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Abstract
Nestedness is a property of interaction networks widely observed in natural mutual-
istic communities, among other systems. A perfectly nested network is characterized 
by the peculiarity that the interactions of any node form a subset of the interactions 
of all nodes with higher degree. Despite a widespread interest on this pattern, no 
general consensus exists on how to measure it. Instead, several nestedness metrics, 
based on different but not necessarily independent properties of the networks, co-
exist in the literature, blurring the comparison between ecosystems. In this work, 
we present a detailed critical study of the behavior of six nestedness metrics and 
the variants of two of them. In order to evaluate their performance, we compare the 
obtained values of the nestedness of a large set of real networks among them and 
against a maximum-entropy and maximum-likelihood null model. We also analyze 
the dependencies of each metrics on different network parameters, as size, fill, and 
eccentricity. Our results point out, first, that the metrics do not rank networks uni-
versally in terms of their degree of nestedness. Furthermore, several metrics show 
significant dependencies on the network properties considered. The study of these 
dependencies allows us to understand some of the observed systematic shifts against 
the null model. Altogether, this paper intends to provide readers with a critical guide 
on how to measure nestedness patterns, by explaining the functioning of several 
metrics and disclosing their qualities and flaws. Besides, we also aim to extend the 
application of null models based on maximum entropy to the scarcely explored area 
of ecological networks. Finally, we provide a fully documented repository that allows 
constructing the null model and calculating the studied nestedness indexes. In addi-
tion, it provides the probability matrices to build the null model for a large dataset of 
more than 200 bipartite networks.
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1  | INTRODUC TION

The characterization of mutualistic networks has been the ground of 
considerable debate during the last decades. This type of network is 
represented as a graph that codifies mutually beneficial interactions, 
namely the species of the network involved in these interactions 
naturally obtain a benefit from them, even if the nature of the ben-
efits might be different. This is the case, for instance, of plant–polli-
nator communities where pollinators feed on flower's nectar while 
plants assure their reproduction. Moreover, as mutualistic interac-
tions often take place only between species of different kinds, they 
can therefore be represented by a bipartite network, characterized 
by two disjoint sets of vertices (or nodes) representing the species, 
with the edges (or links) joining only vertices of different kinds, that 
is, links connect species of the two branches of the bipartite graph.

The structure and dynamics of mutualistic networks have re-
ceived increasing attention due, in particular, to the role that mu-
tualism is assumed to play in the complexity–stability paradox as a 
stabilizer of large and complex communities (McCann, 2000). Indeed, 
it has generally been admitted that mutualistic interactions enhance 
stability by screening competition (Bastolla et  al.,  2009; Thébault 
& Fontaine,  2010), though this idea has recently been challenged 
(Gracia-Lázaro, Hernández, Borge-Holthoefer, & Moreno,  2018; 
James, Pitchford, & Plank, 2012; Pascual-García & Bastolla, 2017). 
Furthermore, the observation of natural ecosystems has revealed 
that in a vast majority of cases, mutualistic interactions are not uni-
formly distributed. Instead, the species interact in a very particular 
way, leading to a network structure called nestedness (Bascompte, 
Jordano, Melián, & Olesen, 2003).

A network is said to be perfectly nested when the contacts of 
a species of a given degree are a subset of the contacts of all the 
species of larger degree, as illustrated in Figure 1. The system is then 

composed of generalist and specialist species in each guild, the for-
mer interacting with a large amount of the possible counterparts and 
the latter only with generalists, in such a way that specialist–special-
ist interactions are mostly absent (Bascompte et al., 2003). As a con-
sequence, when the nodes of one guild are ordered by decreasing (or 
increasing) degree, the nodes of the other guild appear automatically 
ordered in the same way, and the corresponding biadjacency matrix 
has all its nonzero elements on the same side of a curve called “iso-
cline of perfect nestedness” (IPN) (Atmar & Patterson,  1993), see 
Figure 2. This ordering leads to the characteristic triangular shape 
(Medan et al., 2007) shown in Figure 1. The arrangement of the ma-
trix which reveals and maximizes its nestedness is usually referred to 
as a maximally packed configuration, and various methods to produce 
it can be found in the literature (Domínguez-García & Munoz, 2015; 
Lin, Tessone, & Mariani,  2018; Rodríguez-Gironés & Santamaría, 
2006).

Although natural mutualistic ecosystems are not perfectly 
nested, the same general pattern with some fluctuations is found 
in a large variety of known ecosystems that correspond to a wide 
range of different geographic and climatic conditions and in-
volve very different species (Bascompte et al., 2003; Guimaraes, 
Rico-Gray, Furtado dos Reis, & Thompson,  2006; Kondoh, Kato, 
& Sakato,  2010; Vázquez, Poulin, Krasnov, & Shenbrot,  2005). 
Despite that nested patterns have mainly been observed and stud-
ied in ecology, systems displaying nested forms of interactions 
have also been reported for a variety of economic and social net-
works. For instance, nestedness has been detected as well in trad-
ing relationships between countries (De Benedictis & Tajoli, 2011; 
König, Tessone, & Zenou,  2014) and individuals (Hernández, 
Vignes, & Saba,  2018), in manufacturer–contractor networks 
(Saavedra, Reed-Tsochas, & Uzzi,  2009), communication sys-
tems (Borge-Holthoefer, Baños, Gracia-Lázaro, & Moreno, 2017), 

F I G U R E  1   Scheme of a perfectly nested bipartite matrix. The region in green represents the “1s” in the biadjacency matrix, and the 
one in light gray the “0s”. Nodes are ordered by increasing ranking (decreasing degree) from bottom to top and from left to right. Since the 
network is perfectly nested, the interactions of a given node are always a subset of the interactions of the nodes with smaller ranking. We 
portray three different possible types of paradigmatic mutualistic networks: flowering plants and its pollinators, fruit-producing plants and 
its seed-disperser birds, and sellers, and buyers. The figure also shows how different nodes may have the same degree, leading to some 
degeneracy in the ordering
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cultural assemblages (Kamilar & Atkinson, 2014), and even scien-
tific production (Cimini, Gabrielli, & Labini, 2014).

The astounding ubiquity of nestedness in natural systems called 
for the need of, on the one hand, having a good indicator to quan-
tify it, and at the same time, providing answers to challenging ques-
tions about the reasons behind such a generally observed pattern 
and its consequences. Regarding the latter problem, a recent work 
(Payrató-Borràs, Hernández, & Moreno, 2019) has shown analyt-
ically and numerically that nestedness is not an irreducible global 
property, but that it emerges instead from local properties of the 
network. In particular, it arises as an entropic consequence of the 
double heterogeneity observed in the degree sequences of natu-
ral ecosystems. Indeed, by building a maximum-entropy ensemble 
with the constraint that the observed degree sequence is kept on 
average, such that this sequence is found with maximum probability 
in the ensemble, one finds that nestedness values of real networks 
do not significantly differ from the average of the random ensem-
ble. Ulrich and Gotelli (2007) and Jonhson, Domínguez-García, and 
Muñoz  (2013) had also observed this fact when randomizing real 
networks but fixing the degree sequences exactly (the so-called FF 
model, see below). However, the poor statistics that results from 
such strong constraint limited the understanding of the extent of 
their observations. In any case, these different works point out that 
the real degree sequences provide sufficient structural information 
to reproduce the observed nestedness. Besides, in what concerns 
the dynamical explanation of the origin of the pattern, some arti-
cles have recently shown that it may emerge as the biproduct of an 
assembly process that does not explicitly seek to generate nest-
edness (Maynard, Serván, & Allesina, 2018; Valverde et al., 2018). 
Altogether, these structural and dynamical arguments support the 
notion of nestedness as an architectural spandrel determined by the 
degree sequences, rather than a significant, evolutionary selected 
pattern in its own.

All in all, the fact that nestedness is not an independent emer-
gent pattern does not invalidate its usefulness. For instance, its 
global character makes it a helpful tool to detect heterogeneity 
in species' connectivity, by using a single parameter. Given that 
the observed degree distributions are highly heterogeneous, 
it is tempting to characterize them by the exponent of a pow-
er-law fit, and several attempts were made in this sense (Jordano, 
Bascompte, & Olesen,  2003). However, the typical small size of 
natural ecosystems makes such fit meaningless. Therefore, nest-
edness continues to be a useful and widely studied global pattern, 
and the aforementioned question of how to measure it remains an 
essential challenge.

