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ABSTRACT
Parkinson disease (PD) is a devastating, largely nonfamilial, age-
related disorder caused by the progressive loss of dopamine
(DA) neurons in the substantia nigra pars compacta (SNc).
Release of DA from these neurons into the dorsal striatum is
crucial for regulating movement and their loss causes PD.
Unfortunately, the mechanisms underlying SNc neurodegenera-
tion remain unclear, and currently there is no cure for PD, only
symptomatic treatments. Recently, several regulator of G protein
signaling (RGS) proteins have emerged as critical modulators
of PD pathogenesis and/or motor dysfunction and dyskinesia:
RGSs 4, 6, 9, and 10. Striatal RGS4 has been shown to
exacerbate motor symptoms of DA loss by suppressing M4-
autoreceptor-Gai/o signaling in striatal cholinergic interneur-
ons. RGS6 and RGS9 are key regulators of D2R-Gai/o signaling
in SNc DA neurons and striatal medium spiny neurons,
respectively. RGS6, expressed in human and mouse SNc
DA neurons, suppresses characteristic PD hallmarks in aged
mice, including SNc DA neuron loss, motor deficits, and
a-synuclein accumulation. After DA depletion, RGS9 (through
its inhibition of medium spiny neuron D2R signaling) sup-
presses motor dysfunction induced by L-DOPA or D2R-selec-
tive agonists. RGS10 is highly expressed in microglia, the

brain’s resident immune cells. Within the SNc, RGS10 may
promote DA neuron survival through the upregulation of
prosurvival genes and inhibition of microglial inflammatory
factor expression. Thus, RGSs 4, 6, 9, and 10 are critical
modulators of cell signaling pathways that promote SNc DA
neuron survival and/or proper motor control. Accordingly,
these RGS proteins represent novel therapeutic targets for
the treatment of PD pathology.

SIGNIFICANCE STATEMENT
Parkinson disease (PD), the most common movement disorder,
is a progressive neurodegenerative disease characterized by
substantia nigra pars compacta (SNc) dopamine (DA) neuron
loss and subsequent motor deficits. Current PD therapies only
target disease motor symptomology and are fraught with side
effects. Therefore, researchers have begun to explore alterna-
tive therapeutic options. Regulator of G protein signaling (RGS)
proteins, whether primarily expressed in SNc DA neurons
(RGS6), striatal neurons (RGSs 4 and 9), or microglia (RGS10),
modulate key signaling pathways important for SNc DA neuron
survival and/or proper motor control. As such, RGS proteins
represent novel therapeutic targets in PD.

Introduction
Parkinson disease (PD) is a largely nonfamilial, progressive,

neurodegenerative disorder characterized by the loss of
dopamine (DA) neurons in the substantia nigra pars compacta

(SNc) (Fahn, 2008; Meissner et al., 2011; Shulman et al., 2011;
Mhyre et al., 2012). Under normal conditions, these DA
neurons project to the striatum where they release DA onto
postsynaptic targets, allowing for proper control of motor
behavior. Therefore, loss of SNc DA neurons results in the
dysregulation of DA signaling within the nigrostriatal path-
way (Fig. 1) and the hallmark motor deficits associated with
PD, including bradykinesia, muscle rigidity, and resting
tremors. PD is widely considered an idiopathic disorder
(Fearnley and Lees, 1991) with identifiable genetic mutations
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accounting for only 5%–9% of clinical cases (Nussbaum and
Ellis, 2003). Currently, the primary risk factor associated with
PD is aging (Fearnley and Lees, 1991), with the idiopathic
form of the disorder affecting 2% of the population over 60 and
15% of those individuals over the age of 85. Despite decades of
research, the molecular characteristics/mechanisms that pre-
dispose SNc DA neurons to age-related degeneration remain
unknown. As a result, there is currently no cure for PD, only
symptomatic treatments.
The prevalence of PD is vast, with nearly 1 million people in

the United States suffering from the disease, and it continues
to rise as the proportion of elders in our society expands. With
60,000 new PD diagnoses annually, there has been consider-
able interest in developing novel and improved therapeutic
alternatives. Currently, primary therapeutic strategies used to
treat PD-related motor symptoms work to correct the dysregu-
lated DA signaling, and include drugs such as levodopa
(L-DOPA), a blood-brain barrier–permeable DA precursor, and
DA receptor agonists. However, although these drugs are
effective in the short-term at correcting PD-related motor
deficits, they are fraught with problems of their own, including
wearing-off phenomena (Pahwa and Lyons, 2009; Jenner, 2013),
dyskinesias (Schrag and Quinn, 2000; Thanvi et al., 2007),
and various nonmotor complications (Chaudhuri et al., 2006;

