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Summary

Leucocyte recruitment is critical during many acute and chronic inflam-

matory diseases. Chemokines are key mediators of leucocyte recruitment

during the inflammatory response, by signalling through specific chemo-

kine G-protein-coupled receptors (GPCRs). In addition, chemokines inter-

act with cell-surface glycosaminoglycans (GAGs) to generate a chemotactic

gradient. The chemokine interleukin-8/CXCL8, a prototypical neutrophil

chemoattractant, is characterized by a long, highly positively charged

GAG-binding C-terminal region, absent in most other chemokines. To

examine whether the CXCL8 C-terminal peptide has a modulatory role in

GAG binding during neutrophil recruitment, we synthesized the wild-type

CXCL8 C-terminal [CXCL8 (54–72)] (Peptide 1), a peptide with a substi-

tution of glutamic acid (E) 70 with lysine (K) (Peptide 2) to increase posi-

tive charge; and also, a scrambled sequence peptide (Peptide 3). Surface

plasmon resonance showed that Peptide 1, corresponding to the core

CXCL8 GAG-binding region, binds to GAG but Peptide 2 binding was

detected at lower concentrations. In the absence of cellular GAG, the pep-

tides did not affect CXCL8-induced calcium signalling or neutrophil

chemotaxis along a diffusion gradient, suggesting no effect on GPCR

binding. All peptides equally inhibited neutrophil adhesion to endothelial

cells under physiological flow conditions. Peptide 2, with its greater posi-

tive charge and binding to polyanionic GAG, inhibited CXCL8-induced

neutrophil transendothelial migration. Our studies suggest that the E70K

CXCL8 peptide, may serve as a lead molecule for further development of

therapeutic inhibitors of neutrophil-mediated inflammation based on

modulation of chemokine–GAG binding.

Keywords: chemokine; CXCL8; glycosaminoglycan; inflammation; neu-

trophil migration; structure–function; synthetic chemistry.

Introduction

Leucocyte recruitment, a hallmark of the inflammatory

response, is a crucial component of many acute and

chronic inflammatory situations.1–3 Chemokines are

small, soluble chemotactic proteins that co-ordinate

leucocyte recruitment.4 They can be expressed in

response to pro-inflammatory mediators such as the

Abbreviations: BSA, bovine serum albumin; GAG, glycosaminoglycan; GPCR, G-protein-coupled receptor; HBSS, Hank’s bal-
anced salt solution; HMECs, human microvascular endothelial cells; HUVECs, human umbilical vein endothelial cells; ICAM, in-
tercellular adhesion molecule type 1; MALDI-TOF, matrix-assisted laser desorption/ionization time-of-flight; POSAT, Prolong
Organ Survival After Transplantation (project acronym); PTM, post-translational modification; RP-HPLC, reverse-phase high-
performance liquid chromatography; RU, resonance units/response units; SA, streptavidin; SPR, surface plasmon resonance;
TNF-a, tumour necrosis factor-a
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cytokines tumour necrosis factor (TNF), interferon-c
or interleukin-1b. Chemokines recruit leucocytes to a

site of injury, by binding to the endothelium via

glycosaminoglycans (GAGs), forming a chemokine gra-

dient and activating integrins, which allow leucocyte

adhesion. In addition, chemokines are involved in

many other processes such as angiogenesis, proliferation,

development and the control of leucocyte mobilization

from primary or secondary lymphoid organs.5–9

Chemokine function depends, among many other factors,

on their signalling via specific chemokine G-protein-

coupled receptors (GPCRs). The interaction between a

chemokine and its receptor is an attractive therapeutic tar-

get in many diseases, including rheumatoid arthritis,10–12

psoriasis,13 or in acute and chronic organ damage after

ischaemia reperfusion injury following transplanta-

tion.14,15

Studies that have focused on the chemokine interaction

with GPCRs have led to the development of several neu-

tralizing antibodies, modified chemokines and antago-

nists.16–21 However, to date, only two chemokine receptor

antagonists have been fully validated and marketed as

therapeutics: Maraviroc (a CCR5 antagonist) and

AMD3100 (a CXCR4 antagonist).22–24 These two antago-

nists are not used as anti-inflammatory drugs, but rather

as a human immunodeficiency virus entry inhibitor, and

as a haematopoietic stem cell mobilizer during transplan-

tation, respectively. The challenge of targeting chemokines

in anti-inflammatory therapy arises primarily from the

apparent redundancy within the human chemokine sys-

tem.25,26

In addition to the well-characterized, high-affinity

interaction of chemokines with their specific GPCRs, che-

mokine activity in vivo also depends on their interaction

with GAGs, such as endothelial heparan sulphate.21,27

GAGs are ubiquitously present on cell surfaces and in the

extracellular matrix. They are thought to inhibit chemo-

kine diffusion, recruiting chemokines at high concentra-

tion forming a gradient towards the site of injury.28–30

The highly sulphated and acidic GAGs bind to basic resi-

dues within chemokines largely through electrostatic

forces, but also through Van der Waals interactions and

hydrogen bonding. This usually involves residues such as

arginine, lysine or histidine, which typically form the

BBXB or (B)BXX(X/B)BXXB(B) peptide sequence signa-

ture, where B is a basic amino acid residue and X is a

non-conserved amino acid, which is present in virtually

all chemokines.27 The importance of the chemokine–GAG
interaction is highlighted by studies that have selectively