Admittedly, as a result of the effort to quantify nestedness, a 
variety of metrics with their corresponding nestedness indices coexist 
in the ecological literature. However, since they are based on diverse 
but not necessarily independent properties of the nested networks, 
the comparison of the degree of nestedness of different ecosystems 
remains unclear. The situation recalls the well-known history of the 
definition of temperature in Thermodynamics. Initially defined oper-
ationally, that is, by listing the protocol to measure it, the obtained 
temperature values suffered from the flaw that they depended on 
the thermometer used. This problem was solved by the theoret-
ical definition of the temperature based on the Second Principle 
of Clausius, and finally, the notion of temperature was completely 
understood by the microscopic approach of Statistical Physics in-
troduced by Boltzmann and Gibbs. Interestingly, the first metrics of 
nestedness defined by Atmar and Patterson was called temperature 
(Atmar & Patterson, 1993). This initial proposal was followed by a 
long struggle to find the best index to measure nestedness, with 
the development of various approaches ranging from algorithmic 
procedures to analytical methods. A review of the early nestedness 
indices by Ulrich and Gotelli was published in 2009 (Ulrich, Almeida-
Neto, & Gotelli, 2009), while a more recent review by Mariani, Ren, 

F I G U R E  2   Continuous approximation of a maximally packed nested matrix. (a) Scheme of a nonperfectly nested network. Green squares 
depict the interactions, and the black curve represents the Isocline of perfect nestedness (IPN). The unexpected interactions above the IPN 
are highlighted in blue, while absent interactions below the IPN are highlighted in red. (b) The mapping of a matrix into the unit square. 
The black curve corresponds to the IPN, and unexpectedly present (absent) interactions are highlighted in blue (red). The figure shows two 
different kinds of distances that may be used for measuring nestedness: D, D′, d, and d′ (traced in dashed lines) are used in the calculation of 
the temperature, while DM and D′

M
 (represented by solid arrows) are used by the nestedness index based on Manhattan distance (NMD)
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Bascompte, and Tessone  (2019) provides a very detailed and up-
dated summary of the most common nestedness metrics.

Nonetheless, the metrics defined to quantify nestedness suffer 
from a critical drawback: As they are strongly dependent on differ-
ent network parameters (like size and fill), the comparison among 
ecosystems is difficult, even in the case where the same metrics 
(the same thermometer) is used to measure all the systems. Some of 
these problems have been reported by several authors, notably on 
the occasion of the introduction of each new index and/or package 
devoted to correct some of the shortcomings of previously existing 
ones (Almeida-Neto, Guimarães, Guimarães, Loyola, & Ulrich, 2008; 
Burgos, Ceva, Hernández, & Perazzo,  2009; Dormann, Fründ, 
Blüthgen, & Gruber,  2009; Grimm & Tessone,  2017; Rodríguez-
Gironés & Santamaría, 2006; Staniczenko, Kopp, & Allesina, 2013; 
Ulrich et  al.,  2009). Still, these works mainly focus on the depen-
dence on the size and the density of links of the network of a few 
metrics, leaving aside other important nestedness indices—either 
more recent or less popular—as well as the interdependencies among 
network parameters.

In order to overcome the aforementioned difficulties when mea-
suring and comparing the nestedness of different networks, the 
standard procedure is to contrast the nestedness value of a given 
real network with that of a null model, both calculated using the same 
metrics. A null model is an ensemble of networks obtained by the 
randomization of the natural system under study, imposing some 
constraints. Different constraints lead, then, to different null mod-
els of the same real network (Payrató-Borràs et al., 2019; Ulrich & 
Gotelli, 2007). In a majority of cases, such constraints are enforced 
algorithmically. In particular, a very popular choice is the fixed-fixed 
null model (FF herein), where the degree sequences are strictly kept 
and null networks are produced through numerical randomizing pro-
cedures (Gotelli & Entsminger, 2001). On the other hand, the family 
of null models based on maximum-entropy ensembles precludes the 
algorithmic randomization (Squartini & Garlaschelli, 2011), and they 
have just recently begun to be applied to the study of ecological net-
works (Payrató-Borràs et al., 2019). This class of null models offers 
both methodological and conceptual advances, since the theoretical 
ensemble produced is statistically nonbiased and considers the pos-
sibility that the observed network is in fact incomplete. However, 
while the majority of nestedness metrics have been tested for algo-
rithmically based null models (Almeida-Neto et al., 2008; Ulrich & 
Gotelli, 2007), their behavior in maximum-entropy ensembles is still 
largely unexplored.

In this work, we focus on the problem of measuring nestedness 
by presenting a comparative study of the behavior of six nestedness 
metrics, most of which are commonly included in popular packages 
and cited in the literature. Our purpose is twofold: First, we aim to 
test the performance of these metrics under the maximum-entropy 
null model recently used in Payrató-Borràs et  al. (2019), and sec-
ondly, we intend to critically assess the functioning of each metrics 
by analyzing its dependencies with network parameters. By doing 
this, we mean to, first, fill a gap in the literature concerning null 
models, and second, to provide a practical guide of the advantages 

and disadvantages of each nestedness metrics. In comparison with 
previous works that attempted to characterize the performance of 
nestedness indices (Ulrich et al., 2009), here we analyze at the same 
time traditionally used metrics as well as some that are still poorly 
understood, either because they have been proposed just recently 
or because of their limited popularity. In addition, by examining the 
behavior of the variants of two of those metrics, we explore the con-
sequences of assuming different normalizations.

To this end, we study the nestedness metrics using the following 
procedure: For each of the 199 real bipartite networks of our dataset, 
we build the corresponding maximum-entropy and maximum-likeli-
hood ensemble that preserves on average the observed degree se-
quence (Payrató-Borràs et al., 2019; Squartini & Garlaschelli, 2011). 
We then measure nestedness in the ensemble built for each of the 
real networks according to each of the metrics, and we compare the 
results with the corresponding nestedness value of the observed 
network. Secondly, we perform various statistical analyses to de-
termine the relation of each metrics with network properties, such 
as size, fill, and degree degeneracy. With this information at hand, 
we finally perform a thorough comparison among the different met-
rics, evaluating their qualities and flaws. Furthermore, this theoret-
ical analysis is accompanied by a working repository called nullnest, 
which allows reproducing these results and includes, moreover, 
some key results and examples.

2  | MATERIAL S AND METHODS

2.1 | The studied metrics

We briefly describe here the principal characteristics of the indices 
used in this work in order to quantify nestedness. The technical de-
tails on how each metrics has been numerically implemented can be 
found in Appendix S1.

•	 The Atmar and Patterson temperature (TAP) (Atmar & 
Patterson, 1993). This nestedness metrics is based on the idea of 
quantifying the deviations of a real matrix from a perfectly nested 
matrix by measuring the distance of the misplaced interactions 
from the IPN curve (see Figure 2).

In particular, the mathematical basis of this metrics relies on the 
mapping of the maximally packed version of a m × n bipartite ad-
jacency matrix into a continuous rectangle (Medan et al., 2007), 
leading to the analytic expression of the IPN in terms of two con-
tinuous variables a∈

[
0, n

]
 and p∈

[
0, m

]
, which constitute the 

continuous approximation of the discrete labels of the columns 
and rows of the biadjacency matrix, respectively. This approxima-
tion is expected to be correct in the limit of very large systems. 
Then, the nonzero elements of the biadjacency matrix corre-
spond, in the rectangular surface of size m × n, to an area pro-
portional to the density of contacts ϕ = E/(m × n), where E is the 
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total number of edges. This area may be assumed to be colored 
and so the empty area represents the amount of zero elements of 
the adjacency matrix. The IPN can be analytically expressed as a 
function of m, n, and ϕ (Medan et al., 2007).

Because real systems are not perfectly nested, the TAP measures 
the distance, along the diagonal of the unit square, of the misplaced 
points (presence or absence of a contact above or below the IPN) 
(Atmar & Patterson, 1993). Various implementations of this metrics 
can be found in the literature (Atmar & Patterson, 1995; Guimarães 
& Guimaraes, 2006; Rodríguez-Gironés & Santamaría, 2006); how-
ever, the most popular nowadays is probably BINMATNEST, devel-
oped by Rodríguez-Gironés and Santamaría (2006). Indeed, in this 
work, the authors proposed to quantify the unexpectedness of a 
given interaction of the matrix, mapped into the unit square, by the 
following function (Rodríguez-Gironés & Santamaría, 2006):

where dij and Dij correspond, respectively, to the distance be-
tween the unexpected interaction and the IPN in the first case 
and to the total length of the diagonal in the second (see Figure 2). 
The final temperature is then calculated as follows:

where the sum runs over all the unexpected interactions and Umax 
is a constant given by Atmar and Patterson  (1993). Accordingly, 
the TAP will be large if there are several "1s" and "0s" on the wrong 
side of the IPN. It will be even larger if those misplaced points are 
located far from the IPN. Therefore, the lower the measure of the 
TAP of a given system, the more nested it is.

