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Abstract: Surface plasmon resonance (SPR) and Love wave (LW) surface acoustic wave (SAW) sensors
have been established as reliable biosensing technologies for label-free, real-time monitoring of
biomolecular interactions. This work reports the development of a combined SPR/LW-SAW platform
to facilitate simultaneous optical and acoustic measurements for the investigation of biomolecules
binding on a single surface. The system’s output provides recordings of two acoustic parameters,
phase and amplitude of a Love wave, synchronized with SPR readings. We present the design
and manufacturing of a novel experimental set-up employing, in addition to the SPR/LW-SAW
device, a 3D-printed plastic holder combined with a PDMS microfluidic cell so that the platform
can be used in a flow-through mode. The system was evaluated in a systematic study of the optical
and acoustic responses for different surface perturbations, i.e., rigid mass loading (Au deposition),
pure viscous loading (glycerol and sucrose solutions) and protein adsorption (BSA). Our results
provide the theoretical and experimental basis for future application of the combined system to other
biochemical and biophysical studies.

Keywords: biosensors; surface plasmon resonance; surface acoustic wave; Love wave; combined
SPR/LW-SAW biosensing platform; 3D printing; PDMS microfluidics; protein adsorption

1. Introduction

The field of biosensing is closely related to the development of sensitive analytical techniques.
Of the available detection methods, optical, such as surface plasmon resonance (SPR) or ellipsometry,
and acoustic, e.g., the quartz crystal microbalance (QCM) and surface acoustic wave (SAW) devices,
techniques fulfill the basic requirements for label-free and real-time, in-situ measurement of binding
processes [1]. Even though both are exploited for the investigation of biomolecular surface-binding
events and detection of target-analytes, each one provides complementary information related to
the mass, film thickness, viscoelastic properties [1] and conformation [2] of attached biological layers
or biomolecules. Combining optical and acoustic sensor technology into a single set-up is, therefore,
advantageous for simultaneous monitoring of several parameters and subsequent determination of
adsorbed layer/biomolecule physical properties. While studies can be performed on two separate
surfaces and then the acoustic and optical results compared, this approach is limited by variations
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between the two surfaces and the fluidic set-up; it is also more laborious and requires larger amounts
of reagents.

For this reason, several combined acoustic and optical set-ups have been developed and reported
during the last years. QCM was combined on a single device with SPR technology for the extraction
of multiple physical properties of adsorbed layers [3–11]. In addition, the combination of QCM with
spectrometric ellipsometry has gained much attention lately due to the development and availability of
a commercial set-up and tools for modeling the surface mass density and/or thickness of the adsorbed
layers [12].

SPR and SAW devices also allow for combined studies, although no commercial system is yet
available. In the case of SAW, a Love wave SAW-based (LW-SAW) geometry is normally used for
enhanced acoustic response, since the presence of a waveguide layer covering the metallized acoustic
surface results in better acoustic wave propagation on the sensing surface and higher sensitivity to
surface mass binding events [13–15]. From a technical point of view, combining these two technologies
is feasible by exploiting the geometrical structure of the SAW device, which leaves the rear of
the piezoelectric element free for a light beam to propagate and to produce surface plasmons on a gold
coated sensing area (Figure 1).
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Figure 1. SPR/LW-SAW sensor device (not drawn to scale): A set of electrodes (IDTs) deposited
on the quartz surface is used to generate and detect the SAW. A transparent polymer layer acts
as a waveguide layer. The optical beam reaches the gold surface from the opposite site and creates
an SPR response.

Based on the above, a set-up for simultaneous SPR/LW-SAW measurements was developed and
used to study the thickness and protein-to-water content ratio of several protein layers [16,17].
To incorporate energy losses, the same group employed the quartz crystal microbalance with
dissipation monitoring (QCM-D) and succeeded in obtaining information on the conformation
of human immunoglobulin protein G (hIgG) [18]. Experimental results were also combined with
simulations of an equivalent viscoelastic transmission line model to assess quantitatively the density,
viscosity and thickness of adsorbed soft layers [19]. In another study, a combined SPR/LW-SAW
system was used for the investigation of the adsorption of neutravidin followed by biotinylated-DNA
binding [20]. However, all the above studies came along with two limitations: the use of a static open
liquid cell and/or the inability of collecting acoustic energy data.
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Here, we present a combined optical (SPR) and acoustic (SAW-Love mode) system for
the investigation of biomolecules binding on the device surface based on a flow-through cell and
a geometry that allows the simultaneous monitoring of three parameters: acoustic wave velocity
and energy and reflected light intensity (Figure 1). To achieve the above, we first investigated
the experimental parameters required to match simultaneously the conditions for efficient SPR
coupling and acoustic waveguiding. Moreover, a fluidic system consisting of a 3D-printed plastic
holder integrated with a PDMS microfluidic chip was designed and fabricated to allow experiments
under continuous flow. The optical and acoustic responses were calibrated with respect to glycerol/water
and sucrose/water solutions. Finally, the system was used to study BSA adsorption on gold.