targeted either GAG or GPCR binding domains. For

example, chemokines with increased GAG binding but

decreased GPCR binding, show anti-inflammatory activity

in in vivo models of CXCL8/neutrophil-driven inflamma-

tion presumably by disrupting the natural chemokine gra-

dient.31

Levels of CXCL8 significantly increase during the

inflammatory response associated with ischaemia reper-

fusion injury,32,33 which can lead to acute kidney

injury34,35 and transplant rejection.36–38 CXCL8

expressed at high concentrations on the endothelial

GAG surface at the site of injury contributes to neu-

trophil firm arrest, by activation of integrins.39 There-

fore, modulation of a CXCL8 haptotactic gradient

might have potential in ameliorating the ischaemia

reperfusion injury and therefore improve organ func-

tion.30,32,34 Therapeutic targeting of CXCL8 and its

association with heparan sulphate has been investigated

in numerous neutrophil-driven inflammatory diseases

such as chronic obstructive pulmonary disease, Crohn’s

disease and psoriasis.40 A CXCL8-based decoy protein

named PA401, with decreased GPCR binding and

increased GAG binding, decreased CXCL8-mediated

neutrophil recruitment in in vivo studies, suggesting its

translational potential for the treatment of respiratory

diseases such as chronic obstructive pulmonary disease

or cystic fibrosis.41

The C-terminal a-helical region of CXCL8 is known to

be critical for GAG binding (Fig. 1), largely due to its

positive electrostatic charge giving it micromolar affinity

for negatively charged GAGs.29,42–44 This binding is medi-

ated by core residues H18, K20, R60, K64, K67 and R68,

as shown in Fig. 1, where known CXCL8-receptor bind-

ing residues are also highlighted.

In this study, we aimed to assess whether the CXCL8

C-terminal peptide (54–72) could modulate CXCL8 func-

tion. We synthesized the CXCL8 wild-type C-terminal

region (54–72) (wild-type peptide, Peptide 1), a peptide

with substitution of glutamic acid (E) 70 with lysine (K),

in order to increase the peptide positive charge, and

hence its GAG-binding potential (Peptide 2), and a

scrambled peptide containing the wild-type amino acids

(Peptide 3; Fig. 1). The biophysical properties of the pep-

tides and their potential biological functions, using

in vitro cytokine-mediated neutrophil flow-based adhe-

sion and transendothelial migration studies, were investi-

gated.

Materials and methods

Human neutrophil isolation

Primary neutrophils were isolated from whole blood of

healthy volunteers. Ethical approval to obtain blood from

healthy volunteers was granted by the County Durham

and Tees Valley Research Ethics Committee (12/NE/

0121). Primary neutrophils were isolated by dextran sedi-

mentation (Dextran T500; Pharmacosmos, Holbaek, Den-

mark) and centrifugation on Percoll (GE Healthcare,

Buckinghamshire, UK) density gradients as previously

described.45
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Synthesis of chemokine peptides

The chemokine C-terminal peptides (Peptides 1–3) were

synthesized on Rink Amide resin using Fmoc solid-phase

peptide synthesis on a CEM Liberty 1 single-channel

microwave peptide synthesizer equipped with a Discover

microwave unit, as described earlier.46 After synthesis,

peptides were acetylated at the N-terminal (20% acetic

anhydride), having amide at the C-terminal. They were

then cleaved from the resin, and crude peptides were

purified by semi-prep reverse-phase high-performance liq-

uid chromatography (RP-HPLC). Then peptides were

characterized by matrix-assisted laser desorption/ioniza-

tion time-of-flight (MALDI-TOF) using an Autoflex II

ToF/ToF mass spectrometer (Bruker Daltonik GmbH,

Coventry, UK), and using the Pep-Calc calculator to anal-

yse the sequence47 and the obtained mass spectrometry

spectra. Following this, analytical RP-HPLC was used to

examine the pure peptide. Chemokine peptides were ini-

tially synthesized at Durham University Chemistry

Department (Durham, UK), and further synthesized by

ISCA Biochemicals (Exeter, UK) (>95% purity).

Circular dichroism spectroscopy

Far-UV circular dichroism spectroscopy was conducted

using a Jasco J-810 spectropolarimeter (Jasco GmbH,

Gross-Umstadt, Germany) in the range of 240–197 nm

wavelength, with a 1-mm path length and a 500-ll quartz
cuvette. Peptide samples (Peptide 1, Peptide 2 or Peptide

3) were diluted 5–100 lM in phosphate-buffered saline.