Poewe, 2008). Due to these issues, researchers have begun to
explore whether drugs that modulate nondopaminergic neuro-
transmission systems could be of use in PD. G protein-coupled
receptors (GPCRs), the largest family of cell-surface receptors
encoded by the genome, have provided promising avenues for
alternative PD therapies. In particular, animal models of
PD have implicated modulation of noradrenergic, cholinergic,
adenosinergic, glutamatergic, and serotonergic neurotransmis-
sion as possible adjunctive therapies to current dopaminergic
treatments (reviewed by Lemos et al. [2018]). Unfortunately,
high levels of conservation in the orthosteric binding site within
GPCR subfamilies has limited the development of receptor-
subtype specific drugs and thus, like the dopaminergic thera-
pies currently employed in PD, these treatment options would
likely have numerous side effects. As such, it is of the utmost
importance to identify alternativemethods ofmodulatingGPCR
signaling within a subfamily. Regulator of G protein signaling
(RGS) proteins may hold the key.
RGSproteinsmodulate themagnitude andduration ofGPCR

signaling by facilitating heterotrimeric G protein inactivation
through their GTPase-activating (GAP) activity toward Ga

subunits, a function bestowed by their RGS domain. The RGS
protein family includes 20 canonical RGS proteins, four of
which have been implicated in PD pathogenesis: RGSs 4, 6, 9,
and 10 (Fig. 2). Whether they are expressed primarily in SNc
DA neurons (RGS6), striatal neurons (RGSs 4 and 9), or the
brain’s resident immune cells (microglia, RGS10), these RGS
proteins have been shown to modulate key signaling pathways
that are important for SNc DA neuron survival and/or proper
motor control. As such, these RGS proteins represent novel
therapeutic targets for the treatment of Parkinson’s pathology.

RGS4
RGS4 is a small 23 kDa member of the R4 family (Fig. 2)

selectively expressed in the central nervous system (CNS) and

Fig. 1. Model of motor control by the nigrostriatal circuit. DA neurons
(blue) originating in the substantia nigra project to the striatum, where
they release DA onto D1R- and D2R-containing GABAergic (red) medium
spiny neurons and D2R-containing cholinergic interneurons (orange). DA,
through its interaction with the Gas-coupled D1R, promotes neuronal
signaling. In contrast, D2R-Gai/o activation ultimately inhibits neuronal
signaling. DA release in the striatum silences GABAergic neurons of the
globus pallidus (GP) by enhancing the activity of D1R-containing GABAer-
gic medium spiny neurons (MSNs) of the direct pathway, increasing GABA
release into the GP, and by silencing D2R-containing GABAergic MSNs
that begin the indirect pathway, ultimately decreasing glutamate release
into the GP. Silencing of GP GABAergic neurons promotes thalamic
glutamatergic (green) signaling to the cortex and proper motor control.
Solid axons denote pathways that are “on” and dashed axons represent
pathways that are “silent.”

Fig. 2. Comparison of the protein structure and interaction partners for
RGS proteins implicated in PD and proper motor function. RGSs 4, 6, 9,
and 10 have been implicated in PD pathogenesis and proper motor
function. RGS4 is a member of the R4 RGS subfamily that, through its
RGS domain, functions as a GAP for Gai/o/q. RGSs 6 and 9 are members of
the R7 RGS subfamily that, through their RGS domains, function as GAPs
for Gai/o. Members of the R7 subfamily are characterized by two unique
domains outside of their RGS domain, the DEP/DHEX domain and the
GGL domain. The DEP/DHEX domain allows R7 family members bind to
the membrane anchor proteins R7BP or R9AP, whereas the GGL do-
main promotes interaction with Gb5, which is required for stabilization
of all R7 family members. RGS10 is the smallest RGS protein (∼20 kDa)
and is a member of the R12 RGS subfamily, thus functioning as a GAP for
Gai/o/q/z.
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heart of both humans and rodents (Zhang et al., 1998; Erdely
et al., 2004; Bansal et al., 2007). As amember of the R4 family,
RGS4 functions as a GAP for Gaq and Gai/o. Within the CNS,
RGS4mRNA is predominantly expressed in the amygdala and
striatum but is also present in most cortical neuronal layers
(Ebert et al., 2006).
Various studies have implicated striatal RGS4 in the