•	 The nestedness index based on Manhattan distance (NMD) (Corso, 
Araujo, & Almeida, 2008). This metrics follows the same idea as 
the TAP metrics, in the sense that it counts the number of unex-
pected presences or absences with respect to a perfectly nested 
matrix of the same characteristics (size and fill) as the studied 
matrix, when both are brought to their maximally packed form. 
Again, it introduces a mapping of the matrix into the unit square. 
However, on this rescaled continuous approximation, it measures 
the distance to the corner of the matrix where the nested core 
is expected. Moreover, distances are measured in terms of the 
Manhattan distance, which means that the distance between a 
rescaled element bi,j of the matrix and the origin is dij  =  xi  +  yi. 
Taking this into account, the nestedness index is given by the 
following:

where d is the sum over all the elements' distances d=
∑

di,j of the 
real matrix (maximally packed) and dnest represents an analogous 
sum but over the corresponding perfectly nested matrix with the 
same size and fill as the empirical one. Their difference is then nor-
malized by the maximum difference in average distances between 
a null model and the perfectly nested matrix. In this way 0 ≤ τ ≤ 1, 
and the smaller τ the more nested the system is. Here, we used 
the implementation of the popular bipartite package (Dormann 
et al., 2009) where the null model used to calculate drand keeps 
constant size and fill (see Appendix S1 for details).

•	 The nestedness metrics based on overlap and decreasing fill (NODF) 
(Almeida-Neto et al., 2008). This index measures the average per-
centage of shared contacts between pairs of rows which present 
a decreasing degree ordering (idem for columns). Almeida-Neto et 
al. proposed an operational definition for calculating the NODF 
metrics, that for an n × m biadjacency matrix B has been analyti-
cally summed up follows (Payrató-Borràs et al., 2019):

Here, dp is the degree of row p while da is the degree of column 
a. We consider that the matrix B is ordered by decreasing degree, 
and row i is placed above row j and column k at the left of column 
l. The normalization factor K accounts for all possible pairs and 
the fact that NODF is defined to take values between 0 and 100. 
Finally, the θ represents the Heaviside step function. For this met-
rics, the higher the NODF index, the more nested the system is. 
Furthermore, NODF has the advantage that it can be calculated 
not only algorithmically but also by using a closed mathematical 
expression in terms of the elements of the biadjacency matrix, 
which allows for analytic studies (Payrató-Borràs et al., 2019).

This metrics correctly assigns a very low nestedness value to 
modular networks (because, in general, elements within the 
same block have similar degree), but it may give a false nega-
tive (a low value) in the case of a nested network with multiple 
rows (columns) with the same degree (Staniczenko et al., 2013). 
Unfortunately, this situation is quite common for mutualistic 
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ecosystems which are in general very sparse and often eccen-
tric, with typically much more animal species than plant species, 
leading to a non-negligible degree degeneracy. For this reason, 
a variant of this metrics called stable-NODF has recently been 
proposed by Mariani et al. (2019). Its analytical expression reads 
the following:

This variant does not incorporate the decreasing fill term and 
hence does not penalize the degree repetition, therefore solely 
measuring the number of shared partners among pairs of rows 
and columns.

•	 The Brualdi and Sanderson discrepancy (Brualdi & 
Sanderson, 1999). Starting from the real matrix in its maximally 
packed state, this metrics measures the number of misplaced ab-
sences or presences of contacts, called discrepancies, that should 
be "corrected" in order to produce a perfectly nested matrix with 
equal size and fill. Given that the number of possible discrepant 
links is directly proportional to the total number of links, the re-
sult greatly depends on the network's fill. To hinder the results 
from such dependency, we normalized the discrepancy by the 
total number of links, as suggested by Greve and Chown (2006).

On the other hand, since this metrics is based on the comparison 
of the real matrix with a perfectly nested one of the same param-
eters (n, m, and ϕ), it is independent of a particular null model. 
However, given that there may be some ambiguity on the max-
imally packed configuration, the result depends on the chosen 
one. Therefore, the best approach would involve averaging over 
the different initial maximally packed configurations of the ob-
served matrix, yet this procedure is very demanding numerically 
and we do not implement it in this work. As it was the case of the 
temperature T, the definition of this metrics implies that the lower 
the value of the index, the more ordered the system is.

•	 The nesting index based on network's robustness (NIR) (Burgos 
et al., 2009). The NIR metrics is based on the notion of the robust-
ness of a network, that is, the capacity of the system to remain 
connected when subject to node removal (Burgos et  al.,  2007; 
Memmott, Waser, & Price, 2004). This index uses two extreme 
node removal procedures, or attack strategies, whose outcomes 
reveal the amount of nestedness of the network. On the one 
hand, the nodes of one guild are removed in decreasing degree 
order (DDR strategy), and of the other in increasing degree order 
(IDR strategy). The fraction of species of the other guild that still 

keeps contacts (survive) as the counterparts are removed leads 
to the Attack tolerance curve (ATC). Figure 3 illustrates three dif-
ferent typical behaviors of the ATC for each strategy, when the 
procedure is applied on a perfectly nested network, on a real net-
work, and on a null model with the same size and fill. The DDR 
strategy better reveals the differences of structure of the three 
networks.

It can be easily shown (Burgos et al., 2009) that, for the perfectly 
nested network, the area under the ATC is RIDR = 1 for IDR strat-
egy, while it is RDDR = ϕ, for the DDR. The index is normalized by 
the area between these extreme curves, which is maximum for 
a nested network. Moreover, the area is minimum for a random 
network, while for the real networks, the area lies between these 
two extremes. Therefore, the contribution to the nestedness co-
efficient of rows or columns is defined as follows:

which measures, like NODF, the contribution to nestedness of 
rows and columns separately. NIR looses sensitivity as the density 
of links increases, which is not a problem for ecosystems that are, 
in general, very sparse. Finally, this index may in principle slightly 
depend on the chosen matrix ordering with respect to the de-
grees of the guild being suppressed. As such order is not unique 
due to degree degeneracy, in our implementation we have aver-
aged over a set of equivalently ordered matrices.

•	 The spectral radius (Staniczenko et al., 2013). Staniczenko et al. 
(2013) recently proposed a nestedness metrics based on the 
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nested network with the same parameters (size and number of 
links). Open and full symbols correspond to the IDR and DDR 
attack strategies, respectively
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spectral properties of double nested graphs. In particular, they 
relied on a theorem that proves (Bell, Cvetković, Rowlinson, & 
Simić, 2008; Bhattacharya, Friedland, & Peled, 2008) that among 
all the connected bipartite graphs of n  +  m nodes and with E 
edges represented by its adjacency matrix A, the one yielding the 
largest spectral radius is a perfectly nested graph. Indeed, they 
showed that more nested graphs tend to have a larger spectral 
radius (though this relation is not monotonous). Interestingly, 
nevertheless, since this metrics involves diagonalizing a symmet-
ric matrix, it is independent of the ordering of the matrix and 
does not suffer from the ambiguities of finding the maximally 
packed form of the bipartite matrix as the previous metrics.

An important drawback of the spectral radius is that it is not nor-
malized. Therefore, we propose to normalize the spectral radius 
obtained for each system with that of the perfectly nestedness 
matrix having the same size and fill (see Appendix S1 for details), 
as was already suggested by Staniczenko et al. That is, if ρ rep-
resents the spectral radius of a real network and ρmax the spectral 
radius of a perfectly nested graph with the same size and fill, the 
normalized index ρnorm is given by the expression:

In the next sections, we study both versions of this metrics: the 
(not normalized) original one along with the normalized modifica-
tion given by Equation 9.

2.2 | The maximum-entropy–maximum-likelihood 
realization of the FF null model

We use a null model for bipartite networks that constrains the 
degree sequence of each guild, so that they are kept only on aver-
age. That is, at variance with the previously studied FF null model, 
where the real degree sequences are enforced strictly (Ulrich & 
Gotelli, 2007), in our case the degree sequences of a sampled null 
network may slightly vary from the real ones, with the restriction 
that the average degree sequences are preserved. From a theo-
retical perspective, relaxing such constraints reflects the fact that 
the observed degree sequences may provide imperfect informa-
tion, that is, the reported network may contain noisy data like 
missing or mislead interactions. Importantly, the resulting statis-
tical ensemble is obtained by maximizing its entropy as well as 
the likelihood of finding the real degree sequences, which leads 
to the Exponential Random Graph model (Park & Newman, 2004). 
This randomizing framework was first developed by Squartini 
and Garlaschelli  (2011), then extended to bipartite networks by 
Saracco, Di Clemente, Gabrielli, and Squartini (2015). We also ap-
plied it to the study of the emergence of nestedness in ecological 
networks in Payrató-Borràs et al. (2019).