For the measurements, 300 ll peptide solution was trans-

ferred to a cuvette. All data collection was taken at room

temperature, and the mean spectrum derived from five to

ten scans was corrected by subtraction of the buffer

blank, as previously reported.48 For samples of peptide

combined with heparin (Sigma-Aldrich, St Louis, MO),

the spectrum was also corrected by subtraction of a hep-

arin blank. Scans were conducted at 50 nm/min, 1 nm

data pitch, 5 mdeg sensitivity and with a 2-second

response.49

Surface plasmon resonance

Surface plasmon resonance (SPR) was performed using a

BIAcore X100 as previously described.50 The running buf-

fer used was HBS-P (10 mM HEPES pH 7�4, 150 mM

NaCl, 0�005% Tween-20). Unless otherwise stated all

reagents were from GE Healthcare (Uppsala, Sweden). To

allow immobilization onto the streptavidin (SA)-coated

chip, biotinylated GAG heparin was obtained as previ-

ously described50–52 (generously provided by Prof.

Hughes Lortat-Jacob’s Laboratory, Institute of Structural

Chemokine GPCR
Leukocyte cell

GAG-binding
Receptor-binding
Both GAG and receptor-binding
BXXXBXXBB motif: motif associated with GAG-binding, where B is basic aa

BXXXBXXBB motif

CXCL8

N-terminal N-loop 30s-loop 40s 50s C-terminal α-helix

15 18 20 23 42 47 54 60 64 67 68

β1 β2 β3

WT peptide:

Scrambled peptide:

E70K peptide:

Plasma membrane

Endothelial cell

C

C

GAG

N

N Chemokine

(a)

(b)

Figure 1. (a) CXCL8 active sequence. (b)

Schematic representation of the chemokine

binding to the endothelial glycosaminoglycan

(GAG) and to the leucocyte chemokine G-pro-

tein coupled receptor (GPCR). (a) Sequence of

the most common active CXCL8 form (amino

acids 28–99), with 72 amino acids. Green:

GAG-binding residues. Purple: GPCR-binding

residues. Red: residues involved in both GAG-

and receptor-binding. Underlined amino acids:

C-terminal a-helix region selected for chemical

synthesis. (b) Schematic representation of che-

mokine (Protein Data Bank ID 1IL-8/CXCL8)

interaction with endothelial surface through

GAG (residues involved highlighted in orange),

which enables subsequent high-affinity chemo-

kine binding to leucocyte CXCR1/2 GPCR

receptor (Protein Data Bank ID 2LNL; also

highlighted in orange). Chemokine monomer

is shown in blue and the dimer is depicted

with one molecule in blue and the other in

red. Note that illustration shows one potential

scenario of chemokine binding.
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Biology, Grenoble, France). Mono-biotinylation at the

reducing end of the GAG is important for correct presen-

tation when immobilized. Between 5 and 20 lg/ml

biotinylated heparin in 300 mM NaCl was injected at

10 ll/min for 30 seconds followed by a 2 M NaCl wash to

remove unbound heparin. Injections were repeated until

a total resonance units of 200 was achieved. Following

preparation of the chip surface, SPR assays assessed the

GAG-binding properties of CXCL8; and synthesized pep-

tides (Peptide 1, Peptide 2 and Peptide 3). A range of

CXCL8 concentrations (50–1000 nM; CN-09; Almac,

Edinburgh, UK) were flowed across the chip at 5 ll/min

for 5 min followed by a 500-second dissociation phase

and their resonance units were measured. The same con-

ditions were applied to the peptides analysed at concen-

trations from 2500 nM to 10 000 lM. After every

chemokine or chemokine peptide measurement, regenera-

tion buffer was used to remove sample from the chip sur-

face (10 mM HEPES, 2 M NaCl, 50 mM EDTA, 0�005%
Tween-20). Binding was calculated by subtraction of the

resonance units of the SA flow cell from the resonance

units of the GAG-SA flow cell. Data analysis was per-

formed using BIA EVALUATION 4.1.

Solute diffusion gradient chemotaxis and transendothelial
chemotaxis of neutrophils

Chemotaxis experiments were performed using a Tran-

swell system (Falcon, BD Biosciences, Oxford, UK), as

previously reported.53 First, 24-well companion plates

(Falcon, BD Biosciences) were blocked with 1 ml 1%

bovine serum albumin (BSA) (Sigma-Aldrich)/

RPMI (Lonza, Wokingham, UK) per well for 1 hr before

the assay to prevent chemokine binding and consequent

decreased chemokine concentration. Then, 800 ll of

10 nM chemokine, after optimization (data not shown)

and as earlier described,54–56 or chemokine peptide in a

range of 0�1–10 000 nM in 1% BSA/RPMI was added to

each well. Cell culture inserts (3-lm pore size; Falcon,

BD Biosciences) formed the transwell upper chamber

where 500 ll of 3 9 105 primary neutrophils in 1% BSA/

RPMI were added. Wells containing 1% BSA/RPMI only

on the transwell bottom chamber were used as a negative

control. The plate was then incubated at 37° for 90 min.