regulation of CNS cholinergic and dopaminergic signaling,
as well as endocannabinoid-mediated long-term depression
(Geurts et al., 2003; Ding et al., 2006; Lerner and Kreitzer,
2012). In PD, degeneration of SNc DA neurons is accompanied
by an increase in striatal acetylcholine (ACh) release, result-
ing in exacerbated motor symptoms. It was first hypothesized
that this increase in cholinergic neurotransmission resulted
from reduced D2R-mediated inhibition of synaptic Cav2
channels in striatal cholinergic interneurons (Fig. 1). How-
ever, Ding et al. (2006) demonstrated that although Cav2
activity remained unchanged after DA depletion, its activity
was attenuated by the M4 muscarinic autoreceptor expressed
on these interneurons.
Given that M4 autoreceptors are Gai/o-coupled, their signal-

ing may be regulated by RGS4 (Fig. 3). Several studies, some
conflicting, have examined the expression and function of
striatal RGS4 in the context of DA depleted rodent PDmodels.
Geurts et al. (2003) initially described a significant reduction
in striatal mRNA expression of both RGS4 and RGS9 after
unilateral 6-hydroxydopamine (6-OHDA) lesion or reser-
pine (adrenergic blocker)-mediated DA depletion. However,
Ding et al. (2006) demonstrated the opposite effect of these

treatments on striatal RGS4 mRNA expression. In their
study, increased RGS4 mRNA expression after either of these
treatments was accompanied by a marked attenuation in M4
muscarinic autoreceptor signaling and increased striatal ACh
release. Using intracellular dialysis, they discovered that
RGS4 inhibits M4 autoreceptor-mediated Cav2 activity in
striatal cholinergic interneurons (Fig. 3). In agreement with
these findings, Ko et al. (2014) reported not only elevated
RGS4 expression in L-DOPA treated 6-OHDA–lesioned rats
but also that RGS4 mRNA suppression during L-DOPA
priming attenuated the development of drug-induced dyski-
nesia. Similarly, RGS42/2 mice exhibited fewer motor behav-
ioral deficits after 6-OHDA lesion (Lerner and Kreitzer, 2012).
However, another study reported that RGS42/2 mice are not
protected from 6-OHDA–induced injury and motor dysfunc-
tion (Ashrafi et al., 2017).
Collectively, these studies (Ding et al., 2006; Ko et al., 2014)

suggest RGS4 inhibition may be useful in treating drug-
induced dyskinesias in PD. In light of this, Blazer et al.
(2015) described the selectivity of a thiadiazolidinone inhibitor
(CCG-203769) they discovered for RGS4 over other RGS
proteins that might represent a novel therapeutic option for
PD. However, RGS4 has not been implicated in modulating
SNc DA neuron loss, and it remains unclear whether it
promotesmotor deficits after DA depletion through its striatal
actions.

RGS6
RGS6 is a member of the R7 RGS subfamily, which

modulates Gai/o signaling (Hooks et al., 2003) and shares
two unique domains in addition to the RGS domain: the
disheveled, Egl-10, Pleckstrin homology (DEP)/DEP helical
extension (DHEX) domain and the G gamma subunit-like
(GGL) domain. The DEP/DHEX domain allows R7 family
members to associate with the membrane anchor proteins
R7BP and R9AP (Martemyanov et al., 2005; Drenan et al.,
2006), whereas the GGL domain promotes interaction with
the atypical Gb subunit, Gb5, which is required for stabiliza-
tion of all R7 family members (Fig. 2) (Posner et al., 1999;
Snow et al., 1999; Witherow et al., 2000; Chen et al., 2003;
Narayanan et al., 2007; Cheever et al., 2008; Porter et al.,
2010).
RGS6 is expressed in a wide variety of tissues throughout

the body (Gold et al., 1997; Yang et al., 2010;Maity et al., 2011,
2012; Bifsha et al., 2014; Stewart et al., 2014, 2015), with
highest mRNA and protein levels expressed in the brain.
When Chatterjee et al. (2003) first cloned RGS6 using
a Marathon-ready human brain cDNA library, they described
multiple RGS6 splice variants predicted to produce 36 distinct
RGS6 protein isoforms containing either long (RGS6L,
∼49–56 kDa) or short (RGS6S, ∼32–40 kDa) N-terminal
domains, an incomplete or intact GGL domain, and nine
alternative C-terminal sequences. Although sequence simi-
larities have complicated the study of individual RGS6 protein
isoforms, Bifsha et al. (2014) and Luo et al. (2019) have
demonstrated that RGS6L isoforms may be key survival
factors for SNc DA neurons.
RGS6 was first implicated in PD when it was discovered

that RGS6 was the most differentially lost gene in ventral
SNc DA neurons in a developmental PD model, Pituitary
homeobox 3–deficient mice (Bifsha et al., 2014). Subsequent

