data availability across functional groups, highlighting
groups that are particularly highly likely (or unlikely) to occur
in the dataset, and those that tend to have more records when
they are present, we model data availability across functional
groups. We apply a two-step hurdle process because of the
high degree of zero-inflation in our data [45]. To assess whether
certain functional groups were better represented in the data-
bases than others, we model the presence of species in OBIS or
GenBank using a binomial GLM of the form species presence∼
functional group, and we model the distribution of counts
(OBIS records or GenBank nucleotides) between functional
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Figure 1. Availability of biogeographic (over 45 M OBIS occurrence records) and genetic (over 56 M GenBank nucleotides) data across 206 849 marine animal
species, summarized by phylum and by broad functional group. (a) Proportion of species in each phylum with data in either database, both databases, or neither.
Bar width is proportional to the number of species in each phylum. The number of (b) OBIS occurrence records and (c) GenBank nucleotide sequences are shown for
species that occur in the respective database. Each point represents a species, coloured by functional group. Box plots are superimposed with X marking the median
number of records within each phylum. Phylum size varies from two species (Cycliophora) to 57 336 species (Arthropoda).
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groups, for those species present in the data source, using a zero-
truncated negative binomial GLM. These hurdle models are
implemented using the hurdle function in the pscl package
[45,46]. For visualization, we plot the exponentiated binomial
coefficients from the zero component of the model, which
shows the ratio of the probability of getting a non-zero to a
zero observation within a functional group. We also plot the pre-
dicted counts for the subset of species in each functional group
with non-zero counts.

To assess whether data availability is correlated across data
sources, we use categorical scales of numbers of records per
species in both OBIS and GenBank, using categories bounded
by upper limits of 0, 1, 10, 100, 1000, 10 000, 100 000 and a
final category of greater than 100 000 records. We use mosaic
plots [47], created using the ggmosaic R package [48], to illus-
trate the distribution of GenBank count categories for each
OBIS count category. We also consider how IUCN conservation
assessments are distributed across species in different functional
groups, and between species present and absent in OBIS, and
we compare the number of OBIS occurrence records between
species in different IUCN categories. To simplify this analysis,
we aggregate to the following IUCN assessment categories: not
assessed, data deficient (i.e. formally assessed but insufficient
data to assign the species to a threat category), threatened
(formally assessed as vulnerable, endangered, critically endan-
gered, conservation dependent, extinct in the wild or extinct)
and non-threatened (formally assessed as near threatened or
least concern). We perform a similar analysis comparing species
presence or absence in the Barcode of Life database with presence
in OBIS and number of OBIS records.

All data and links were extracted fromWoRMS on 11 January
2020 and the statistics we report are correct as of that date.
Manipulation, visualization and analysis is performed in R
3.6.2 [49] using RStudio 1.2.5033 [50] and the tidyverse
suite of packages [51] as well as worrms [42] to access the
WoRMS API and rfishbase [44] to access FishBase, and
the plotting packages ggmosaic [48], ggbeeswarm [52] and
patchwork [53].
3. Results
Our final dataset consisted of 206 849 valid marine animal
species, from 32 phyla and 89 classes. Of these, 106 213 (51%)
have at least one occurrence record listed in OBIS (table 2).
18 869 (18% of species in OBIS, 9% of all species) are rep-
resented by just a single occurrence record (table 2), while
one species (Atlantic Cod, Gadus morhua) has over a million
occurrence records (1108 463). Overall, there are 45 974 726
OBIS occurrence records across all species. 36 094 (17%) of all
species have at least one nucleotide recorded in GenBank,
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while eight species (five fish, the Antarctic minke whale
Balaenoptera bonaerensis, the tunicate Ciona intestinalis and the
California sea hareAplysia californica) havemore than amillion.
Overall, the species in our database total 56 846 294 GenBank
nucleotides. Furthermore, 13 179 species have had their conser-
vation status assessed by the IUCN, and 25 272 have at least
one DNA barcode in the Barcode of Life database.