In order to maximize the entropy under the condition of keeping 
the average degree sequence fixed and equal to the observed one, 
it is necessary to apply the Lagrange Multipliers' technique. The de-
termination of the value of such multipliers, obtained by maximizing 
the likelihood that the empirical degree sequence appears in the ran-
dom ensemble (Garlaschelli & Loffredo, 2008), provides an analytic 
expression for the probability of interaction among species or agents 
from different guilds. Remarkably, this probability only depends on 
the Lagrange Multipliers. These variables, in turn, can be determined 
by computationally solving the optimization problem of the likeli-
hood. We have used two different numerical methods to find the 
global optimal Lagrange Multipliers for each empirical network: (a) 
a global searching algorithm based on simulated annealing, and (b) 
a local optimization method repeated over a variety of initial con-
ditions. The technical details of the implementation of these tech-
niques can be found in Payrató-Borràs et al. (2019). We performed 
both analyses for each of our real networks and verified that the 
results agree, which is a strong indication that the global maximum 
has been found.

This probabilistic bipartite matrix can then be used to sample the 
random ensemble of networks. In particular, for each real network in 
our dataset, we sampled 104 null networks with the obtained proba-
bility interaction matrix. Across the same sample, each of these null 
matrices may vary in its size (number of connected nodes), density of 
links, degree sequence, redundancy of degrees, or bipartite matrix 
eccentricity. Nevertheless, the degree sequences are maintained, on 
average, equal to the empirical ones.

The present null model overcomes many of the statistical bias 
exhibited by the FF null model. A first conceptual difference be-
tween the present and previous null models is that the resulting 
ensemble of networks is treated from a statistical physics per-
spective, that is, by using the probability of appearance of each 
network in the ensemble. Moreover, loosing the constraint of pre-
serving exactly the degree sequences yields to an expansion of 
the statistical ensemble. On the contrary, with the FF null model 
the number of null networks compatible with the constraints be-
comes scarce whenever the real network we aim to randomize is 
significantly small, dense, or nested. On the other hand, the double 
maximization of the entropy and the likelihood produces a max-
imally disordered statistical ensemble while constraining certain 
information extracted from real systems, in our case the empirical 
degree sequences. Garlaschelli and Loffredo  (2008) showed that 
such construction is statistically nonbiased. Finally, the fact that 
our null model provides an analytic expression for the probability 
of interaction between species results in the computational gen-
eration of null networks being fast, efficient, and demanding few 
numerical resources. Instead, the FF null model relies on an algo-
rithmic procedure that can easily become frustrated, thus slowing 
down the production of null networks and being computationally 
demanding. All these advantages, together with the conceptual 
basis argued above and in (Payrató-Borràs et al., 2019), lead us to 
choose this null model to assess the performance of a variety of 
nestedness metrics.

(9)�norm=100
�

�max
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2.3 | Dataset

Our study has been carried out using a large dataset composed by a 
total of 199 bipartite networks. In particular, it includes 191 empiri-
cal ecological networks extracted from the Web of Life (Bascompte 
Lab) as well as eight economic networks which represent the trad-
ing interactions between the buyers and the sellers of two different 
fish markets (Hernández et al., 2018). A more detailed description of 
these systems may be found in Appendix S1. All the networks in our 
dataset were treated as binary (nonweighted links). We have only 
kept in our study networks with a minimum size of 20 nodes.

2.4 | The nullnest repository

Additionally to the comparative study here presented, we provide 
an open github repository named nullnest that aims at being a prac-
tical tool, for both ecologists and network scientist, to assess the 
nestedness of real and null networks. The repository is thoroughly 
documented, with examples and ready-to-use programs, and allows 
performing the analysis discussed in the present paper as well as 
some of the main calculations derived in Payrató-Borràs et al. (2019). 
It can be freely accessed and downloaded at https://github.com/
cclau​alc/nullnest.

3  | RESULTS

3.1 | Significance of nestedness of empirical 
networks

To start with, we have measured the nestedness of the 199 empirical 
networks in our dataset. To compare the average nestedness over 
the ensemble with that corresponding to empirical networks, we 
have used the six metrics described above plus two variations (the 
stable-NODF and the normalized spectral radius).

As it has been shown analytically and numerically (using NODF 
and the spectral radius) in Payrató-Borràs et al. (2019), the nested 
structure of mutualistic networks is a consequence of the double 
heterogeneity in the degree sequence which results from entropic 
effects. In order to investigate if the other popular indices are able 
to reveal this dependence of the nestedness on the degree distri-
butions, we built a null model for each real network, as explained 
in Section 2.2, and we compared the nestedness of each real net-
work with its corresponding average over the ensemble. For each 
of the studied metrics, the average value of nestedness over the 
randomized ensemble has been obtained by numerical sampling as 
described in Appendix S1.

For the sake of clarity and to homogenize the reading of the di-
verse figures, we have transformed the definition of the temperature, 
the NMD, and the discrepancy indices so that the larger the index, the 
more nested the system is. We have also rescaled these indices so that 
they vary between 0 and 100. These modifications read as follows:

where τ corresponds to the original metrics based on Manhattan dis-
tance and Δ to the original discrepancy index (see section 2.1), while E 
is the total number of edges in the network.

Figure 4 shows the nestedness measured over the ensemble ver-
sus the nestedness of the corresponding real network. Consistently 
with the results obtained in Payrató-Borràs et al. (2019) using NODF 
and the spectral radius, NIR and NMD also show that the nested-
ness values of the empirical networks are statistically equivalent to 
the average of the corresponding randomized ensemble. This leads 
to the conclusion that the observed nestedness measured by these 
indices is not significant. On the contrary, the discrepancy and tem-
perature indices show a clear bias, with an important fraction of the 
real networks being less nested than the random average.

3.2 | Influence of network properties on the 
behavior of the different metrics

The results presented in Figure  4 reveal that the metrics studied 
behave in different ways under the same null model, showing dis-
tinct levels of fluctuations and sometimes a systematic bias, as it is 
the case for the discrepancy and temperature indices. This finding 
suggests that the different algorithms implemented by each metrics 
may eventually translate into nonequivalent nestedness measures. 
We explore further this situation in Figure 5, where we compare the 
values of nestedness obtained for a group of mutualistic networks 
when measured using each of the metrics. As it can be observed, for 
the same dataset not only the value of nestedness itself but also the 
ranking of the networks according to their degree of nestedness is 
strongly metrics dependent.

Ideally, as it has been recalled by several authors (Almeida-Neto 
et al., 2008; Staniczenko et al., 2013; Ulrich et al., 2009), a well-be-
haved nestedness metrics ought to be independent of the particular 
network parameters and, furthermore, rank the degree of nestedness 
of a given set of networks universally. The results discussed above put 
in evidence that the second condition is not always true. Regarding 
the first requirement, we next explore more carefully how the nest-
edness values given by each metrics depend on the network param-
eters. In particular, since the networks of the dataset cover a wide 
range of parameter values (see Figure 5 for an example), we analyze 
the effects of three characteristic network properties: size, density of 
links, and eccentricity. These quantities are defined as follows:

(10)T=100−TAP

(11)NMD=100 (1−�)

(12)Δ
�
=100

(
1−

Δ

E

)

(13)size≡ s=n+m

(14)
density of links≡�=

E

n+m

https://github.com/cclaualc/nullnest
https://github.com/cclaualc/nullnest
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F I G U R E  4   Significance of the nestedness of real networks. The figure shows the empirical measure of nestedness against the average 
value of nestedness in the generated statistical ensemble for the 199 empirical networks in our dataset. The different panels correspond 
to different metrics: (a) temperature, (b) NMD, (c) NODF, (d) stable-NODF, (e) discrepancy, (f) NIR, (g) spectral radius, and (h) normalized 
spectral radius. The shadowed areas represent one (salmon color) and two (light gray) standard deviations of the mean. The black line depicts 
the identity curve. Triangle symbols stand for small networks (less than 50 nodes), circles for medium size networks (more than 50 nodes and 
less than 410), and squares for large networks (more than 410 nodes). Ecological networks are colored in blue, economic networks in red

(a) (b)

(c)

(e) (f)

(g) (h)

(d)
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where n and m are, respectively, the number of rows and columns of 
the biadjacency matrix, while E is the total number of links. The ec-
centricity quantifies the difference between the number of nodes of 
the two guilds, or in other words, the deviation from a square-shaped 
biadjacency matrix. Indeed, ϵ = 0 for a square matrix and ϵ → 1 when 
one of the guilds is much larger than the other. Interestingly, most of 
the large ecological networks observed show more columns (animal 
species) than rows (plant species), with a frequent ratio of 1–3. This 
observation, though, cannot be generalized to all mutualistic networks, 
specially to small networks (which can be much more eccentric) or to 
nonecological systems.