2. Materials and Methods

2.1. SPR/LW-SAW Sensor Device

The SPR/LW-SAW sensor devices were designed and fabricated in-house. The fabrication process
was performed using photolithography. ST-cut quartz substrates (Y-cut 42◦45’), 500 µm thick, were
employed in a single delay line structure (Roditi International Corporation Ltd., London, UK).
The photolithographic mask was designed using CleWin V.3 software (PhoeniX BV, Hengelo, The
Netherlands) and it was manufactured by JD Photo Data (Hitchin, UK). Conventional contact UV
lithography, e-beam metal deposition, metal lift-off and wafer dicing were applied in a two-step
fabrication procedure. AZ 5214 photoresist (MicroChem, Westborough, MA, USA) was used for
the photolithographic process, along with an MA6/BA6 mask-aligner from SUSS MicroTec (Garching,
Germany). The first step included a metal deposition, by an e-beam BJD 1800 evaporator from Temescal
(Livermore, CA, USA), of 10 nm Cr/200 nm Au and lift-off process in order to fabricate the IDTs and
contact pads. In the second step, a mechanical wheel was used in order to dice the processed wafer into
chips. The dimensions of the device were 12.7 mm × 12.7 mm. Each IDT structure consists of 69 split
fingers with a wavelength of 32 µm, which corresponds to a theoretical frequency of operation of 154.75
MHz. Fingers width and spacings were 4 µm, each IDT being 2.1 mm in length, with an aperture of 2
mm, and the IDT center-to-center distance was 8.9 mm (Figure 2a).
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2.2. PMMA Guiding Layer

Polymer guiding layers made of PMMA (MicroChem, Westborough, MA, USA) solutions were
deposited on the surface of the acoustic device by spin coating (P-6708D spin coater model, SCS,
Indianapolis, IN, USA). We tested two different PMMA products with 495 and 950 kDa molecular
weight (MW) resins at various concentrations, dissolved in anisole. The PMMA solutions were spin
coated at speeds from 1000 to 4000 rpm, to produce a wide range of thicknesses. The spin coating time
was stable at 45 s and the devices were post-baked using a hotplate at 180 ◦C for 90 s, to cross-link
the polymer. The PMMA covers the area over the IDTs and the delay path, while the pads were
protected using adhesive tape (Figure 2a).

2.3. Au Sensing Area Sputter Coating

A layer of Au was sputter coated on the top of the PMMA guiding layer as the sensing area.
The Au layer is necessary for the excitation of surface plasmons and it can promote the physical
adsorption of proteins. Layers of different thicknesses were deposited in order to investigate the effect
on the SPR coupling and the acoustic response. This procedure was performed with a Bal-Tec SCD
050 sputter coater (Bal-Tec Balzers, Liechtenstein). For the conversion of the sputter coating time to
Au layer thickness, calibration studies were performed by measuring the thickness after deposition
via Field Emission Scanning Electron Microscopy (FESEM). To directly relate the signal change to
the deposited mass, we used the thickness calibration factor and the Au mass density (19.3 g/cm3).

2.4. 3D-Printed Holder

A device holder was designed on computer-aided design (CAD) software and fabricated via
3D printing. The holder was made from PolyPlus or PolyLite polylactic acid (PLA) (Polymaker,
Shanghai, China) using a LulzBot TAZ 6 desktop 3D printer (Aleph Objects Inc., Loveland, CO, USA).
The dimensions of the holder were dictated by the mount-system of the SPR instrument (Figure 2c,d).
The main role of the holder is to electrically connect the sensor device with the network analyzer
(NA). The design embodied an area for the placement of a PDMS microfluidic chip in order to
assemble a flow-through system. A crucial parameter to consider is the pressure applied on the device
surface which affects the acoustic signal [21]. The specific holder incorporates miniaturized magnets
(Magnitech, Athens, Greece), which allow a standard pressure to be applied to the device surface by
the flow cell for each experiment. For this purpose, six magnets, with diameter and thickness of 4 mm,
were used and attached to the plastic holder using epoxy glue. SMB connectors and spring probes
were purchased from RS Components (Corby, UK).