The distribution of OBIS and GenBank records across
animal phyla and functional groups is shown in figure 1. At
least one species from every phylum has records in either
OBIS or GenBank, with all phyla except Loricifera (which has
just 29 species) represented in both databases (figure 1a).
Across all phyla, just over half (55%) of all species are rep-
resented in one or other database. Most species that are
present in OBIS have only a few occurrence records, with
median values of records ranging from 1 to 92 across phyla
(figure 1b). A similar pattern is observed for GenBank nucleo-
tides (figure 1c), with median values between 1 and 94 except
in phyla Orthonectida and Placozoa, both of which have only
two species represented in GenBank, one of which has several
thousand nucleotides (in Orthonectida, Intoshia linei has 3522,
in Placozoa, Trichoplax adhaerens has 29 176).

Data availability is variable across functional groups
(figures 1b,c and 2). Modelling the presence or absence of
species in OBIS in a binomial GLM shows that species of
fish, mammal, bird and reptile are much more likely to
have occurrences in OBIS than are benthic or zooplankton
species, with nekton falling in between, and species with
unknown or other functional group classification the least
likely to have occurrence records (figure 2a). A broadly simi-
lar pattern holds when modelling the number of occurrence
records for those species with at least 1 (figure 2b), with the
vertebrate taxa again tending to have most records, although
distinctions between vertebrates and other groups are less
stark. Benthic invertebrates typically have few OBIS records,
but zooplankton that do occur in OBIS tend to have more
records than nekton. In GenBank, birds, reptiles and mam-
mals are most likely to be present in the database, followed
by fish, nekton and zooplankton, with benthos and other/
unknown functional groups least likely to be represented
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(figure 2c). The rank order changes somewhat when consid-
ering number of nucleotides across species present in
GenBank (figure 2d ), with most records from mammals
and reptiles, followed by birds and fish. Nekton tends to
have fewest records, but there is considerable variability
within all major groups. Data availability in both major data-
bases is broadly similar across fish habitat groupings
(electronic supplementary material, figure S1).

Considering the joint distribution of species across OBIS
and GenBank categorical scales, 93 519 (45%) species have no
records in either database (table 2 and figure 3a). In general,
species with more records in OBIS also tend to have more
nucleotides in GenBank (table 2 and figure 3), indicating that
these different biodiversity data aggregators have similar
biases in terms of the known marine biodiversity that they
encompass. There are exceptions though: in particular, several
species have many (more than 100 000) GenBank nucleotides
but very few (if any) OBIS records (table 3).

A similar pattern is evident when examining the distri-
bution of OBIS records across different IUCN assessment
categories. In general, and across functional groups, the
proportion of species with records in OBIS is higher in
assessed species (threatened and non-threatened) than it is
in unassessed or data-deficient species: overall, 84% of threa-
tened and 94% of non-threatened species have occurrence
records in OBIS, compared to 75% of data-deficient and
49% of unassessed species (table 4). Considering only those
species with records in OBIS, there is considerable variation
within and between IUCN categories in the number of occur-
rence records per species, but a general tendency is apparent
in all functional groups for species in threatened and non-
threatened categories to have more occurrence records than
those in data-deficient and unassessed categories (figure 4a).

Species with DNA barcodes are disproportionately likely
to also have occurrence records in OBIS: 45% of species with
no record in the Barcode of Life database have at least one
occurrence record in OBIS, compared to 89% of species
with a barcode (table 5). In addition, in all functional
groups, species with barcodes tend to have more OBIS
records than those that do not (figure 4b).
4. Discussion
Using the taxonomic backbone of the World Register of
Marine Species [37] we have summarized data availability



Table 3. Species with high numbers of GenBank nucleotide records but few OBIS occurrences.