After incubation, cells that had fully migrated to the tran-

swell lower chamber were counted by flow cytometry as a

ratio to the known number of counting beads. For

transendothelial chemotaxis, 3 days before the assay

human microvascular endothelial cells (HMECs; ATCC

CRL-3243)57,58 were seeded onto the transwell upper

chamber using 500 ll of 2 9 105 HMECs per insert in

MCDB-131 media (10372019) (Thermo Fisher, Waltham,

MA) with 10% fetal bovine serum as earlier

described.59,60 MCDB-131 medium was then carefully

aspirated before the assay. Anti-intercellular adhesion

molecule type 1 (ICAM-1) blocking monoclonal antibody

(HA58) (eBioscience; Thermo Fisher, Waltham, MA) and

IgG1 j isotype control (MOPC-21) (BD Biosciences, San

Jose, CA) were used to treat the HMEC layer at 20 lg/ml

in 0�5% BSA/phosphate-buffered saline for 30 min at

room temperature.

Calcium signalling

Intracellular calcium was measured loading cells with

Indo-1, AM (Thermo Fisher, Waltham, MA). For each

tube, 3 million neutrophils were used. Freshly isolated

neutrophils were first left to rest in an incubator for

about 15 min, and then used for the experiment. Cells

were washed in Hank’s balanced salt solution (HBSS;

Sigma-Aldrich) and resuspended at 10 million cells/ml.

Then, cells were washed in HBSS supplemented with

1 mM CaCl2, 1 mM MgCl2, 1% fetal bovine serum (vol-

ume/volume). Once cells were washed, they were loaded

with 3 lM indo-1, AM, and incubated for 30 min at 37°
covered in foil. After the 30 min of indo-1, AM incuba-

tion, cells were washed with supplemented HBSS at 400 g

for 5 min, then resuspended at 3 million cells per 1�5 ml

in their corresponding FACS tube and left to rest for

30 min at 37° before analysis. Calcium flux was measured

by FACS-Fortessa flow cytometry, using UV filter 530/30.

Once settings were adjusted with unstained cells at low

flow rate, the stained cells were run. As baseline, stained

untreated cells (HBSS only) were first run for 1 min at

medium flow. Then 1 ll HBSS or chemokine was added

for 4 min, and then 8 ll ionomycin (I0634) (Sigma-

Aldrich) was added for 2 min. Cells were studied for the

effect of CXCL8 on calcium flux and compared with the

effect of CXCL8 combined with Peptide 1, Peptide 2 or

Peptide 3. Calculation of intracellular calcium concentra-

tions, measured in terms of the light emission as a ratio

of fluorescence intensities at 340 and 380 nm, was carried

out using the equation [calcium (nmol/l)] = Kd 9 (R �
Rmin)/(Rmax � R), where Kd (844 nmol/l) is the dissocia-

tion constant of calcium bound to the fluorochrome61

Table 1. Summary of yield and purity obtained for each synthesized

peptide

Peptide Chemokine region Yield1 Purity2

WT (Peptide 1) WT C-terminal 60�4% Approx. 95%

E70K (Peptide 2) E70K C-terminal 10�4% Approx. 95%

Scrambled

(Peptide 3)

Scrambled from

C-terminal

12�7% Approx. 95%

1Yield is calculated comparing the dry mass of pure peptide with the

mass of crude peptide [theoretical mass at 100% yield based on the

0�1 mmol resin (0�1 mmol peptide) = 100% peptide = mass of pep-

tide (mg)].
2Purity is obtained from analytical high performance liquid chro-

matography.
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and R is the peak intracellular calcium flux in response to

the additive (chemokine or chemokine peptide). The

basal concentration (HBSS, negative control) was sub-

tracted to calculate the values.

Flow-based neutrophil adhesion

In order to evaluate the neutrophil adhesion in response to

chemokine or chemokine peptide under physiological

in vitro conditions, the Venaflux platform (Cellix Ltd.,

Dublin, Ireland) was used, in a similar way to previous

studies.62–64 To accommodate an endothelial layer on the

biochip platform for neutrophil perfusion, the Vena8

Endothelial+ chip was initially coated with 10 ll 100 lg/ml

fibronectin (Sigma-Aldrich). Coated biochip was stored in

a closed humidified chamber overnight at 4°. On the first

day, Human Umbilical Vein Endothelial Cells (HUVECs;

C-12203; PromoCell, Heidelberg, Germany) were treated

in a 75-cm2 flask with 1 ng/ml TNF (210-TA-010; R&D

Systems, Minneapolis, MN) overnight at 37°.65 Next day,

the fibronectin-coated Vena8 Endo+ biochip was seeded

with 10 ll of HUVECs (at 1�5 million per 100 ll), used as

600

400

200R
U

0

600
CXCL8

[CXCL8] (nM)

WT peptide

[WT peptide] (µM)

400

200

R
U

 (
bi

nd
in

g 
re

po
rt

 p
oi

nt
)

0

600

400

200
R

U
 (

bi
nd

in
g 

re
po

rt
 p

oi
nt

)

0

600
***

***

***

*

***
***

*

400

200

R
U

 (
bi

nd
in

g 
re

po
rt

 p
oi

nt
)

0

600

400

200

*

R
U

 (
bi

nd
in

g 
re

po
rt

 p
oi

nt
)

0

–200

600

400

200R
U

0

–200

600

400

200R
U

0

–200

600

400

200R
U

0

–200

100 200

1000 nM

10
00

 n
M

50
0 

nM

25
0 

nM

10
0 

nM

50
 n

M

Buf
fe

r

10
 m

M

75
00

 µ
M

50
00

 µ
M

10
00

 µ
M

25
00

 n
M

Buf
fe

r

[E70K peptide] (µM)