2.5. PDMS Microfluidics

A PDMS microfluidic chip was developed to build a closed channel which enables to work
in a liquid environment (Figure 2b). Walls, 250 µm thick, were used to restrain the liquid in the sensing
area and protect the IDTs. Two air cavities were used above the IDTs to avoid wave attenuation.
The PDMS microfluidic fabrication process was based on an SU-8 photoresist master mold. The master
mold was made on a 4-inch Si wafer (Siegert wafer GmbH, Aachen, Germany) by photolithography.
PDMS (Sylgard 184 Dow Corning) was purchased from Ellsworth Adhesives Europe (East Kilbride,
Scotland). A 10:1 mixture of PDMS (40 g Silicone agent:4 g curing agent) was poured into the mold
and placed in a vacuum desiccator to eliminate air bubbles. After the degassing step, the mold was
placed in an oven at 60 ◦C for 2 h. Upon baking, the PDMS replica was taken off the mold. To allow
injection of fluids, inlet and outlet holes were punched using 0.7 mm PDMS punchers (World Precision
Instruments Inc., Sarasota, FL, USA).
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2.6. Assembly and Instrumentation

In the present study, the SPR measurements were performed using a modified commercial
instrument, the SR7000 SPR single-channel refractometer by Reichert Technologies (Depew, NY, USA),
which employs a Kretschmann ATR configuration [22]. The instrument comprises a 780 nm laser
diode as the light source and a 3696-pixel linear CCD array for the detection of the reflected light [23].
A Hewlett Packard 8753ES network analyzer (Keysight Technologies, Santa Rosa, CA, USA) was
used to generate and detect the acoustic wave by monitoring the acoustic velocity (phase) and energy
(amplitude) changes. The gating function of the network analyzer was used for removing unwanted
responses/noise in the time domain, resulting in the smoothing of both of the recorded acoustic signals.
Data were collected using a dedicated SPR/LW-SAW control and acquisition software, which was based
on Python programming also allowing for graphics display (PSF, Wilmington, DE, USA). Initially,
the sensor device is placed on the SPR mount and subsequently the PDMS chip is assembled with
the 3D-printed holder (Figure 3). The holder is electrically connected to the NA and mechanically
to a peristaltic pump for the initiation of the flow. The excitation of surface plasmons occurs from
the opposite side of the sensor device through a polarized laser beam.
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Figure 3. Experimental set-up assembly: First, the SPR/LW-SAW sensor device (2) is placed on the mount
of the SPR instrument (1). Then, the PDMS chip (3) is fixed to the 3D-printed holder (4) and applied
on the device surface.

2.7. SPR/LW-SAW Device for Liquid Studies

The sensor device was prepared prior to experiment, i.e., a PMMA layer was spin-coated and
an Au layer was sputter coated. At the end of experiment, the Au sensing area was removed using
ethanol; for the next measurement, a new Au layer was deposited. The acoustic response was recorded
after every step (bare device, PMMA and Au deposition) to confirm reproducibility. All measurements
were conducted under continuous flow conditions with a flow rate of 20 µL/min using a Gilson
Miniplus 3 peristaltic pump (Gilson, Middleton, WI, USA). At the beginning, the device was kept
under phosphate-buffered saline (PBS) (Sigma-Aldrich, St. Louis, MO, USA) or d.i. H2O flow to
reach a stable baseline. After the end of experiment, the sensing area and the tubing were cleaned
by 2% Hellmanex II (Fischer Scientific, Loughborough, UK) aqueous solution. All experiments were
performed at 24 ± 1 ◦C. Glycerol solutions in water were prepared at various concentrations using
anhydrous pure glycerol stock obtained from AppliChem (Darmstadt, Germany). Water/sucrose
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solutions were prepared using sucrose at powder form obtained from Merck Millipore (Burlington,
MA, USA). BSA (Sigma-Aldrich, St. Louis, USA) solutions were prepared in PBS (pH 7.4).

3. Results and Discussion

For the development of a hybrid SPR/LW-SAW wave device, the two geometries should be
optimized separately and then combined for parallel optical and acoustic measurements. Regarding
the latter, parameters of interest are the linearity of the phase signal, the maximum value of the amplitude
and the amplitude vs. frequency envelope shape. The above should be examined as a function of
the waveguide layer thickness and the applied pressure of the flow cell on the SAW device, both known
to affect the quality of the acoustic signal [21].

3.1. Love-Wave Device Optimization

Initially, the effect of the 3D-printed device holder to the amplitude and phase signals was tested,
with respect to its ability to shield equally well with the metal holders from external electromagnetic
effects. In Figure 4, the acoustic amplitude and phase spectrum of uncoated SAW device is presented
when a bronze, aluminum or 3D-printed device holder is applied on the sensor.

Sensors 2019, 19, x FOR PEER REVIEW 6 of 23 

 

3. Results and Discussion 

For the development of a hybrid SPR/LW-SAW wave device, the two geometries should be 
optimized separately and then combined for parallel optical and acoustic measurements. Regarding 
the latter, parameters of interest are the linearity of the phase signal, the maximum value of the 
amplitude and the amplitude vs. frequency envelope shape. The above should be examined as a 
function of the waveguide layer thickness and the applied pressure of the flow cell on the SAW 
device, both known to affect the quality of the acoustic signal [21]. 