Fig. 3. Model of RGS4’s role in regulating striatal ACh release from
cholinergic interneurons. RGS4 in striatal cholinergic interneurons inhib-
itsM4 autoreceptor signaling to promote calcium influx through Cav2.2. By
preventing striatal cholinergic M4-autoreceptor-Gai/o–mediated inhibition
of Cav2.2, RGS4 promotes ACh packaging/release. This figure depicts
striatal cholinergic interneurons (orange) synapsing on GABAergic D1R-
and D2R-containing MSNs (red). These MSNs also likely express M1 and
M2 ACh receptors. Gai/o-coupled receptors are red, Gas-coupled receptors
are green, and Gaq-coupled receptors are blue. MSN, medium spiny
neuron.
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immunohistochemical analyses revealed that RGS6 was
exclusively expressed in DA neurons within the SNc of both
mice and humans that are lost with PD (Bifsha et al., 2014;
Luo et al., 2019). Comparative phenotyping of RGS61/1 and
RGS62/2 mice revealed that RGS6 acts as a critical survival
factor for SNc DA neurons that, when lost, results in their
late-age degeneration (Bifsha et al., 2014), as well as PD-like
motor deficits, including reduced mobility (open field test
and Rotarod) and abnormal gait (DigiGait analysis) (Luo
et al., 2019). In aged RGS62/2 mice, SNc DA neuron
degeneration is associated with markers of pathologic
change (Fluoro-Jade C andNissl staining) as well as reduced
levels of the DA precursor synthesizing enzyme, tyrosine
hydroxylase, and the vesicular DA transporter, Vmat2. In
addition, SNc DA neuron degeneration is accompanied by
enhanced D2-autoreceptor signaling, increased expression
of the DA transporter (DAT) (Bifsha et al., 2014), and
increased sensitivity of RGS62/2 mice to quinpirole (D2R
agonist) suppression of locomotion (Luo et al., 2019), known
to be mediated by the nigrostriatal D2-autoreceptor (Usiello
et al., 2000; Wang et al., 2000; Lindgren et al., 2003; Bello
et al., 2011). All of these molecular changes likely contribute
to the dysregulated production and release/reuptake of
DA in the nigrostriatal circuit of aged RGS62/2 mice,
cytotoxic DA byproduct (3,4-dihydroxyphenylacetaldehyde)
accumulation, and the observed PD-like motor deficits
(Fig. 4) (Luo et al., 2019).
The expression of several genes that had previously been

associated with PD, such as: DJ-1 (PARK7), PINK1 (PARK6),
LRRK2 (PARK8), and SNCA (a-synuclein [a-syn]) were also
altered in RGS62/2 mice (Bifsha et al., 2014). Of particular
interest, immunohistochemical analysis of aged RGS62/2

mice revealed that they exhibited abnormally high levels of
the a-syn protein (Luo et al., 2019), a hallmark of PD that is
believed to contribute to neurodegeneration (Spillantini et al.,
1997; Spillantini et al., 1998; Masliah et al., 2000; Giasson
et al., 2002; Singleton et al., 2003; Chartier-Harlin et al., 2004;
Li et al., 2004; Chu and Kordower, 2007; Stefanis, 2012; Kim,
2013). The a-syn protein observed in aged RGS62/2 mice,
unlike that observed in young or wild-type animals, was
primarily extracellular and, as revealed by western analysis,
highly oligomeric (Luo et al., 2019).
RGS6 likely suppresses late-age–onset SNc DA neuron

death and a-syn accumulation through its negative regulation
of the SNc D2-autoreceptor-Gai/o-cAMP/PKA signaling axis
(Fig. 4) (Luo et al., 2019). Neuronal cAMP/PKA levels are
controlled by GPCRs coupled to either Gas or Gai/o, which
function to increase or decrease cAMP, respectively. Mittal
et al. (2017) discovered that b-agonists, which signal
through Gas-linked b-adrenergic receptors, dramatically
reduce both a-syn expression and human PD incidence
while also inhibiting 1-methyl-4-phenyl-1,2,3,6-tetrahydro-
pyridine (MPTP)-induced SNc DA neuron loss in mice.
RGS62/2 mice exhibit hyperactive SNc D2 autoreceptor-
Gai/o signaling and reduced SNc DA neuron PKA signaling
(Luo et al., 2019), suggesting that RGS6 likely regulates SNc
DA neuron survival and a-syn expression through cAMP-
mediated mechanisms as well.
In summary, the findings of Bifsha et al. (2014) and Luo

et al. (2019) are significant because they reveal that the loss of
a single gene, RGS6, phenocopies late-age–onset PD in mice
(Fig. 4).