Additionally, we study the dependence of nestedness on a 
fourth parameter, the degree degeneracy. In particular, a perfect 
nested matrix with an arbitrary ϕ might have several species of 
each guild with the same degree. We measure this quantity as 
follows:

The study of this parameter remains a special case, since the 
known connection between the nested patterns and the degree se-
quences entails that a certain dependency with the degree degen-
eracy is in fact expected (Jonhson et al., 2013; Payrató-Borràs et al., 
2019). All in all, we analyze its influence given that each metrics deals 
with degree degeneracy in a different way.

(15)eccentricity≡ �=
||||
n−m

n+m

||||

(16)degeneracy in degrees≡g=
number of species with the same degree

n+m

F I G U R E  5   Comparison among nestedness indices. The histogram on the top of the figure shows how eight different metrics measure the 
nestedness of several different networks. Each network, indexed I to X, is represented in the bottom of the figure by its biadjacency matrix 
ordered by decreasing degree, with the interactions among species represented by black pixels. All networks represent plant–pollinator 
mutualistic communities extracted from the Web of life dataset (Bascompte Lab). Each network is labeled with the name of the first author 
of the corresponding reference, followed within brackets by, first, its total number of species (number of plants plus number of animals), and 
second, its density of links
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In order to quantify the dependencies discussed above, we have 
performed a twofold analysis. First, we have calculated Spearman's 
rank correlation between the nestedness index given by each met-
rics and the different network parameters. This coefficient allows to 
assess the relation between both variables without assuming a linear 
behavior. Figure 6a summarizes the result of the analysis, showing the 
Spearman coefficient along with its statistical significance for all pairs 
of nestedness values and network parameters (see Appendix S1 for 
the details on the numerical calculation). Secondly, we have performed 
a multilinear regression. In particular, we have taken the nestedness 
values obtained by each metrics as the dependent variable while the 
network parameters behave as the explanatory variables. Importantly, 
in this second analysis we do not consider the effect of the degree 
degeneracy, since we are mainly interested on the dependence on 
parameters that should not, in principle, determine nestedness. The 
linear function we have fitted has the following standard form:

where νj, j  =  1,…,8 represents the nestedness metrics indexed by 
j, β0,j is the intercept and βi,j, i = 1,…,3 are the partial regression co-
efficients. The ε represents an error term. This sort of regression 
informs on the effect of a single network parameter when the rest 
of parameters are kept fixed. Such consideration is specially import-
ant given that, in natural systems, networks' properties are often 
correlated (for instance, larger networks tend to be less dense), and 
therefore, bivariate regressions may misleadingly quantify the influ-
ence of a certain property due to the uncontrolled coupled influ-
ence of another one. On the other hand, our model assumes a linear 
relation among the variables which might not always be accurate. 
Figure 6b shows the results of the regression for each nestedness 
metrics, in particular, the significance of the partial coefficients cor-
responding to the different network parameters as well as the value 
of the adjusted coefficient of multiple determination (see Appendix 
S1 for more details).

Once we have quantified the dependencies of the various nest-
edness metrics on different network parameters, we next explore (17)� j=�0,j+�1,js+�2,j�+�3,j�+�

F I G U R E  6   Dependency of nestedness metrics on network parameters. The left panel, (a), shows the Spearman correlation factor 
between the network parameters (columns) and the eight nestedness metrics under study (rows). The numbers represent the value of 
the Spearman rank coefficient for each corresponding pair of nestedness value and network parameter. Only those coefficients that 
are statistically significant (p-value < .01) are highlighted by a colored circle, being the size and the color of the circle proportional to the 
coefficient. The right panel, (b), summarizes the results of the multilinear fit detailed in Equation 17. Each row corresponds to a different 
nestedness metrics. The first column from the right shows the adjusted coefficient of multiple determination (adjusted R2). The other three 
columns show the t-ratio of the regression coefficient corresponding to each explanatory variable (as labeled by the column name). Only 
those coefficients that are statistically significant (p-value < .01) are highlighted by a colored circle, being the size and the color of the circle 
proportional to its t-ratio

(a) (b)
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whether we can explain the deviations with respect to the null model 
observed in Figure 4. In particular, we perform a multilinear fit of 
the type detailed in Equation 17, where we replace the nestedness 
values by the z-scores obtained for each metrics when applying the 
null model discussed in sections 2.2 and 3.1. Such z-scores are cal-
culated as follows:

where νj represents, as before, the real values obtained with a nested-
ness metrics indexed by j; 〈νj〉 represents the average nestedness value 
calculated with metrics j over the null ensemble ; and σj represents the 
standard deviation of the distribution of nestedness in the ensemble 
for the same metrics. By fitting a linear function analogous to Equation 
17, we obtained, thus, the partial coefficients which account for the 

contribution of each network parameter to the corresponding z-scores. 
A summary of these results can be found in Figure 7.

4  | DISCUSSION

In the previous section, we have quantified the influence of several 
network properties on various nestedness metrics, taking into ac-
count how each metrics measures the nestedness of empirical net-
works as well as how they compare to the null model of section 2.2. 
With this information at hand, we now proceed to critically evaluate 
the performance of each metrics by discussing and framing the ob-
served dependencies in a general context.

4.1 | Temperature

Despite its popularity, this metrics was already known to have sev-
eral flaws (Almeida-Neto et  al.,  2008) and various authors have 
outlined the presence of ambiguous steps in its calculation (Mariani 
et  al.,  2019; Rodríguez-Gironés & Santamaría, 2006). Indeed, 
Almeida-Neto et al. (2008) called upon its dependency on the den-
sity of contacts, ϕ, and on the size of the matrix. We confirmed these 
dependencies since our statistical analysis shows that real values 
correlate positively with size and negatively with the density of links 
(see Figure 6). Interestingly enough, the temperature is as well the 
only metrics to show a significant positive correlation with the de-
gree degeneracy, while the rest of metrics penalize the repetition of 
degrees.

Moreover, when tested against the null model, the temperature 
exhibits a clear bias (see Figure 4). In fact, the average nestedness 
in the ensemble is systematically larger than the real observations. 
The multilinear regression performed using the z-scores shows that 
they correlate significantly with the size, the density of links, and 
the matrix eccentricity. As shown in Figure 4, the bias of this metrics 
shows a negative z-score value; therefore, its modulus (which gives 
the relative distance to the identity curve) increases when the size 
of the network is smaller, less dense, and more eccentric. Given that 
mutualistic ecological networks usually present low density and a 
pronounced eccentricity, these conclusions point out that the tem-
perature metrics should be applied, if at all used, with care in the 
ecological context.

4.2 | Nestedness index based on 
Manhattan distance

Our analysis of the nestedness metrics based on the Manhattan dis-
tance shows that it correlates positively with size and negatively with 
the degree degeneracy. Interestingly, the deviations with respect to 
the null model are sensibly smaller than in the temperature metrics, 
though a slight but systematic positive deviation still appears leading 
again to a negative z-score. The multilinear regression indicates that 

(18)z − scorej=
�j−⟨�j⟩

� j

F I G U R E  7   Dependency of z-scores on network parameters. The 
figure summarizes the results of a multilinear regression between 
the z-scores values corresponding to each nestedness metrics and 
network properties. Each row corresponds to the z-scores obtained 
by applying to each metrics the null model discussed in section 
2.2. The first column from the right shows the adjusted coefficient 
of multiple determination (adjusted R2). The other three columns 
show the t-ratio of the regression coefficient corresponding to each 
explanatory variable (as labeled by the column name). Only those 
coefficients that are statistically significant (p-value < .01) are 
highlighted by a colored circle, being the size and the color of the 
circle proportional to the t-ratio
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the z-scores are mainly explained by the density of links, which have 
a positive influence meaning that denser networks fall closer to their 
null expectation.

Overall, the NMD metrics exhibits notably less dependencies 
than its close metrics temperature, which with the NMD shares a 
common spirit given that both metrics measure somehow the dis-
tance of unexpected interactions. This dissimilarity is probably 
due to the different normalization of the NMD. On the other hand, 
such normalization is dependent on the null model used (Corso 
et al., 2008), and hence, the metrics is inevitably subject to the same 
limitations (see Appendix S1 for more details on the implementation 
of NMD, in our case using the FF null model).