3.1. Love-Wave Device Optimization 

Initially, the effect of the 3D-printed device holder to the amplitude and phase signals was tested, 
with respect to its ability to shield equally well with the metal holders from external electromagnetic 
effects. In Figure 4, the acoustic amplitude and phase spectrum of uncoated SAW device is presented 
when a bronze, aluminum or 3D-printed device holder is applied on the sensor. 

According to this figure, while the acoustic spectrum is similar around the central frequency 
(152.4 MHz), the background noise level depends on the holder material with the bronze holder 
providing the highest peak amplitude-to-background noise difference (−35.5 dB). However, in all 
cases, the resulting signal level is sufficient for acoustic measurements (Al: −28.8 dB, 3D: −22.3 dB). 
The presence of ripples suggests strong reflections of the wave coming from the edges and/or the rear 
surface of the device, independently of the type of device holder used. Upon liquid loading, the bare 
devices do not exhibit any considerable amplitude drop. Based on the above, the 3D-printed holder 
was chosen since it allows for lab-based, inexpensive and fast prototyping without the need for a 
micro-machine workshop. 

 
Figure 4. Uncoated device in air: (a) amplitude spectrum; and (b) phase spectrum. 

Ripples appearing on the spectra in Figure 4 can be attributed to the fact that ST-cut quartz 
substrates initially excite surface skimming bulk waves (SSBW) which suffer from beam spreading 
loss inside the bulk of the crystal [24]. Deposition of a polymer or silicon dioxide over-layer converts 
the SSBW to Love wave, which can be used efficiently for liquid phase detection. An experimental 
approach is normally used to determine the optimum thickness, i.e., the one that provides both 
efficient waveguiding with tolerable loss upon liquid loading and high sensitivity in biomolecule 
detection. As shown in Figure 5a, the signal strength (peak amplitude) is increasing up to a PMMA 
thickness of 700 nm, while a decrease in phase velocity is observed with increasing PMMA thickness 
(Figure 5b), consistent with previous studies [25–27]. Hence, for our sensor design, a PMMA layer of 
~700 nm thickness was found to provide the minimum insertion loss combined with a smooth 
acoustic spectrum envelope and a linear phase-to-frequency response (Figure 5c,d). 

Figure 4. Uncoated device in air: (a) amplitude spectrum; and (b) phase spectrum.

According to this figure, while the acoustic spectrum is similar around the central frequency
(152.4 MHz), the background noise level depends on the holder material with the bronze holder
providing the highest peak amplitude-to-background noise difference (−35.5 dB). However, in all
cases, the resulting signal level is sufficient for acoustic measurements (Al: −28.8 dB, 3D: −22.3 dB).
The presence of ripples suggests strong reflections of the wave coming from the edges and/or the rear
surface of the device, independently of the type of device holder used. Upon liquid loading, the bare
devices do not exhibit any considerable amplitude drop. Based on the above, the 3D-printed holder
was chosen since it allows for lab-based, inexpensive and fast prototyping without the need for
a micro-machine workshop.

Ripples appearing on the spectra in Figure 4 can be attributed to the fact that ST-cut quartz
substrates initially excite surface skimming bulk waves (SSBW) which suffer from beam spreading
loss inside the bulk of the crystal [24]. Deposition of a polymer or silicon dioxide over-layer converts
the SSBW to Love wave, which can be used efficiently for liquid phase detection. An experimental
approach is normally used to determine the optimum thickness, i.e., the one that provides both efficient
waveguiding with tolerable loss upon liquid loading and high sensitivity in biomolecule detection.
As shown in Figure 5a, the signal strength (peak amplitude) is increasing up to a PMMA thickness of
700 nm, while a decrease in phase velocity is observed with increasing PMMA thickness (Figure 5b),
consistent with previous studies [25–27]. Hence, for our sensor design, a PMMA layer of ~700 nm
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thickness was found to provide the minimum insertion loss combined with a smooth acoustic spectrum
envelope and a linear phase-to-frequency response (Figure 5c,d).Sensors 2019, 19, x FOR PEER REVIEW 7 of 23 
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3.2. Au Layer Optimization for a Combined SPR/LW-SAW Geometry

The hybrid sensor geometry should incorporate a thin metal film deposited on the sensor surface
necessary for the excitation of surface plasmons, typically a layer of Au with thickness around 50 nm [28].
In our study, Au films of various thicknesses were deposited via sputter-coating to the sensor surface.
This provides information about the SPR reflectivity profile as a function of the Au layer thickness,
but also allows calibrating the LW-SAW response to rigid surface mass loading [29–31].