RGS9
RGS9 is a member of the R7 RGS protein subfamily and

therefore, like RGS6, modulates Gai/o signaling (Hooks et al.,
2003), contains the DEP/DHEX and GGL domains and is
stabilized by Gb5 (Fig. 2) (Witherow et al., 2000; Chen et al.,
2003; Cheever et al., 2008; Porter et al., 2010). RGS9 exists as
two isoforms: RGS9-1, a ∼56 kDa protein expressed in the
retina (He et al., 1998), and RGS9-2, a∼77 kDa protein largely
expressed in the striatum (Gold et al., 1997; Thomas et al.,
1998; Rahman et al., 1999; Zhang et al., 1999; Liou et al.,
2009).
RGS9 was first implicated in PD when Tekumalla et al.

(2001) reported elevated RGS9 protein expression in the
striatum of patients with PD. One complication of this study
was that patients had received L-DOPA, which made it
difficult to determine whether the elevation in RGS9 expres-
sion was the result of the disease or its treatment. This issue
remained unclarified until Geurts et al. (2003) reported that
rat striatal RGS9 mRNA expression was reduced after 6-
OHDA nigrostriatal lesioning, a finding that was further
corroborated by Kovoor et al. (2005) who reported that
RGS92/2 mice were more susceptible to 6-OHDA–induced
PD than RGS91/1 mice.

Fig. 4. Model of RGS6’s role in regulation of SNc D2 autoreceptor
signaling. RGS6 in SNc DA neurons inhibits D2-autoreceptor signaling
to promote proper DA homeostasis and neurotransmission as well as
prevent aberrant a-synuclein accumulation. By inhibiting SNc D2-autor-
eceptor-Gai/o signaling, RGS6 promotes DA packaging/release by prevent-
ing Vmat2 downregulation and DAT upregulation/activation. In addition,
RGS6 inhibition of D2-autoreceptor-Gai/o signaling promotes cAMP/PKA
signaling, increasing DA synthesis (TH phosphorylation) and suppressing
a-synuclein expression. b-agonists, which have been shown to reduce PD
incidence work in a similar fashion. In contrast, RGS6 loss, as seen in the
RGS62/2 mouse model, disinhibits SNc D2-autoreceptor-Gai/o signaling,
reducing cAMP-mediated DA synthesis and increasing a-synuclein accu-
mulation. Furthermore, RGS6 loss is associated with cytotoxic DA
(DOPAL) accumulation due to SNc D2-autoreceptor-Gai/o–mediated
Vmat2 downregulation and DAT upregulation. This figure depicts SNc DA
neurons (blue) synapsing on GABAergic D1R- and D2R-containing MSNs
(red). Gai/o-coupled receptors are red and Gas-coupled receptors are green.
DOPAL, 3,4-dihydroxyphenylacetaldehyde; MSN, medium spiny neuron;
TH, tyrosine hydroxylase.
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In the striatum, RGS9-2 inhibits D2R-Gai/o signaling to
modulate motor function (Fig. 5), as demonstrated through
investigation of the impact of D1R- and D2R-selective agonists
on circling behavior of rats overexpressing RGS9-2 in the
ventral striatum (nucleus accumbens) (Rahman et al., 2003).
Unilateral striatal overexpression of RGS9-2 and treatment
with apomorphine or quinpirole (D2R-selective agonists) in-
duced a strong directional rotation bias toward the side of
RGS9-2 overexpression. In contrast, treatment with the
D1R-selective agonist (SKR81297) did not induce a directional
rotation bias. Because the authors had demonstrated that
RGS9-2 can regulate DA signaling in the basal ganglia, they
subsequently wanted to determine the impact of RGS9-2 loss
on locomotion and DA receptor expression. Therefore, they
performed locomotor analyses on RGS92/2 mice. These anal-
yses revealed that RGS9 loss is associated with an enhanced
locomotor response to amphetamine despite D1R and D2R
expression levels remaining unaltered in the ventral striatum
(Rahman et al., 2003).
Kovoor et al. (2005) bolstered these findings by revealing