species phylum class functional group
GenBank
nucleotides

OBIS
records

Olavius algarvensis Annelida Clitellata benthos 173 609 0

Capitella teleta Annelida Polychaeta benthos 208 794 1

Platynothrus peltifer Arthropoda Arachnida other/unknown 106 099 0

Caligus rogercresseyi Arthropoda Hexanauplia other/unknown 628 843 0

Proasellus racovitzai Arthropoda Malacostraca benthos 127 716 0

Proasellus ibericus Arthropoda Malacostraca benthos 150 798 0

Bragasellus molinai Arthropoda Malacostraca benthos 209 419 0

Proasellus beticus Arthropoda Malacostraca benthos 228 033 0

Seriola quinqueradiata Chordata Actinopterygii fish 105 911 6

Theragra finnmarchica Chordata Actinopterygii fish 130 916 0

Takifugu flavidus Chordata Actinopterygii fish 138 301 0

Takifugu rubripes Chordata Actinopterygii fish 466 790 5

Molgula tectiformis Chordata Ascidiacea benthos 106 904 0

Halocynthia roretzi Chordata Ascidiacea benthos 116 123 4

Pelecanus crispus Chordata Aves birds 231 775 0

Balaenoptera acutorostrata Chordata Mammalia mammals 238 976 0

Emydocephalus ijimae Chordata Reptilia reptiles 157 876 0

Hemicentrotus pulcherrimus Echinodermata Echinoidea benthos 153 541 3

Apostichopus parvimensis Echinodermata Holothuroidea benthos 166 764 1

Apostichopus japonicus Echinodermata Holothuroidea benthos 401 310 4

Cumia reticulata Mollusca Gastropoda benthos 144 517 2

Amphimedon queenslandica Porifera Demospongiae benthos 142 554 9
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across axes of biogeography, genetics, molecular taxonomy
and conservation status for 206 849 marine animal species.
This presents a mixed picture. One the one hand, 91 828
(44%) species have no records in any of these databases, and
are represented only by their name. This is considerably
higher than the 27% of plant species with no information
other than their name [36], although of course, the marine
environment represents far larger habitable volume [54] and
marine animals are a much more diverse taxonomic group.
Only 6688 marine animal species (3%) have records in all four
of the datasets that we consider – again, rather lower than the
18% of broadly covered plant species [36]. At the same time,
it is important to remember that presence in a dataset does
not imply extensive knowledge: among the 106 203 species
with records in OBIS, for example, the median number of
recorded occurrences is just 7, and 18% of these species (18
869 species) are known from only a single occurrence. Nonethe-
less, the distribution of biogeographic and genetic information
across the animal tree of life is extensive, with all animal phyla
represented in at least one database (figure 1). Data availability
tends to be biased towards well-known taxa and functional
groups (especially vertebrates; figures 1, 2, 4), in agreement
with previous assessments (e.g. [32]), but the subset of 225
species with more than 1000 occurrences in OBIS and more
than 1000 nucleotides in GenBank is drawn from 10 phyla
and 27 classes, representing all major functional groups, and
most of them have a barcode in BOLD (214 species) and have
been assessed by the IUCN as something other than data
deficient (102 non-threatened, 23 threatened species). For
these diverse marine animal species, then, it is reasonable to
propose that the information available across multiple sources
can be translated into knowledge about their distribution,
evolutionary relationships and conservation status.

The broad positive correlation between data availability
across different sources (tables 2 and 4 and figure 3)
reinforces previous findings that species with good infor-
mation on one facet of their biology and ecology tend to be
well represented in other databases too, both in plants [36]
and in marine species [35]. These information-rich species
are likely to be those most easily and frequently observed,
or those of high economic or cultural value, and so will not
be a random subset of all species. However, the consequences
of biases towards data availability from these common
species will vary depending on the specific question of inter-
est. For instance, ecosystem function may be driven largely by
just those common species that tend to be so well known [55];
but rare species will clearly be of great interest to conserva-
tionists, and may indeed sometimes contribute unique trait
combinations to marine communities [56].