4.3 | NODF and stable-NODF

In the work in which the NODF metrics was firstly proposed, 
Almeida-Neto et  al.  (2008) found a positive dependency with the 
matrix fill. In our analysis, we recover this result and observe as well 
a negative correlation with the network size (see Figure 6a) which is 
nonetheless a veiled consequence of the variation in the density of 
links, as can be understood after performing the multilinear regres-
sion (see Figure 6b). Furthermore, this nestedness index exhibits a 
good agreement with the null prediction, as was already found in 
Payrató-Borràs et  al. (2019). The differences with the null model, 
quantified by the z-score, are explained mainly by the size and the 
eccentricity. As expected from a statistical point of view, the small 
and eccentric networks show the largest difference with the null 
expectation.

Although the NODF metrics is nowadays extensively used, some 
authors have raised a few concerns about its adequacy. In particu-
lar, Staniczenko et  al.  (2013) criticized the decreasing fill factor in 
its definition, which penalizes degree degeneracy. Indeed, we do 
observe a strong negative correlation with degree degeneracy for 
NODF in Figure 6a. As a solution, Mariani et al. (2019) proposed an 
alternative version of the metrics called stable-NODF, which does 
not incorporate this decreasing fill. Our analysis determines that de-
pendencies of both versions of the metrics are very similar: On the 
one hand, the stable-NODF does moderate the correlations exhib-
ited by NODF both on degree degeneracy and density of links, but 
on the other hand, the correlations of the z-scores with the size and 
eccentricity are strengthened.

4.4 | Discrepancy

The discrepancy index shows a significant dependency on the size 
and the density of links, being the latter parameter the dominant one 
as it can be seen from the multilinear regression (see Figure 6). These 
dependencies had been noted already (Almeida-Neto et al., 2008). 
Interestingly, these findings are very similar to the correlations ob-
served for NODF and stable-NODF, despite the fact that the metrics 
are based on distinct strategies for measuring nestedness.

On the other hand, the test against the null model reveals that 
for an important fraction of networks, the real value of nestedness 
is smaller than the average in the ensemble, resulting in a systematic 
deviation with negative z-scores. This shift is very well explained by 
the regression of the z-scores summarized in Figure 7, where it can 
be observed that the three network parameters studied correlate 
significantly with the z-scores. Indeed, the larger, less dense, and 
more eccentric the network, the more distance there is between the 
null expectation of nestedness and the empirical value.

4.5 | Nesting index based on network's robustness

The nestedness index based on network robustness exhibits no 
dependencies on the network parameters. Indeed, our statistical 
analysis reveals no significant correlation with any of the studied 
properties (see Figure 6). This suggests that, despite not being par-
ticularly popular, the NIR metrics is a reliable option for measuring 
nestedness. At the same time, the analysis done using the null model 
indicates that the nestedness value of smaller and denser networks 
tends to fall further apart from their null expectation. Indeed, this is 
a consequence of its definition, which relies on the difference be-
tween the areas of the ATCs obtained by the DDR and IDR node 
removal strategies. As the curvature of the former reproduces the 
shape of the IPN, it becomes less convex as the density increases, 
leading to a loss of sensitivity. Therefore, this metrics is well adapted 
for ecological networks that usually show low densities, but less 
suited for other bipartite networks, like the aggregated market 
networks.

4.6 | Spectral radius

Among the metrics described, the spectral radius shows a significant 
dependency on both the size and the density of links, specially the 
former one. Indeed, larger, and denser networks tend to have a larger 
spectral radius. This is a consequence of the lack of normalization, 
as mentioned in section 2.1. However, the spectral radius shows a 
remarkable agreement between the average over the ensemble and 
the value of the corresponding real network, along with a very low 
dispersion. Nonetheless, the z-scores correlate significantly well 
with the density of links, being the most denser networks the ones 
that exhibit a larger discrepancy with the null model.

In order to hinder the strong dependency on the network size, 
we evaluate as well as normalized version of the spectral radius, 
as explained in section 2. Taking into account this normalization, it 
is now possible to compare the degree of nestedness of networks 
of different sizes, and to study how different network parameters 
affect the nestedness index. We find that this normalized version 
of the spectral radius correlates positively with the density of links, 
and negatively with the size and the eccentricity of the matrix. 
Notably, these dependencies are analogous to the ones shown by 
the NODF, stable-NODF, and discrepancy indices. At the same time, 
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the analysis against the null model reveals a slight deviation toward a 
larger value of the average in the random ensemble with respect to 
the empirical value. This deviation is stronger for larger, less dense, 
and more eccentric networks.

Besides the mentioned dependencies, when using the spectral 
radius, it is essential to consider its underlying basis for measur-
ing nestedness. As we pointed out in the introduction, the relation 
between the spectral radius and the degree of nestedness is not 
strictly monotonic, but only holds on statistical terms. This hampers 
its usefulness to rank networks according to their nestedness.

5  | CONCLUSIONS

Although it has recently been shown that nestedness is not an emer-
gent irreducible pattern of the network, it still remains an interesting 
quantity to measure, since it constitutes a global property that in-
forms on the heterogeneity of the degree distributions of the guilds. 
This is particularly relevant for ecological networks because of their 
typical, rather small sizes preclude a correct fit to a fat tail distribu-
tion, like a power law, on the available data. Because of the inter-
est among network scientists for this pattern, specially in ecology, 
different definitions of nestedness coexist in the literature. These 
metrics usually quantify some property of the network following a 
precise protocol, leading to operational definitions. Moreover, several 
of these metrics are integrated into packages widely used to assess 
the nestedness values of different networks. Nonetheless, the lack 
of a unique definition generates confusion when it comes to the 
comparison between the nestedness values of different networks.

In this work, we have performed a systematic comparative study 
of the performances of six different metrics and the variants of two 
of them, addressing their dependency on various network parame-
ters. Based on a large database of real systems, our results clearly 
put in evidence that the different metrics show diverse dependen-
cies on size, density of contacts, eccentricity, and degree degener-
acy. Therefore, if the same group of networks is ranked according 
to their nestedness, the outcome will depend on the metrics used. 
Understanding these dependencies for each metrics has helped us 
to explain, as well, the systematic shifts between the real values 
of nestedness and the average over a null model based on a maxi-
mum-entropy, maximum-likelihood ensemble.

The nestedness metrics studied here may be roughly classified 
in three groups according to the properties of the networks that are 
used to define them: (i) nestedness metrics based on the number of 
misplaced elements in the bipartite adjacency matrix with respect to 
a perfectly nested matrix, like discrepancy; (ii) nestedness metrics 
based on global properties of the network like, NODF, NIR, and ρ; 
and (iii) nestedness metrics like T and NMD that operate similarly 
to (i) but weighting the distance of misplaced interactions to their 
ideal location in the perfect nested matrix. Our results point out that 
the NIR index is, by far, the most independent metrics with respect 
to the considered network parameters, although it suffers from a 
lack of sensitivity when the density of contacts is high. Moreover, 

the NODF, the stable-NODF, the discrepancy and the normalized 
spectral radius all show very similar dependencies, that is, a positive 
correlation with the density of links and, for the latter two, a nega-
tive correlation with the size. While a dependency with the size is 
undesired and ought not to appear when using a proper normaliza-
tion, some authors have claimed that a positive correlation between 
nestedness and fill is in fact expected (Almeida-Neto et al., 2008).

Our work aims at providing a useful guide addressed at practi-
tioners that compiles the different characteristics, advantages, and 
drawbacks of the most popular nestedness metrics, including re-
cently proposed indices that had not been thoroughly analyzed up 
to date. We also extended the use of maximum-entropy-based null 
models (Payrató-Borràs et al., 2019; Saracco et al., 2015; Squartini 
& Garlaschelli, 2011) to these metrics. Finally, this work is accom-
panied by a package that allows to calculate all the nestedness indi-
cators studied, generate the null ensemble for any network, as well 
as a database with the already calculated probabilities allowing to 
generate the null models for the 199 networks studied here. Given 
that the interest in studying nested patterns has not ceased to in-
crease within and beyond ecology permeating as well other areas of 
complex systems as varied as economy, sociology, or anthropology, 
this updated guide may be useful to any network scientist wondering 
how to measure nestedness.

ACKNOWLEDG MENTS
Y. M. acknowledges partial support from the Government of Aragon, 
Spain through grant E36-17R (FENOL), by MINECO and FEDER funds 
(FIS2017-87519-P) and from Intesa Sanpaolo Innovation Center. C. 
P. B. acknowledges support of the LABEXMME-DII (Grant No. ANR 
reference 11-LABX-0023). The funders had no role in study design, 
data collection, and analysis, decision to publish, or preparation of 
the manuscript.

CONFLIC T OF INTERE S T
The authors declare no competing interests.