10
 m

M

75
00

 µ
M

50
00

 µ
M

10
00

 µ
M

25
00

 n
M

Buf
fe

r

[Scrambled peptide] (µM)

Scrambled peptide

E70K peptide

10
 m

M

75
00

 µ
M

50
00

 µ
M

10
00

 µ
M

25
00

 n
M

Buf
fe

r

500 nM

250 nM

100 nM

50 nM

7500 µM

10 mM

5000 µM

1000 µM

2500 nM

7500 µM

10 mM

5000 µM

1000 µM

2500 nM

7500 µM

10 mM

5000 µM

1000 µM

2500 nM

300 400
Time (s)

100 200 300 400
Time (s)

100 200 300 400
Time (s)

100 200 300 400
Time (s)

(a) (b)

Figure 2. Surface plasmon resonance of

CXCL8 peptide–heparin binding. (a) Surface

plasmon resonance sensorgram shows heparin–

CXCL8 binding in the range of 50–1000 nM

CXCL8, and heparin–CXCL8 peptide binding

in the range of 2�5–10 000 lM peptide. Che-

mokine or peptide were flowed at 5 ll/min

over the chip. (b) Binding shown for each che-

mokine or peptide concentration. Sensorgram

with magnified y-axis of binding of wild-type

(WT) peptide, and scrambled peptide is shown

in Supplementary material (Fig. S3). Data were

analysed by one-way analysis of variance

(P < 0�0001) followed by Bonferroni post-hoc

test. *P < 0�05, ***P < 0�001. Data are repre-

sentative of three independent experiments

over a single heparin-coated SA chip.
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negative control, or with TNF-stimulated HUVECs, as pos-

itive control. A HUVEC layer was generated within 1–
1�5 hr of seeding. For this, the addition of 40 ll of extra
culture medium to each channel reservoir was required 10–
15 min after HUVEC seeding to humidify the channel and

generate the endothelial layer. Afterwards, chemokine treat-

ment was carried out. The seeded biochip channel was trea-

ted with chemokine (20 nM), chemokine peptide (50 nM;

Peptide 1, Peptide 2 or Peptide 3); or low-molecular-

weight heparin, tinzaparin (50 nM; Leo Pharmaceuticals,

Ballerup, Denmark), to analyse their potential role in dis-

placing the chemokine from GAG.66 In parallel, different

CXCR1/2 antagonists [repertaxin (Cayman Chemical,

Cambridge, UK) and SB225002 (SML0716; Sigma-

Aldrich)], and CXCR2 antagonist SB265610 (SML0421;

Sigma-Aldrich) were used at 50 nM – to analyse their role

in displacing the chemokine from GPCR67 – treating neu-

trophils before the assay. A 10-ll treatment was inserted

into each channel, followed by careful addition of 40 ll of
the treatment on to each channel reservoir. The effect of

each treatment on the neutrophil flow-based adhesion was

evaluated using the Venaflux platform; 3 9 105 primary

neutrophils were flowed per ml through each biochip chan-

nel and analysed. Cell adhesion analysis was performed

using IMAGEJ Analysis Software. Cell adhesion count for

each treatment was calculated from the average of five stan-

dard fields of view of adhered neutrophils.

Data analysis

Data were analysed using PRISM7C software (GraphPad

Software Inc., La Jolla, CA). Each graph column denotes

mean and each bar indicates standard error of the mean

(SEM). P values were calculated using one-way statistical

analysis of variance followed by Bonferroni’s post hoc test,

with significant differences when P < 0�05, highly signifi-

cant when P < 0�01, and extremely significant when

P < 0�001 or P < 0�0001.

Results

Design, synthesis and biophysical characterization of
CXCL8 C-terminal peptide

The wild-type C-terminal region of CXCL8 [CXCL8 (54–
72)] (Peptide 1), the E70K peptide (Peptide 2), and a

scrambled peptide with the same amino acids as the wild-

type peptide in a random order, (Peptide 3), were synthe-

sized using Fmoc solid-phase peptide synthesis on Rink

Amide resin (see Supplementary material, Fig. S1). The

15
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Figure 3. Diffusion gradient migration in response to CXCL8 com-

bined with each peptide. For positive control, 10 nM CXCL8 was

used. Synthesized CXCL8 C-terminal peptides (10 or 100 nM)

showed no interference with neutrophil migration in the absence of

endothelial glycosaminoglycan (GAG) surface, which suggests no

binding to CXCR1/2 receptors. Wild-type (WT)/Peptide 1

(KENWVQRVVEKFLKRAENS); E70K/Peptide 2 (KENWVQRV-

VEKFLKRAKNS); or scrambled/Peptide 3 (KVREKNEKWFVEQR-

VALNS) were studied. Index of migrated cells or chemotaxis index

(CI) is the ratio between the total number of migrated neutrophils

and the number of neutrophils that migrated non-specifically, and

was calculated for each treatment. Data were analysed by one-way

analysis of variance (P < 0�0001) followed by Bonferroni post-hoc

test. ***P < 0�001 shows significant migration in response to CXCL8

compared with negative control; ns, not significant. Representative

data of three independent experiments (n = 3), each performed in

triplicate.
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Figure 4. Calcium flux in response to CXCL8 combined with each

peptide. Intracellular calcium ([Ca2+]i) was measured in response to

CXCL8, or CXCL8 combined with each peptide [wild-type (WT)/

Peptide 1: KENWVQRVVEKFLKRAENS; E70K/Peptide 2:

KENWVQRVVEKFLKRAKNS; or scrambled/Peptide 3: KVRE-

KNEKWFVEQRVALNS]. Primary blood neutrophils were labelled

with Indo-1, AM. Then, cells were analysed in response to Hank’s

balanced salt solution (HBSS) only (negative control), 10 nM CXCL8

(positive control) or CXCL8 combined with each peptide at 50 nM,

within the range of 10–100 nM. Data were analysed by one-way anal-

ysis of variance (P < 0�0001) followed by Bonferroni post-hoc test.

**P < 0�01 shows significant calcium flux in response to CXCL8

compared with the negative control. ns, no significant. Data are rep-

resentative of three independent experiments (n = 3).
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purified peptides were characterized by MALDI-TOF and

analytical RP-HPLC. A summary of yields and purity for

the three peptides is shown in Table 1. Circular dichro-

ism was used to determine the structure of synthesized

peptides alone and in comparison with peptides com-

bined with heparin. All peptides showed an extended,

non-helical or random coil structure, different to the

a-helix structure of this region within full-length CXCL8.

However, Peptide 1 and Peptide 2 in solution with hep-

arin showed a minor change in structure, not seen with

Peptide 3, indicating a potential interaction between

CXCL8-derived peptide and heparin (see Supplementary

material, Fig. S2).

Binding of CXCL8 C-terminal peptides to GAG-
heparin

To assess the GAG-binding ability of synthesized C-termi-

nal peptides, SPR binding studies were performed. We

first evaluated the binding of CXCL8 to a heparin-coated

chip following established protocols.68 Then, binding of

each synthesized peptide was studied, to evaluate affinity

for heparin. Heparin-CXCL8 SPR confirmed binding68,69

as shown in Fig. 2. Peptide binding was only detectable at

much higher concentrations of Peptides 1 and 3 (10 mM),

>104-fold higher than with full-length CXCL8 (the sen-

sorgram with magnified y-axis of binding of Peptides 1

and 3 is shown in the Supplementary material, Fig. S3).

The E70K peptide (Peptide 2; charge +4), showed signifi-

cant binding at lower concentrations (5 mM) than the

other peptides (charge +2), but this was still a much

higher concentration than full-length CXCL8 (Fig. 2).

CXCL8 C-terminal peptides do not interfere with
GPCR-mediated signalling

The peptides were predicted to bind endothelial GAGs.

To determine whether the peptides also had a role in

GPCR-binding, all three peptides were evaluated by

CXCL8-diffusion gradient chemotaxis and CXCL8-medi-

ated calcium signalling. The peptides had no significant

effect on CXCL8-diffusion gradient chemotaxis (Fig. 3).
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Figure 5. Schematic representation of leucocyte perfusion and adhesion over primary human umbilical vein endothelial cells (HUVECs). (a) (i)

First, HUVECs were seeded over the fibronectin-coated biochip. (ii) Next, leucocytes were loaded onto the endothelial layer and initially perfused

at a high flow rate, �10 dynes/cm2 for 10 seconds, to allow leucocyte circulation over the chip (negative flow, towards pump). (iii) Leucocyte

adhesion was then analysed at a more physiological flow rate, �0�5 dynes/cm2 for 3 min. Leucocytes were fluorescently labelled using 1 lM
(DIOC6)3. (b) Flow-based adhesion of primary neutrophils in the presence of different modulators. Negative control is untreated HUVECs (fi-

bronectin only). Positive control is tumour necrosis factor (TNF) -stimulated HUVECs with 20 nM CXCL8 (100 lg/ml fibronectin, 1 ng/ml

TNF/TNF-a). CXCL8 (20 nM) and CXCL8 peptide (50 nM) were added over TNF-stimulated HUVECs and neutrophil adhesion was analysed

after 1 hr of treatment. HUVECs were treated with low-molecular-weight heparin (LMWH) tinzaparin at 50 nM for 1 hr before performing the

assay. Neutrophils were treated with each CXCR1&2 antagonist [Repertaxin (R); or SB225002 (S1)] or CXCR2 antagonist (SB265610) (S2) at

50 nM for 1 hr before the assay. Adherence ratio, obtained from the average of five fields of view per channel of chip, is the ratio between the

total number of adhered neutrophils and the number of neutrophils that adhered non-specifically. Wild-type (WT)/Peptide 1 (P1) is

KENWVQRVVEKFLKRAENS; E70K/Peptide 2 (P2) is KENWVQRVVEKFLKRAKNS; scrambled/Peptide 3 (P3) is KVREKNEKWFVEQRVALNS.