In Figure 6, the amplitude and phase shifts are presented for Au deposition of thicknesses up to
25 nm for the SPR/LW-SAW devices. For rigid mass loading the change in acoustic wave amplitude is
expected to be close to zero while the phase change to be proportional to the deposited mass [32,33].
In the Figure 6 inset, the slope value corresponds to 9.17 deg cm2/µg. If the effective area is determined
as only the metallized section of the wavepath, using this slope, we get an estimation of the phase
sensitivity to surface mass for rigid loading SΦ which corresponds to

SΦ =
∆ϕ
ϕ0

A
∆m

= 163
cm2

g
(1)

where ∆m = ρAu × h×A is the deposited mass, A = 0.5× 0.2 cm2 is the sensing area, ρAu = 19.3 g/cm3

is the Au mass density, h is the layer thickness, ∆ϕ (◦) is the phase signal change upon deposition
and ϕ0 = 360◦ × (x/λ) = 56250◦ is the unperturbed phase for the effective length x = 0.5 cm.
The above estimated gravimetric sensitivity matches quite well the sensitivity values obtained
in previous SPR/LW-SAW studies, using copper electrodeposition on silicon dioxide guiding layers as
the calibration technique

(
145− 165 cm2/g

)
[16,17].
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Figure 6. Phase and amplitude shift upon Au deposition up to 24 nm on the sensor surface. (inset) Average
phase shift as a function of Au mass per unit area (dashed line, linear fit, resulting in slope 9.17 deg cm2/g).

The effect of the Au layer thickness on the SPR reflectivity curve using our combined SPR/LW-SAW
device is presented in Figure 7, for a range of Au thicknesses of 12–84 nm deposited on the PMMA
coated quartz substrate and upon water loading. It is well-known that the thickness of the metal layer
has a great impact on the shape of the SPR reflectivity curve [34]. The optimum thickness is the one that
provides the sharpest dip in reflected light intensity, which can be quantified in terms of SPR curve key
parameters such as full width at half maximum (FWHM) and reflectivity minimum (Figure 7, inset).
It was confirmed that the optimum Au thickness is close to 50 nm and that the SPR “dip” becomes
shallower above this thickness and broader below. Nonetheless, by increasing the Au layer thickness
above 40 nm, the insertion loss of the acoustic device becomes significantly high in the presence of
a liquid medium, drops below −30 dB, resulting in acoustic measurements with low reproducibility
for our system (Figure 8). Based on the above and as a compromise between an optical and acoustic
geometry, we chose to use for the SPR/LW-SAW device an Au sensing layer of 36 nm.

The amplitude spectrum of the sensor device at the stages prior to the experiment is presented
in Figure 9. Initially, the uncoated device is characterized by some strong reflections, which are partially
eliminated with the deposition of the 700 nm PMMA waveguide layer. The deposition of a 36 nm Au
sensing area causes a slight drop of the peak amplitude. The fixing of the flow cell onto the device
further increases the insertion loss, while the presence of liquid medium on the sensing area causes
an extra decrease of the peak amplitude (−6 dB), which remains however at an acceptable level. At the
end, the gating function of the NA was used for smoothing of the signal.
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Figure 7. SPR reflectivity curves versus angle pixel number for various Au layer thicknesses. (inset)
FWHM and minimum reflectivity as a function of the Au thickness.
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3.3. SPR/LW-SAW Calibration (Glycerol/Water and Sucrose/Water Solution Sensing)

To evaluate the combined SPR/LW-SAW set-up, a series of glycerol–water and sucrose–water
solutions were applied to the sensor surface. Depending on the glycerol and sucrose concentration,
the mixtures correspond to different known values of density, viscosity and refractive index [35]. Hence,
these experiments offer an appropriate strategy for the simultaneous examination of the optical and
acoustic response of the system. The SPR response measures changes in the bulk index of refraction
of solutions in contact with the sensor surface [36,37]. The acoustic responses, amplitude and phase,
measure changes of the square root of the density–viscosity product

√
ρη of solutions upon pure

viscous loading on the sensor surface [38,39].
Some typical real-time SPR, phase and amplitude measurements are presented in Figure 10.

Glycerol and sucrose mixtures were prepared at various concentrations (1–50% v/v) and passed over
the sensor surface. The applied solutions provided a range of refractive indices from 1.335 to 1.445 for
sucrose/water solutions and from 1.334 to 1.405 for glycerol/water solutions (referring at a wavelength
of 589 nm, 20 ◦C). In terms of viscosity, the sucrose mixtures provided a range from 1.043 to 115.7 cP,
while the glycerol mixtures from 1.028 to 8.057 cP (at 20 ◦C). All graphs exhibit the following steps:
at Point (a), water is replaced by glycerol/sucrose solutions until signal saturation, at Point (b) or (c)
depending on the concentration, the mixtures are replaced by water. The exchange of pure water
with glycerol and sucrose solutions causes an SPR increase while the phase and amplitude signals are
decreasing until equilibrium is reached. Upon subsequent water rinse, the reverse effect is observed
where the signals return to the initial baseline level.
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3.3.1. SPR Calibration