that, although RGS92/2 mice display normal locomotory
behavior, they exhibit severe abnormal involuntary move-
ments after treatment with reserpine (adrenergic blocker) in
combination with quinpirole or apomorphine. In contrast,
reserpine in combination with the D1R-selective agonist did
not induce abnormal movement behaviors. Similarly, RGS9-2
overexpression in striatum of monkeys with a MPTP lesion
reduced the incidence of L-DOPA–induced dyskinesia, with-
out minimizing L-DOPA’s antiparkinsonian effects (Gold
et al., 2007).
In summary, these findings indicate that RGS9 plays

a critical role in modulating motor movement through its
ability to inhibit D2R-Gai/o signaling in the striatum. These
findings implicate a postsynaptic role of RGS9 (Fig. 5) versus

the presynaptic role of RGS6 (Fig. 4) in controlling nigros-
triatal movement.

RGS10
RGS10 is a small 20 kDamember of the R12 RGS subfamily

(Fig. 2) that functions as a GAP for Gai/o/q/z (Hunt et al., 1996)
and is highly expressed in brain regions associated with
higher brain function, including the hippocampus, striatum,
and dorsal raphe (Gold et al., 1997). RGS10 is unique among
the RGSproteins we have discussed thus far in that it is highly
expressed in the brain’s resident immune cells, microglia, in
addition to its low neuronal expression (Fig. 6) (Waugh et al.,
2005).
Microglia and neuroinflammation have been widely impli-

cated in PD pathogenesis (reviewed by Joers et al. (2017),
Subhramanyam et al. (2019)). Not only are reactive/activated
microglia and the inflammatory mediators they produce
observed in the brains of patients with PD, but various PD-
associated chemicals and neurotoxins, such as 6-OHDA,
MPTP, and bacterial lipopolysaccharides (LPS), are known
to cause microglial activation and may at least partially
induce neuronal cell death through this activation. Further-
more, a-syn may sensitize DA neurons to inflammation-
induced cell death as well as activate microglia and be
modified by microglia, subsequently promoting DA neuron
death. Finally, it has been shown that nonsteroidal anti-
inflammatory drugs may lower the incidence of PD and
inhibition of tumor necrosis factor a (TNFa) or the LPS
receptor (toll-like receptor 4) may reduce DA neuron death.
In addition to contributing to PD progression, there is

evidence suggesting that inflammation may be one initiating
factor in PD (reviewed by (Tansey and Goldberg, 2010)).
Aging, the greatest and least understood risk factor associated
with idiopathic PD, is known to prime microglia toward
activation, resulting in exacerbated inflammation. This prim-
ing process and the resulting increased inflammation are
predicted to be particularly detrimental in areas of the brain
that contain a higher density of microglia, such as the
midbrain, and to neuronal populations undergoing a high
degree of oxidative processes, such as DA neurons. Supporting
this prediction that midbrain DA neurons may be particularly
susceptible to microglial priming/activation and inflamma-
tion, viruses/conditions associated with inflammation, such as
influenza (influenza pandemic 1914–1918), Japanese enceph-
alitis virus exposure, and Crohn’s disease, have all been
associated with increased PD risk.
Because RGS10 is enriched in microglia and a mutation

in the RGS10 gene had already been linked to neurodegener-
ative age-related maculopathy (Jakobsdottir et al., 2005;
Schmidt et al., 2006), Lee et al. (2008) hypothesized that
RGS10 loss could predispose an organism to PD, possibly
through exaggerated microglial activation. In this initial
investigation, Lee et al. (2008) demonstrated that RGS102/2

mice suffer from increased CNS microglial burden (seen on
mixed 129/C57/BL6 background but not on pure C57/BL6
background [Kannarkat et al., 2015]) and activation. Further-
more, RGS102/2 mice were particularly susceptible to LPS-
mediated SNc DA neuron degeneration. Consistent with this
finding and the known role of LPS in microglia inflammatory
induction, primary microglia isolated from RGS102/2 mice
had dysregulated inflammatory gene expression profiles