Data were analysed by one-way analysis of variance (P < 0�0001) followed by Bonferroni post-hoc test. **P < 0�01, ***P < 0�001,
****P < 0�0001. Representative data of three independent experiments (n = 3).
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Data on CXCL8-mediated neutrophil calcium signalling

was consistent with the diffusion gradient chemotaxis.

Neutrophil calcium increased in response to CXCL8

stimulation, but no change was seen with the peptides

alone. The combination of CXCL8 with each of the syn-

thesized peptides did not affect calcium flux compared

with CXCL8 alone (Fig. 4). Hence, data suggested that

the peptides do not interfere with chemokine–GPCR
binding.

C-terminal peptides inhibit neutrophil flow-based
adhesion to endothelial cells

A schematic representation of the endothelial biochip

seeding, and subsequent leucocyte flow-based adhesion

is shown in Fig. 5. Primary neutrophil adhesion in

response to TNF-stimulated, CXCL8-treated HUVECs

was used as positive control. Cytokine-mediated neu-

trophil flow-based adhesion was reduced in the pres-

ence of 50 nM of all three peptides (wild-type peptide

and scrambled peptide P < 0�01; E70K peptide

P < 0�001). Similarities between the peptides suggest

that short positively charged peptides, all containing

Lys and Arg residues, interfere non-specifically or with

functional redundancy with chemokine-activated neu-

trophil adhesion to the endothelium under physiological

flow conditions (Fig. 5).

Further studies performed with the low-molecular-

weight heparin tinzaparin showed significant chemokine

displacement and inhibition of flow-based chemokine-

mediated neutrophil adhesion (P < 0�0001).
In addition, studies using the CXCR1/2 chemokine

receptor antagonists repertaxin, SB225002 or SB265610

led to significant inhibition of GPCR-chemokine binding

as shown by significantly reduced neutrophil flow-based

adhesion (P < 0�0001).

E70K peptide inhibits neutrophil transendothelial
migration

To further investigate CXCL8 C-terminal peptide binding

to endothelial GAG, their potential to block CXCL8-me-

diated transendothelial neutrophil migration was evalu-

ated. There was no significant effect of Peptide 1 or

Peptide 3 on neutrophil transendothelial chemotaxis. Pep-

tide 2, E70K, reduced CXCL8-mediated neutrophil

transendothelial migration (P < 0�001; Fig. 6; see Supple-

mentary material, Fig. S4). Primary neutrophils express

several cell-surface proteins involved in endothelial adhe-

sion, in addition to high levels of the CXCL8 receptors,

CXCR1 and CXCR2 (see Supplementary material,

Fig. S5). This may partly explain why CXCL8-displacing

peptides do not fully inhibit neutrophil migration. To

determine whether blocking the function of other

20 ***

***

15

10

5

WT peptide E70K peptide

10 nM CXCL8

Scrambled
peptide

In
de

x 
of

 m
ig

ra
te

d 
ce

lls

0

0

+ 
1 

nM

+ 
1 

nM

+ 
1 

nM

+ 
10

 n
M

+ 
50

 n
M

+ 
50

 n
M

+ 
10

 n
M

+ 
10

 n
M

+ 
10

0 
nM

+ 
10

0 
nM

+ 
10

0 
nM

+ 
10

00
 n

M

+ 
10

00
 n

M+

Figure 6. Neutrophil transendothelial migration directed by CXCL8 combined with peptide. Neutrophil response to CXCL8 (10 nM), or to

CXCL8 combined with each peptide, at 1–1000 nM [wild-type (WT)/Peptide 1: KENWVQRVVEKFLKRAENS; E70K/Peptide 2: KENWVQRV-

VEKFLKRAKNS; or scrambled/Peptide 3: KVREKNEKWFVEQRVALNS] was measured. Cell counts were performed using counting beads by

flow cytometry. Index of migrated cells or chemotaxis index (CI) is the ratio between the total number of migrated neutrophils and the number

of neutrophils that migrated non-specifically. Further titration of peptides is shown in the Supplementary material (Fig. S4). Data were analysed

by one-way analysis of variance (P < 0�0001) followed by Bonferroni post-hoc test. ***P < 0�001 on black column indicates significant migration

in response to CXCL8 compared with negative control. Data are representative of two independent experiments (n = 2) from different primary

neutrophil preparations, each performed in triplicate.
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proteins involved in transendothelial migration would

further interfere in the process, we combined the E70K

peptide with an ICAM-1 blocking monoclonal antibody.

As previously described, blocking ICAM-1 alone did not

affect neutrophil transendothelial migration.70 When

ICAM-1 blockade was combined with E70K there was a

significant reduction in neutrophil endothelial transmi-

gration; however, this was not greater that E70K alone,

suggesting no synergistic interaction (Fig. 7). This pro-

poses the therapeutic potential of E70K peptide to modu-

late chemokine function by interfering with chemokine–
GAG binding, potentially interfering with the formation

of the chemokine gradient.