The reflected light intensity profile, thus the SPR minimum position and its shift upon optical
index changes on the sensor surface, are expressed as a function of the detector element number
in pixels. Although the SPR response expressed in pixel units is sufficient to perform kinetic analysis
of biomolecular interactions and estimate association and dissociation constants, it cannot be used
to estimate the adsorbed mass or the thickness of the adsorbed layer. For this purpose, the SPR
output should be converted to resonance angle shift (deg). As a result, a proper calibration of the SPR
instrument is required in order to determine a conversion factor between the incident light angle and
the pixel number of the detector element of the reflected light. A previously reported calibration method
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is the use of an SPR goniometer, which mechanically rotates the prism/sensor component against
the incident light beam [36]. However, this approach requires additional hardware. The alternative
method is to take advantage of the dependence of the SPR minimum position on the bulk refractive
index of the medium present on the sensor surface. Following the latter approach, we used a series of
glycerol/water and sucrose/water solutions of well-known refractive index values. Using the real-time
data, we measured the pixel shift between water and the applied solution. The pixel shift versus
the bulk optical index of solutions is presented in Figure 11, normalized to pure water optical index
value nw = 1.333. A second-order polynomial fit was proved more accurate than a linear curve fit,
although a linear relationship can be used over a narrow enough optical index range. The result from
the SPR instrument measurements was

p = 9202 ∆n− 3579 ∆n2 (2)

∆n = ns − nw, ns is the refractive index of glycerol/sucrose solutions and p is the pixel shift.

Figure 11. Pixel shift versus normalized (to pure water) refractive index shift for glycerol/sucrose solutions.

The relationship above provides a calibration of the optical response in the manner that the output
signal of the SPR instrument (pixel shift) can be translated to optical index changes. However, the SPR
angle shifts are reported as pixels on the CCD detector and a conversion factor from pixel to degree is
necessary for the quantitative analysis of the optical measurements and the comparison of our data to
the literature. By using the relationship obtained experimentally and the theory of SPR, it is possible to
find a conversion factor from pixels to degrees.

According to theory, the dispersion relation for surface plasmons propagating along the interface
between a metal and a dielectric is given by [34,40,41]

ksp =
ω
c

(
εωεα
εω + εα

) 1
2

(3)



Sensors 2020, 20, 6177 13 of 22

where ksp is the wavevector of propagating surface plasmons, ω is the angular frequency, c is the speed
of light in vacuum, εω = ε′(ω) + i ε′′ (ω) is the complex dielectric function of metal and εα is
the dielectric constant of the medium.

For the excitation of surface plasmons, light is guided through a high refractive index prism and
it is incident to the metal surface with an angle θ. The wavevector of the light parallel to the surface kx

is given by
kx =

ω
c
εg

1
2 sinθ (4)

where εg is the dielectric constant of the prism.
By varying the angle of incidence, a minimum in the intensity of the reflected light is observed

at the resonance angle θsp, which corresponds to the optical excitation of surface plasmons. Then,
the resonance condition can be expressed by

εg
1/2 sinθsp =

(
ε′ωεa

ε′ω + εa

) 1
2

, ksp = kx (5)

Equation (5) provides a relationship between the dielectric constant of the medium and
the resonance angle position. It is a simplified analytical equation that allows assessing the position
of the resonance angle which critically depends on the dielectric constant of the medium, assuming
a semi-infinite metal film. Nonetheless, it provides a good approximation of the resonance angle
position. On the other hand, it cannot give any information about the profile of the resonance curve
which depends mainly on the optical properties and the thickness of the metal layer. As in our
case, for a multi-layered system, the shape of the SPR curve can be described by Fresnel equations.
In this study, we ran simulations using dedicated software developed for this purpose (Winspall
software, version 3.0.2 [42]). The fixed optical parameters used in the simulations were the following:
Sapphire prism, n = 1.7607, k = 0; Quartz, n = 1.4537, k = 0, PMMA, n = 1.4851, k = 0; and
Au, n = 0.14737, k = 4.7414, taken from [43]. Both the analytical solution from Eq.5 and Winspall
simulations resulted in the same relationship (Figure 12 inset) between the resonance angle and optical
index shift (normalized)

∆θ = 60.1 ∆n + 56.2 ∆n2 (6)

where ∆θ(deg) is the resonance angle shift.
Subsequently, by using the experimental relationship between pixel and optical index and

the theoretical between resonance angle and optical index, a conversion factor is obtained from pixel
shift to resonance angle shift, as presented in Figure 12

p = 153.6 ∆θ− 3.2 ∆θ 2 (7)

