Skip to main content
. 2020 Oct 26;20(21):6075. doi: 10.3390/s20216075
Algorithm 1. Stacking algorithm.
Inputs: Training sets D={(x1,y1),(x2,y2),,(xm,ym)}
      Base model 1,2,,T
      Meta-model
Process:
  1: for t=1,2,,Tdo
  2:   ht=t(D)
  3: end for
  4: D=
  5: for i=1,2,,mdo
  6:    for t=1,2,,Tdo
  7:    zit=ht(xi)
  8:    end for
  9:  D=D((zi1,zi2,,ziT),yi)
  10: end for
  11:  h=(D)
Outputs: H(x)=h(h1(x),h2(x),,hT(x))