In terrestrial conservation, considerable concern has been
expressed over the likely conservation status of species too
poorly known to formally assess, as they tend to have charac-
teristics (rarity, small ranges, occurring in poorly studied
regions) that will predispose them to be at risk [57]. For
some marine taxa, this appears to be the case too, with
high rates of extinction risk predicted for European sharks
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Figure 4. Distribution of occurrence records across 106 213 marine animal species present in OBIS by functional group and by (a) IUCN assessment status and
(b) presence in the Barcode of Life Data System. Each point represents a species.
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and rays formally assessed as Data Deficient [58], and low
levels of conservation assessment in poorly known marine
groups may contribute to low overall documented levels of
extinction risk [59]. On the other hand, the fact that the big-
gest data gaps in marine biodiversity tend to be in remote
habitats largely inaccessible to humans (e.g. the deep pelagic
ocean; [60]), and the highest rates of discoveries of new
species and habitats are also in the deep sea [61,62], provides
some contrast with the terrestrial situation, and may insulate
these poorly known species somewhat from human press-
ures. However, some patterns still hold in the deep sea,
such as the tendency for widespread species to be encoun-
tered and described first [63], meaning that many of the
species not yet present in major databases may be genuinely
rare. Given the acceleration of human activities into pre-
viously unexploited regions of the oceans [64], with new
threats including deep sea mining [65] and exploitation of
the mesopelagic [66], it seems unwise to assume that the
large fraction of marine biodiversity that remains poorly
known is not at risk. Given the fact that Data Deficient con-
servation assessments are twice as frequent in marine
versus non-marine taxa [34], data-driven predictive conserva-
tion assessments [58,67,68], which rely on some of the kinds
of data we consider here (spatial distribution, evolutionary
relationships and ecological guilds) combined with biological
traits, may prove to be especially valuable tools.

The aim of this study was to flag priorities for future
work. One important point is that the major publicly avail-
able databases on which we draw do not constitute the
sum total of data ever collected on marine species. This is par-
ticularly the case for occurrence data, as globally researchers
have yet to adopt the routine deposition of species occur-
rences in OBIS as a cultural norm, in the way that genetic
sequence data are deposited in GenBank. To this end,
improving incentives for researchers to add their data to
global repositories in an important goal [25], while data
archaeology and rescue initiatives can help to ensure that his-
torical data are captured [69]. Equally, it remains vital that



Table 5. Breakdown of marine animal species by functional group and presence in the BOLD DNA Barcode database. Listed for species absent from or present
in BOLD are the total number of species per functional group, the number of these species with occurrences in OBIS, and the associated percentages.

functional group

in barcode of life database?

no yes

N (species)
N (species
in OBIS)

% species
in OBIS N (species)

N (species
in OBIS)

% species
in OBIS

benthos 131 390 62 316 47 15 161 13 288 88

zooplankton 4768 2117 44 980 914 93

nekton 2506 1355 54 893 803 90

fish 8683 5842 67 9578 9123 95

mammals 85 37 44 107 103 96

birds 238 108 45 449 395 88

reptiles 80 59 70 16 15 94

other/unknown 30 292 8692 29 1623 1049 65

totals 178 042 80 526 45 28 807 25 690 89
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ongoing survey schemes are properly valued [23], even as
novel exploration is planned. At the same time, our quantifi-
cation exercise can help to identify groups of species where a
little additional research effort in one area would quickly
result in a more valuable dataset. One candidate set of species
might be those that are frequently observed but poorly rep-
resented in other databases. For instance, 1216 species have
more than 1000 OBIS records but fewer than 10 GenBank
nucleotides; and over half of the 3533 species with more
than 1000 OBIS occurrences are either not assessed by the
IUCN (1876 species) or data-deficient (82 species). The fact
that almost 90% (3163) of these species have DNA barcodes
in BOLD is encouraging, however, suggesting considerable
potential for an increasing role for molecular studies to
address a wide range of questions in marine ecology [70].