According to a linear fit of the data presented in Figure 11, the SPR sensitivity corresponds to
9006± 8 pixel/RIU (i.e., 1 pixel = 111 µRIU, R2= 0.9999), compared to a value of 10, 034± 33 pixel/RIU
obtained in previous studies using the same instrument with gold-coated glass slides [23] or
11493± 32 pixel/RIU based on the manufacturer specifications. Considering the resonance angle
to pixel relation (Figure 12), one pixel corresponds to 0.007◦ in comparison to ∼0.005◦ provided by
the manufacturer [23].
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3.3.2. LW-SAW Calibration

For liquids on a LW-SAW device, a shift is caused on both phase and amplitude of the acoustic
wave. The measured quantities, amplitude and phase are related to the wave characteristics, i.e.,
the relative change of the wave velocity and the attenuation per wavenumber [44]. For the viscous
loading of a shear SAW device and providing that the liquid is Newtonian, the wave characteristics are
proportional to the square root of the density–viscosity product of the liquid

√
ρη [45]. Hence, we get

an expression for the sensitivity upon viscous loading on the sensor surface

Sviscous,Phase =
∆ϕ
√
ρη

(8)

Sviscous,Amplitude =
∆A
√
ρη

(9)

Furthermore, a linear correlation between phase and amplitude change should be expected for
Newtonian liquids, which can be evaluated from Equation (10) [46]:

∆ϕ (deg)
∆A (dB)

=
360

40π log(e)
= 6.6 deg dB−1 (10)

As a result, by introducing a series of glycerol and sucrose solutions in water on the sensor
surface, we can assess the viscous sensitivity of phase (Equation (8)) and amplitude (Equation (9))
responses and in parallel to confirm the proper response of the acoustic sensor by checking the validity
of Equation (10). The values of ∆ϕ (deg) and ∆A (dB) were calculated from the real-time figures
(Figure 10) and correspond to the signal difference between water and glycerol/sucrose solutions at
saturation. In Figures 13 and 14, the changes in amplitude and phase are presented as a function
of
√
ρη, respectively. The data exhibit a linear response for both phase and amplitude as the value
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of
√
ρη was increased, indicating a Newtonian response in agreement with previous experimental

work [39]. The sensitivities to viscosity measurements were calculated based on the slopes of
Figures 13 and 14, leading to the following values: 2.1 dB/kg/(m2s1/2) and 12.4 deg/kg/(m2s1/2) for
amplitude and phase, respectively. The linear relationship between the acoustic response and the square
root of the density–viscosity product of liquids should exist up to a critical viscosity value ηc, beyond
which liquids behave as Maxwellian; for our system, the theoretical glycerol critical viscosity value
corresponds to (ρηc)

1/2 = 7.96 kgm−2s−1/2 (shown as a vertical dot-line in Figure 13). Unfortunately,
sensor instability and the microfluidics employed did not allow for more (accurate) points to be
measured above ∼4 kgm−2s−1/2. Thus, although a precise value cannot be determined, loss of
Newtonian behavior appears to fall in the right range of values (5–8 kgm−2s−1/2). An additional test
against theory is presented in Figure 14 (inset). A linear correlation between phase and amplitude
is clearly confirmed for both glycerol and sucrose solutions; here, the best-fit line has a slope of
7.12 deg/dB, in very good agreement with the theoretical value of 6.6 from Equation (10).
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3.4. BSA Adsorption

The combined SPR/LW-SAW system was used to investigate the adsorption behavior of BSA on Au.
BSA adsorption has been widely studied with different techniques on various solid surfaces [47–53].
In this study, BSA was directly adsorbed on the hybrid sensor’s surface at a concentration of 200 µg/mL,
with a final sample volume of 500 µL, which is a quantity sufficient to approach a saturation coverage.
To establish a stable baseline, PBS (pH 7.4) was flown over the device surface before the introduction
of protein. After the adsorption, any unbound protein was removed during a subsequent PBS rinse.
The averaged real-time optical and acoustic measurements are presented in Figure 15, extracted from
three experiments. The SPR signal shift at saturation and after buffer rinsing is 88 ± 8 mdeg, using
the calibration factors obtained in the previous section. On the other hand, the phase and amplitude
signal shifts result in 4.9 ± 0.2 deg and 0.11 ± 0.05 dB, respectively.

For the quantitative interpretation of the SPR response, we implemented the mathematical
formalism proposed by Jung et al. [37] using the equations

∆θ(deg) = m1(na − ns)
[
1− e

−
2d
ld

]
+ m2

{
(na − ns)