AUTHOR CONTRIBUTIONS
Clàudia Payrató Borràs: Conceptualization (equal); Formal analysis 
(lead); Software (lead); Visualization (lead); Writing-original draft 
(equal). Laura Hernández: Conceptualization (equal); Funding ac-
quisition (lead); Supervision (lead); Writing-original draft (equal). 
Yamir Moreno: Conceptualization (equal); Funding acquisition (lead); 
Supervision (lead); Writing-original draft (supporting).

OPEN RE SE ARCH BADG E S

This article has earned an Open Materials Badge for making pub-
licly available the components of the research methodology needed 
to reproduce the reported procedure and analysis. All materials 
are available at [Github repository: https://github.com/cclau​alc/
nullnest; Dryad permanent link: https://doi.org/10.5061/dryad.
bk3j9​kd8b (stil unactive); and temporary link for peer-review: 

https://github.com/cclaualc/nullnest
https://github.com/cclaualc/nullnest
https://doi.org/10.5061/dryad.bk3j9kd8b
https://doi.org/10.5061/dryad.bk3j9kd8b


11920  |     PAYRATÓ-BORRÀS et al.

https://datad​ryad.org/stash/​share/​oTltK​td6i0​kDMXM​dI4q4​WFv_
Bn-fwtsy​kt4Ql​THvfKs].

DATA AVAIL ABILIT Y S TATEMENT
The codes used for the analysis presented throughout this paper, as 
well as the main results of the null model concerning the real networks 
studied, are public as a github repository under the name nullnest, 
available at https://github.com/cclau​alc/nullnest and also in Dryad 
at https://doi.org/10.5061/dryad.bk3j9​kd8b. The dataset of real net-
works analyzed is already public in the Web of Life site (Bascompte 
Lab) and a figshare repository (Hernandez, Vignes, & Saba, 2018).

ORCID
Clàudia Payrató-Borràs   https://orcid.org/0000-0003-1710-970X 
Laura Hernández   https://orcid.org/0000-0002-3159-0053 
Yamir Moreno   https://orcid.org/0000-0002-0895-1893 

R E FE R E N C E S
Almeida-Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D., & Ulrich, 

W. (2008). A consistent metric for nestedness analysis in ecological 
systems: Reconciling concept and measurement. Oikos, 117(8), 1227–
1239. https://doi.org/10.1111/j.0030-1299.2008.16644.x

Atmar, W., & Patterson, B. D. (1993). The measure of order and disorder 
in the distribution of species in fragmented habitat. Oecologia, 96(3), 
373–382. https://doi.org/10.1007/BF003​17508

Atmar, W., & Patterson, B. D. (1995). The nestedness temperature calcu-
lator: A visual basic program, including 294 presence-absence matrices. 
AICS Research Incorporate and The Field Museum.

Bascompte, J., Jordano, P., Melián, C. J., & Olesen, J. M. (2003). The 
nested assembly of plant animal mutualistic networks. Proceedings 
of the National Academy of Sciences of the USA, 100(16), 9383–9387. 
https://doi.org/10.1073/pnas.16335​76100

Bascompte Lab. Web of Life, ecological networks database. Retrieved from 
http://www.web-of-life.es/

Bastolla, U., Fortuna, M. A., Pascual-García, A., Ferrera, A., Luque, B., 
& Bascompte, J. (2009). The architecture of mutualistic networks 
minimizes competition and increases biodiversity. Nature, 458(7241), 
1018–1020. https://doi.org/10.1038/natur​e07950

Bell, F. K., Cvetković, D., Rowlinson, P., & Simić, S. K. (2008). Graphs 
for which the least eigenvalue is minimal, ii. Linear Algebra and 
Its Applications, 429(8–9), 2168–2179. https://doi.org/10.1016/j.
laa.2008.06.018

Bhattacharya, A., Friedland, S., & Peled, U. N. (2008). On the first ei-
genvalue of bipartite graphs. The Electronic Journal of Combinatorics, 
15(1), 144.

Borge-Holthoefer, J., Baños, R. A., Gracia-Lázaro, C., & Moreno, Y. 
(2017). Emergence of consensus as a modular-to-nested transition in 
communication dynamics. Scientific Reports, 7, 41673.

Brualdi, R. A., & Sanderson, J. G. (1999). Nested species subsets, gaps, and 
discrepancy. Oecologia, 119(2), 256–264. https://doi.org/10.1007/
s0044​20050784

Burgos, E., Ceva, H., Hernández, L., & Perazzo, R. (2009). Understanding 
and characterizing nestedness in mutualistic bipartite networks. 
Computer Physics Communications, 180(4), 532–535. https://doi.
org/10.1016/j.cpc.2008.11.007

Burgos, E., Ceva, H., Perazzo, R. P., Devoto, M., Medan, D., Zimmermann, 
M., & Delbue, A. M. (2007). Why nestedness in mutualistic net-
works? Journal of Theoretical Biology, 249(2), 307–313. https://doi.
org/10.1016/j.jtbi.2007.07.030

Cimini, G., Gabrielli, A., & Labini, F. S. (2014). The scientific competitive-
ness of nations. PLoS One, 9(12), e113470.

Clements, F. E., & Long, F. L. (1923). Experimental pollination: An outline 
of the ecology of flowers and insects, No. 336. Carnegie Institution of 
Washington.

Corso, G., Araujo, A. I., & Almeida, A. M. (2008). A new nestedness esti-
mator in community networks. arXiv preprint arXiv:0803.0007.

De Benedictis, L., & Tajoli, L. (2011). The world trade network. The World Economy, 
34(8), 1417–1454. https://doi.org/10.1111/j.1467-9701.2011.01360.x

Domínguez-García, V., & Munoz, M. A. (2015). Ranking species in mutu-
alistic networks. Scientific Reports, 5, 8182. https://doi.org/10.1038/
srep0​8182

Dormann, C. F., Fründ, J., Blüthgen, N., & Gruber, B. (2009). Indices, 
graphs and null models: Analyzing bipartite ecological networks. The 
Open Ecology Journal, 2(1), 7–24.

Garlaschelli, D., & Loffredo, M. I. (2008). Maximum likelihood: Extracting 
unbiased information from complex networks. Physical Review E, 
78(1), 015101.

Gotelli, N. J., & Entsminger, G. L. (2001). Swap and fill algorithms in null 
model analysis: Rethinking the knight's tour. Oecologia, 129(2), 281–
291. https://doi.org/10.1007/s0044​20100717

Gracia-Lázaro, C., Hernández, L., Borge-Holthoefer, J., & Moreno, Y. 
(2018). The joint influence of competition and mutualism on the 
biodiversity of mutualistic ecosystems. Scientific Reports, 8(1), 
9253.

Greve, M., & Chown, S. L. (2006). Endemicity biases nestedness metrics: 
A demonstration, explanation and solution. Ecography, 29(3), 347–
356. https://doi.org/10.1111/j.2006.0906-7590.04493.x

Grimm, A., & Tessone, C. J. (2017). Analysing the sensitivity of nested-
ness detection methods. Applied Network Science, 2(1), 37.

Guimarães, P. R., & Guimaraes, P. (2006). Improving the analyses of 
nestedness for large sets of matrices. Environmental Modelling & 
Software, 21(10), 1512–1513. https://doi.org/10.1016/j.envso​
ft.2006.04.002

Guimaraes, P. R. Jr, Rico-Gray, V., Furtado dos Reis, S., & Thompson, 
J. N. (2006). Asymmetries in specialization in ant-plant mutualis-
tic networks. Proceedings of the Royal Society B: Biological Sciences, 
273(1597), 2041–2047. https://doi.org/10.1098/rspb.2006.3548

Hernandez, L., Vignes, A., & Saba, S. (2018). Figshare dataset. Retrieved 
from https://figsh​are.com/artic​les/data_used_for_artic​le_zip/60803​
96/1

Hernández, L., Vignes, A., & Saba, S. (2018). Trust or robustness? 
An ecological approach to the study of auction and bilateral mar-
kets. PLoS One, 13(5), e0196206. https://doi.org/10.1371/journ​
al.pone.0196206

James, A., Pitchford, J. W., & Plank, M. J. (2012). Disentangling nested-
ness from models of ecological complexity. Nature, 487(7406), 227–
230. https://doi.org/10.1038/natur​e11214

Jonhson, S., Domínguez-García, V., & Muñoz, M. A. (2013). Factors de-
termining nestedness in complex networks. PLoS One, 8(9), e74025. 
https://doi.org/10.1371/journ​al.pone.0074025

Jordano, P., Bascompte, J., & Olesen, J. M. (2003). Invariant properties in 
coevolutionary networks of plant-animal interactions. Ecology Letters, 
6(1), 69–81. https://doi.org/10.1046/j.1461-0248.2003.00403.x