Fig. 5. Model of RGS9’s role in regulation of striatal D2Rs to promote
proper motor control. RGS9 inhibits D2R signaling in striatal indirect
MSNs (iMSNs) promoting neuronal activity/excitability to regulate motor
function. By inhibiting striatal iMSN D2R-Gai/o signaling, RGS9 sup-
presses bg-mediated GIRK channel activation, promoting depolarization
and neuronal firing. This figure depicts SNc DA neurons (blue) synapsing
on GABAergic D2R-containing iMSNs (red). Gai/o-coupled receptors are
red. MSN, medium spiny neuron.
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under basal conditions and after LPS stimulation. Similar
results were obtained from the BV2 murine microglia cell line
after RGS10 knockdown. Interestingly, Lee et al. 2008 also
demonstrated that culture media taken from LPS-treated
BV2 cells induced MN9D (mesencephalon DA neuroblastoma
cell line) cell death, which could be prevented by the TNF
receptor decoy etanercept. Together, these results suggest
that RGS10 functions as a prosurvival factor in PD by
inhibiting microglia activation/inflammatory factor produc-
tion and subsequent DA neuron cell death. However, Lee et al.
argued that RGS10 not only promoted DA neuron survival
indirectly but also directly as RGS10 ablation in MN9D cells
sensitized them to the toxic effects of LPS-treated BV2 cell
media, an effect that was once again prevented by etanercept
(Fig. 6).
In subsequent publications, Lee et al. (2011, 2012) provided

further mechanistic insight into the findings described above.
In their publication, Lee et al. (2008) demonstrated that
RGS10 translocates from the cytoplasm into the nucleus of
primary microglia after LPS exposure. Therefore, they hy-
pothesized that, in addition to regulatingGPCR-Gi/o signaling,
RGS10 may also limit proinflammatory factor expression by
inhibiting NF-кB (Lee et al., 2011). In support of this
hypothesis, NF-кB subunit (p65 and p50) expression and
transcriptional activity (NF-кB-luciferase reporter plasmid)
were significantly increased in RGS102/2 primary microglia
after TNFa and/or LPS exposure. Furthermore, re-expression
of RGS10 in RGS102/2 primary microglia reduced LPS-
stimulated inflammatory factor expression (i.e., TNFa) and
media toxicity toward MN9D cells. Because TNFa is required
for SNc DA neuron degeneration after 6-OHDA administra-
tion (McCoy et al., 2006, 2008) and RGS10 appears to
modulate microglia TNFa production, Lee et al. (2011)
performed viral expression experiments to determinewhether
RGS10 overexpression could protect against 6-OHDA lesioning.

Compared with 6-OHDA/lenti-GFP–injected rats, rats injected
with 6-OHDA/lenti-RGS10 virus displayed significantly de-
creased microglial activation and DA neuron degeneration
(Lee et al., 2011). Together, these results indicate that RGS10
promotes DA neuron survival indirectly by inhibiting micro-
glial NF-кB–mediated expression of proinflammatory factors,
particularly TNFa (Fig. 6). In a later publication, Lee et al.
(2012) described the direct prosurvival role of RGS10 in DA
neurons. They reported that TNFa reduces MN9D RGS10
protein expression and that stable overexpression of wild-type
RGS10, but not the RGS10-S168A (RGS10SA, resistant to
PKA phosphorylation) mutant, in the MN9D cells reduced
TNFa-toxicity. This reduction in TNFa-toxicity may relate to
RGS10’s ability to potentiate PKA-CREB–mediated prosur-
vival gene (Bcl-2) expression. Together, these results indicate
that PKA-mediated RGS10 phosphorylation and RGS10’s
subsequent promotion of PKA-CREB signaling may underly
DA neuron survival (Fig. 6).
In summary, the work by Lee et al. (2008, 2011, 2012)

suggests that RGS10 may directly promote DA neuron
survival by potentiating PKA-mediated CREB phosphoryla-
tion and prosurvival gene expression, as well as indirectly by
inhibiting NF-кB–mediated inflammatory factor expression
(Fig. 6). Finally, this group has now published evidence
suggesting that RGS10 expression may be reduced with age,
causing dysregulation of immune/inflammatory pathways
that could possibly contribute to PD initiation (Kannarkat
et al., 2015).