Mining the spatial information already present in other
databases also has potential for supplementing existing
occurrence datasets. In this study, we relied on existing
links between WoRMS and GenBank and BOLD, which
simply summarize the number of nucleotides or barcodes
present for each species. The spatial meta-data stored in the
sequence databases provide an additional source of infor-
mation, although in GenBank these data are relatively
unstructured. Searching the GenBank nucleotide database,
we found just 1437 records for animals that contained a lat-
lon field; matching this to our list of marine animals reduced
this further to 183 records from 42 species. Nonetheless, even
from this small set of species, 21 do not have occurrence
records in OBIS, suggesting that mining GenBank for spatial
data would likely add valuable information for a small
number of species. Various methods have been developed
to attempt this, based around mining spatial information
from the full text of associated publications [71,72], with
initiatives such as the Genomic Observatories MetaDatabase
(GEOME, https://geome-db.org) also seeking to simplify
access to meta-data from sequence datasets.

BOLD typically does store spatial data for individual
specimens in a well-structured manner, only some of which
have been harvested by OBIS. In our dataset, 3117 species
have BOLD barcodes but no OBIS records. Several of these
are parasites, which we know are not well recorded in
OBIS (e.g. Schistocephalus solidus, 718 barcodes; Anguillico-
loides crassus, 508 barcodes) but there are free-living marine
species too, such as the Gastropod mollusc Littoraria sinensis
(257 barcodes) and the Copepod Calanoides natalis (183 bar-
codes). Accessing the specimen data from BOLD using the
bold R package [73] for these two species reveals that none
of the L. sinensis specimens have information in the latitude
and longitude fields, but full geographical information is
available for 227 specimens for Calanoides natalis. Although
none of these locations are currently recorded in OBIS,
some are in GBIF, highlighting the often complex pipelines
from data providers to global data aggregators. Improving
pipelines from genetic databases to occurrence databases is
currently a priority for OBIS (W. Appeltans, OBIS Project
Manager 2020, personal communication).

Finally, the dimensions of diversity that we summarize in
this study are somewhat limited. We did not consider the
traits of species, for instance, beyond functional groups that
indicate habitat affiliation in very broad terms (e.g. benthic
versus planktonic). These groupings are already useful as
global patterns of diversity are known to differ between
them [40], and they can also be used to refine methods of
matching species occurrences to global sea temperature data-
sets [74], helping to predict species responses to climate
change [75]. Beyond these coarse functional groups, however,
traits data remain scarce even in reasonably common marine
species in well-studied regions [35], and despite many efforts
at collating traits—including within WoRMS [76]—there is
still no widely adopted central standard [77]. Certain
groups are well covered by existing initiatives (e.g. FishBase
[10], the Coral Trait Database [11]), and whether a single over-
arching portal to cover the immense diversity of marine
lifeforms is possible—or even desirable—remains open for
discussion. However, it is certainly the case that multiple
smaller-scale projects collect valuable traits data for a subset
of species that is typically made available (if at all) via sup-
plementary material or bespoke web portals, at risk of

https://geome-db.org
https://geome-db.org
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being lost to the community. A wider adoption of principles
embedded in initiatives like the Open Traits Network [7]
would ensure interoperability of these small, project-specific
traits datasets, maximizing the availability of information
on key traits for the largest possible fraction of marine diver-
sity. Readily available information on even just a few traits
(e.g. body size, longevity, fecundity, planktonic larval dur-
ation) would help to test predictions from biodiversity
models, embed life-history theory into marine conservation
and predict the consequences of human activities for
marine diversity [40,78–80].

The stocktake of marine biodiversity data availability that
we have undertaken here adds to previous efforts focused on
occurrence data [19,32,81]. While we reveal a similar story of
gaps and biases across other data sources, there is consider-
able overlap in coverage too, and overall the potential to
link dimensions of marine animal diversity is now high.
The priority now should be to build on the substantial com-
munity-built foundations and to improve the pipeline from
raw data to interoperable data products, both as a resource
for fundamental macroecological research and to facilitate
effective stewardship of our blue planet.
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