[
1− e

−
2d
ld

]}2
(11)

ld(nm) =
(
λ

2π

)
/Re

{
−ne f f

4/
(
ne f f

2 + εω
)}1/2

(12)

where m1 = 60.1 and m2 = 56.2 are calibration factors obtained earlier from glycerol/sucrose solutions
(Equation (6)), d (nm) is the optical film thickness and ld = 318 nm is the decay length estimated
from Equation (12) for the effective refractive index of the sample ne f f = 1.331 + 0.00149 ≈ 1.332.
To obtain the refractive index of BSA, we used the particular amino acid sequence and related optical
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parameters given in [54], following the procedure employed in [55]. The refractive index increment at
780 nm is given by (

dn
dc

)
780

=

(
dn
dc

)
578
×

(
0.940 +

20, 000
7802

)
(13)

taking (dn/dc)578 = 0.190 mL/g for BSA [56]. The equation(
dn
dc

)
780

=
3
2
νans

n2
a − n2

s

n2
a + 2n2

s
(14)

is used to calculate na = 1.593 with BSA partial specific volume νa = 0.7347 cm3/g estimated from
the sequence [55]. The refractive index of PBS buffer at 780 nm was estimated from the Cauchy
parameters given in [57] and is equal to 1.331. The measured adlayer effective thickness at full coverage
was calculated from Equation (11) to be d = 0.91± 0.09 nm. Considering the specific volume of BSA,
the protein concentration on the surface was estimated as ΓSPR = 125± 13 ng cm−2, similar to previous
studies [37,49]. It must be stressed that the above estimation of the adlayer thickness and adsorbed
protein mass is based on the refractive index of pure protein without considering the presence of
coupled solvent molecules in the protein film [37]. If we assume an adlayer with refractive index 1.465,
a typical value for hydrated proteins [58–60], the calculated values of thickness and protein mass will
change considerably (d = 1.8 nm, ΓSPR = 246 ng cm−2).
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The amount of protein on the surface can also be quantified using the phase response and the rigid
mass loading phase sensitivity, which is equivalent to the Sauerbrey relation [61]

ΓLW−SAW
(
ng cm−2

)
=

∆ϕ
ϕ0SΦ

(15)
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where SΦ = 163 cm2/g from Equation (1) and ϕ0 = 45000◦ for the effective length x = 0.4 cm.
The protein concentration on the surface is estimated to be ΓLW−SAW = 668 ± 27 ng cm−2, fairly
comparable to values obtained by QCM-D analysis [47,51,53,62]. The real-time BSA adsorption on
Au in terms of surface mass uptake as detected by means of LW and SPR measurements is presented
in Figure 16a. The estimated protein mass uptake with the LW technique is 5.3-fold higher than by
estimation with SPR. This difference can be attributed to bound water or water hydrodynamically
coupled to the protein layer [60,63].

Complementary to the mass uptake information provided either by the acoustic phase or
the SPR response, the amplitude measurement gives information about the energy dissipated during
the adsorption process. It is known that the acoustic ratio, i.e., the ratio between amplitude and
phase (dB/deg), can be used as a qualitative indicator of the rigidity of the film [59] or to assess
the intrinsic viscosity of single biomolecules [2,64]. The temporal variation of the acoustic ratio during
BSA adsorption is presented in Figure 16b, from which we obtain a final value of 0.022 ± 0.01 dB/deg.
Moreover, the SPR-to-phase ratio (mdeg/deg) can provide a qualitative measure of the hydration of
the adsorbed layer. Following the real-time SPR and phase measurements (Figure 16b), the hydration
profile is revealed during the entire adsorption process. It is observed that, at low surface coverage,
the hydration of the protein layer is higher as expected and is gradually decreasing until the relationship
between the two signals is stabilized to a plateau value 17.8 mdeg/deg. The effect is attributed to
the presence of water on the surface, detected only by the acoustic measurement while the optical is
not affected [60].
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4. Conclusions

In this study, a novel system was engineered to facilitate combined optical and acoustic
measurements (SPR/LW-SAW) in a real time fashion on a single surface. For the first time, we obtained
the synchronized monitoring of three parameters, i.e., two acoustic, phase and amplitude, and one
optical, in a reliable and reproducible way employing a 3D-printed holder and PDMS microfluidic
chip allowing for flow-through liquid experiments. The hybrid sensor device was optimized in terms
of materials, including the PMMA acoustic waveguide and Au sensing layers. The system was
calibrated experimentally by performing glycerol/water and sucrose/water experiments. For the SPR
measurements, we determined the conversion factors between the angle of incident light, detector
pixel element and refractive index of medium which allow quantitative analysis. The phase and
amplitude changes were found to vary linearly with the square root of density–viscosity product
upon pure viscous loading, as theoretically expected. Finally, the system was tested by studying
the adsorption of protein on Au. The (optical) “dry” and the (acoustic) “wet” masses were obtained
allowing for the film hydration to be estimated. Having verified the above-mentioned characteristics,
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the developed platform could lead to improved insights on biomolecular interactions. Our future
aim is to explore the combined instrument to study other biological systems/processes, such as DNA
hybridization [65], DNA–protein or RNA–protein interactions [66], lipid particle properties [67],
protein–protein interactions [68] and cell attachment at the solid–liquid interface [69]. Data presented
in this work are a promising start.
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