Conclusion
The studies described here suggest that RGSs 4, 6, 9, and 10

are critical modulators of both G protein-dependent and
-independent cell signaling pathways that promote SNc DA
neuron survival and/or proper motor control. Together, these

Fig. 6. Model of RGS10’s role in modulating SNc DA neuron survival. TNFa, an inflammatory factor, can induce neuronal cell death through activation
of the TNFR-Fas–associated protein with death domain (FADD)-caspase pathway. Cell culture studies suggest that PKA phosphorylated RGS10 directly
promotes MN9D DA cell survival by potentiating PKA-mediated CREB activation and prosurvival gene (Bcl-2) expression. However, RGS10 may also
promote cell survival indirectly by inhibiting TNFR/TLR4 (LPS receptor)-NF-кB–mediated inflammatory factor (i.e., TNFa) expression by microglia, the
brain’s resident immune cells. Whether acting directly or indirectly to promote DA cell survival, TNFa works to counteract RGS10’s positive effects by
reducing its expression. This diagram depicts a microglial cell (tan) in close association with a DA neuron (blue) in the SNc. However, the role of RGS10
SNc DA neurons in vivo has yet to be directly examined. FADD, Fas-associated protein with death domain; LPS, bacterial lipopolysaccharides; TLR4,
toll-like receptor 4.
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findings implicate RGSs 4, 6, 9, and 10 as novel therapeutic
targets for the treatment of PD pathology, not just sympto-
mology. Although the role of these RGS proteins in PD has
clearly been established through genetic animal models, at
present, they cannot be tested pharmacologically. Indeed,
currently identified RGS protein inhibitors are not selective
(Hayes et al., 2018; O’Brien et al., 2019). In addition, these
inhibitors lack required tissue and neuronal specificity and
likely will affect multiple tissues where these RGS proteins
are expressed. Finally, no drugs have been identified that
increase the activity of any member of the RGS protein
family as would be needed to target RGSs 6, 9, and 10 for
PD treatment.
Currently, the majority of pharmaceuticals targeting GPCR

signaling disrupt the pathway at the extracellular ligand–GPCR
interface (reviewed by Neubig and Siderovski [2002]). Al-
though these pharmacological therapies successfully inhibit
GPCR signaling, they often lack tissue specificity. Similarly,
the search for selective RGS inhibitors and/or activators has
proven difficult (Neubig and Siderovski, 2002; Hayes et al.,
2018; O’Brien et al., 2019). In evidence of this, Hayes et al.
(2018) recently demonstrated that each of 13 identified RGS4
inhibitors inhibited other members of the RGS protein family,
sometimes with equal or greater potency than for RGS4.
The polypharmacology of known RGS inhibitors may reflect
their cysteine-dependent inhibition mechanism, and for this
reason, none of these identified inhibitors affect the R7
members RGS6 and RGS7, which lack reactive Cys in their
RGS domains. In addition, targeting of intracellular RGS
protein-protein interactions has proven extremely challenging
(reviewed by Neubig and Siderovski [2002]).
In recent years, limitations in both pharmacological com-

pound selectivity and therapeutic benefits in PD have promp-
ted the search for and development of novel nonpharmacological
therapies. One of the most recent nonpharmacological
approaches to emerge in PD treatment is gene therapy. Gene
therapy entails viral delivery of genetic material to a patient
either to modify (i.e., activate or suppress) endogenous gene
expression or to introduce exogenous genes. Both AAV and
lentiviral approaches, which are attractive due to their long-
term expression efficacy and lack of immunogenicity, have
been investigated in clinical trials for PD treatment in
humans (reviewed by Hitti et al. [2019]). Currently, clinical
trials utilizing gene therapy for PD treatment are aimed at
enhancing DA synthesis (AAV-aromatic L-amino acid decar-
boxylase), promoting neuronal survival via enhanced neuro-
trophic factor expression (AAV-neurturin), or promoting
proper motor function through modification of basal ganglia
signaling (AAV-glutamate decarboxylase) (Muramatsu, 2010;
Elkouzi et al., 2019; Hitti et al., 2019). Finally, the use of
CRISPR is also now under investigation to modulate gene
function in the mammalian brain (Swiech et al., 2015;
Heidenreich and Zhang, 2016; Zhou et al., 2018) that may
prove useful in PD therapeutics.
As discussed above, although RGSs 4, 6, 9, and 10 have been

shown to be critical modulators or SNc DA neuron survival
and/or motor function, the difficulty in creating selective
activating (RGSs 6, 9, and 10) and inhibitory (RGS4) com-
pounds limits their pharmacological usefulness. Therefore,
future studies should focus on developing novel gene therapy
approaches to selectively enhance (RGS6, RGS9, and RGS10)
or diminish (RGS4) RGS protein signaling in the SNc (RGS6

and RGS10) or striatum (RGS9 and RGS4) of patients with
PD. Such strategies may provide new PD therapies that not
only work to correct symptomology but that also prevent
pathology.
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