Discussion

Targeting chemokine–GPCR binding has been clinically

approved for two indications. However, there are numer-

ous examples in pre-clinical studies that suggest they have

great potential to modify inflammatory responses during

disease.22–24,71 The regulation of chemokine function by

GAG binding using chemokine peptides in vivo has previ-

ously been investigated,9,41,72 but its translational potential

has not been fully explored. Here, to better understand the

regulation of chemokine function by GAG binding, che-

mokine-derived peptides were synthesized. All peptides

showed low-affinity, but significant, GAG binding in a

charge-dependent manner, presumably through electro-

static interactions. Chemotaxis and calcium signalling

studies confirmed that peptides lacked GPCR antagonist

function. The C-terminal peptides showed a significant

reduction in flow-based neutrophil adhesion; however, no

difference was observed between the peptides. This suggests

that integrin-mediated neutrophil–endothelium adhesion,

which is stimulated by cytokines, can be modulated by all

the positively charged peptides tested under physiological

flow rate. GAG binding of these peptides may not require a

defined three-dimensional structure. Neutrophil

transendothelial chemotaxis assays showed that only Pep-

tide 2, with its higher positive charge, significantly reduced

neutrophil migration. Peptide 2 has a charge of +4, which
is higher than the wild-type peptide (Peptide 1) or scram-

bled peptide (Peptide 3; charge +2). We propose that the

higher charge increases the affinity for GAG binding, and

this contributes to chemokine displacement from cell sur-

face GAGs disrupting the chemokine gradient (Fig. 8).

Alternative approaches to enhance the peptide–GAG
binding to increase its ability to displace chemokine could

include further substitution of positively charged residues

in the CXCL8 GAG-binding region; study of potential

folding of unfolded states of the truncated chemokine

region; or the development of cyclic peptides;73,74 or sta-

pled peptides to stabilize an a-helical structure.75 Further-
more, the inclusion of non-standard amino acids is

another strategy to increase the peptide stability against

proteolytic cleavage.76 Also, it might be of interest to

study potential peptide oligomerization, as it could fur-

ther increase GAG binding.29,42,43,77,78 These strategies

might facilitate the impairment of the chemokine-medi-

ated neutrophil recruitment to ameliorate the injury asso-

ciated with neutrophil-mediated inflammation, such as in

ischaemia reperfusion injury during transplantation, or in

rheumatoid arthritis.79

Mice express only CXCL8 homologues, KC/CXCL1 and

MIP-2/CXCL2. The human CXCL8 C-terminal peptide

used (54–72 amino acids) shares 32% identity and 21%

identity with murine homologues (within KC/CXCL1 and

MIP-2/CXCL2), respectively.80 This makes targeting C-ter-

minal domain function in mouse models more difficult. In

order to study the potential role of E70K peptide in vivo, a

murine air pouch model of inflammation was used as opti-

mized previously by our group.81,82 However, no signifi-

cant effect was observed (data not shown), which may

reflect the degree of sequence difference described above;

or it might have an inhibitory effect only in a specific envi-

ronment. Alternative animal models, such as a humanized
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Figure 7. Neutrophil transendothelial migration directed by CXCL8

can be inhibited by the E70K peptide. A similar effect was shown

when the peptide was combined with intercellular adhesion molecule

type 1 (ICAM-1) blocking antibody. Neutrophil response to CXCL8

(10 nM), or to CXCL8 combined with each peptide, at 50 nM [wild-

type (WT)/Peptide 1: KENWVQRVVEKFLKRAENS; E70K/Peptide 2:

KENWVQRVVEKFLKRAKNS; or scrambled/Peptide 3: KVRE-

KNEKWFVEQRVALNS] was measured. Human microvascular

endothelial cells (HMECs) were treated with ICAM-1 blocking anti-

body. Cell counting was performed using a counting chamber. Index

of migrated cells or chemotaxis index (CI) is the ratio between the

total number of migrated neutrophils and the number of neutrophils

that migrated non-specifically. Data were analysed by one-way analy-

sis of variance (P < 0�0001) followed by Bonferroni post-hoc test.

**P < 0�01. ***P < 0�001. *** in black column indicates significant

migration in response to CXCL8 compared with negative control.

Data are representative of three independent experiments (n = 3)

from different primary neutrophil preparations, each performed in

duplicate.
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mouse model,83 or additional physiological studies could

further probe the translational role of peptides.

Moreover, analysis of the effect of CXCL8-derived pep-

tides on other factors such as N-formyl-L-methionyl-L-

leucyl-phenylalanine, leukotriene B4, C5a;84 immuno-

chemically related chemokines, e.g. neutrophil chemoat-

tractant CXCL1, or CXCL9; and on other GAGs, may

unravel further functionality of synthetic peptides. It is

also worth noting that chemokine peptides are usually

associated with favourable properties such as low toxicity

and low immunogenicity, which contributes to their

increasing recognition as potential candidates for novel

drugs.85,86

Taken together, this approach shows the ability of CXCL8

(54–72) to bind GAG, and to significantly reduce chemo-

kine-mediated neutrophil adhesion. In addition, the E70K

CXCL8 peptide also showed a significant reduction in neu-

trophil transendothelial migration. This might be due to

E70K’s higher positive charge and higher binding affinity for

polyanionic GAG. The ability of chemokine peptides to bind

GAG and regulate chemokine function requires further

work to determine if they have the potential to ameliorate

acute or chronic neutrophil-driven organ damage.
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