Kamilar, J. M., & Atkinson, Q. D. (2014). Cultural assemblages show 
nested structure in humans and chimpanzees but not orangutans. 
Proceedings of the National Academy of Sciences of the USA, 111(1), 
111–115. https://doi.org/10.1073/pnas.13133​18110

Kondoh, M., Kato, S., & Sakato, Y. (2010). Food webs are built up 
with nested subwebs. Ecology, 91(11), 3123–3130. https://doi.
org/10.1890/09-2219.1

König, M. D., Tessone, C. J., & Zenou, Y. (2014). Nestedness in networks: 
A theoretical model and some applications. Theoretical Economics, 
9(3), 695–752. https://doi.org/10.3982/TE1348

Lin, J.-H., Tessone, C., & Mariani, M. (2018). Nestedness maximization 
in complex networks through the fitness-complexity algorithm. 
Entropy, 20(10), 768.

https://datadryad.org/stash/share/oTltKtd6i0kDMXMdI4q4WFv_Bn-fwtsykt4QlTHvfKs
https://datadryad.org/stash/share/oTltKtd6i0kDMXMdI4q4WFv_Bn-fwtsykt4QlTHvfKs
https://github.com/cclaualc/nullnest
https://doi.org/10.5061/dryad.bk3j9kd8b
https://orcid.org/0000-0003-1710-970X
https://orcid.org/0000-0003-1710-970X
https://orcid.org/0000-0002-3159-0053
https://orcid.org/0000-0002-3159-0053
https://orcid.org/0000-0002-0895-1893
https://orcid.org/0000-0002-0895-1893
https://doi.org/10.1111/j.0030-1299.2008.16644.x
https://doi.org/10.1007/BF00317508
https://doi.org/10.1073/pnas.1633576100
http://www.web-of-life.es/
https://doi.org/10.1038/nature07950
https://doi.org/10.1016/j.laa.2008.06.018
https://doi.org/10.1016/j.laa.2008.06.018
https://doi.org/10.1007/s004420050784
https://doi.org/10.1007/s004420050784
https://doi.org/10.1016/j.cpc.2008.11.007
https://doi.org/10.1016/j.cpc.2008.11.007
https://doi.org/10.1016/j.jtbi.2007.07.030
https://doi.org/10.1016/j.jtbi.2007.07.030
https://doi.org/10.1111/j.1467-9701.2011.01360.x
https://doi.org/10.1038/srep08182
https://doi.org/10.1038/srep08182
https://doi.org/10.1007/s004420100717
https://doi.org/10.1111/j.2006.0906-7590.04493.x
https://doi.org/10.1016/j.envsoft.2006.04.002
https://doi.org/10.1016/j.envsoft.2006.04.002
https://doi.org/10.1098/rspb.2006.3548
https://figshare.com/articles/data_used_for_article_zip/6080396/1
https://figshare.com/articles/data_used_for_article_zip/6080396/1
https://doi.org/10.1371/journal.pone.0196206
https://doi.org/10.1371/journal.pone.0196206
https://doi.org/10.1038/nature11214
https://doi.org/10.1371/journal.pone.0074025
https://doi.org/10.1046/j.1461-0248.2003.00403.x
https://doi.org/10.1073/pnas.1313318110
https://doi.org/10.1890/09-2219.1
https://doi.org/10.1890/09-2219.1
https://doi.org/10.3982/TE1348


     |  11921PAYRATÓ-BORRÀS et al.

Mariani, M. S., Ren, Z.-M., Bascompte, J., & Tessone, C. J. (2019). 
Nestedness in complex networks: Observation, emergence, and 
implications. Physics Reports, 813, 1–90. https://doi.org/10.1016/j.
physr​ep.2019.04.001

Maynard, S., Serván, C. A., & Allesina, S. (2018). Network spandrels re-
flect ecological assembly. Ecology Letters, 21(3), 324–334. https://
doi.org/10.1111/ele.12912

McCann, K. S. (2000). The diversity-stability debate. Nature, 405(6783), 
228–233. https://doi.org/10.1038/35012234

Medan, D., Perazzo, R. P., Devoto, M., Burgos, E., Zimmermann, M. G., 
Ceva, H., & Delbue, A. M. (2007). Analysis and assembling of network 
structure in mutualistic systems. Journal of Theoretical Biology, 246(3), 
510–521. https://doi.org/10.1016/j.jtbi.2006.12.033

Memmott, J., Waser, N. M., & Price, M. V. (2004). Tolerance of pollina-
tion networks to species extinctions. Proceedings of the Royal Society 
of London B: Biological Sciences, 271(1557), 2605–2611. https://doi.
org/10.1098/rspb.2004.2909

Park, J., & Newman, M. E. (2004). Statistical mechanics of networks. 
Physical Review E, 70(6), 066117.

Pascual-García, A., & Bastolla, U. (2017). Mutualism supports biodiver-
sity when the direct competition is weak. Nature Communications, 
8(1), 1–13. https://doi.org/10.1038/ncomm​s14326

Payrató-Borràs, C., Hernández, L., & Moreno, Y. (2019). Breaking the 
spell of nestedness: The entropic origin of nestedness in mutualistic 
systems. Physical Review X, 9(3), 031024.

Rodríguez-Gironés, M. A., & Santamaría, L. (2006). A new algorithm 
to calculate the nestedness temperature of presence-absence 
matrices. Journal of Biogeography, 33(5), 924–935. https://doi.
org/10.1111/j.1365-2699.2006.01444.x

Saavedra, S., Reed-Tsochas, F., & Uzzi, B. (2009). A simple model of bipar-
tite cooperation for ecological and organizational networks. Nature, 
457(7228), 463.

Saracco, F., Di Clemente, R., Gabrielli, A., & Squartini, T. (2015). 
Randomizing bipartite networks: The case of the world trade web. 
Scientific Reports, 5, 10595.

Squartini, T., & Garlaschelli, D. (2011). Analytical maximum-likelihood 
method to detect patterns in real networks. New Journal of Physics, 
13(8), 083001.

Staniczenko, P. P., Kopp, J. C., & Allesina, S. (2013). The ghost of nested-
ness in ecological networks. Nature Communications, 4, 1391.

Thébault, E., & Fontaine, C. (2010). Stability of ecological communities 
and the architecture of mutualistic and trophic networks. Science, 
329(5993), 853–856. https://doi.org/10.1126/scien​ce.1188321

Ulrich, W., Almeida-Neto, M., & Gotelli, N. J. (2009). A consumer's 
guide to nestedness analysis. Oikos, 118(1), 3–17. https://doi.
org/10.1111/j.1600-0706.2008.17053.x

Ulrich, W., & Gotelli, N. J. (2007). Null model analysis of species nestedness 
patterns. Ecology, 88(7), 1824–1831. https://doi.org/10.1890/06-1208.1

Valverde, S., Piñero, J., Corominas-Murtra, B., Montoya, J., Joppa, L., & 
Solé, R. (2018). The architecture of mutualistic networks as an evolu-
tionary spandrel. Nature Ecology & Evolution, 2(1), 94.

Vázquez, P., Poulin, R., Krasnov, B. R., & Shenbrot, G. I. (2005). Species 
abundance and the distribution of specialization in host-parasite 
interaction networks. Journal of Animal Ecology, 74(5), 946–955. 
https://doi.org/10.1111/j.1365-2656.2005.00992.x

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Payrató-Borràs C, Hernández L, 
Moreno Y. Measuring nestedness: A comparative study of the 
performance of different metrics. Ecol Evol. 2020;10:11906–
11921. https://doi.org/10.1002/ece3.6663

https://doi.org/10.1016/j.physrep.2019.04.001
https://doi.org/10.1016/j.physrep.2019.04.001
https://doi.org/10.1111/ele.12912
https://doi.org/10.1111/ele.12912
https://doi.org/10.1038/35012234
https://doi.org/10.1016/j.jtbi.2006.12.033
https://doi.org/10.1098/rspb.2004.2909
https://doi.org/10.1098/rspb.2004.2909
https://doi.org/10.1038/ncomms14326
https://doi.org/10.1111/j.1365-2699.2006.01444.x
https://doi.org/10.1111/j.1365-2699.2006.01444.x
https://doi.org/10.1126/science.1188321
https://doi.org/10.1111/j.1600-0706.2008.17053.x
https://doi.org/10.1111/j.1600-0706.2008.17053.x
https://doi.org/10.1890/06-1208.1
https://doi.org/10.1111/j.1365-2656.2005.00992.x
https://doi.org/10.1002/ece3.6663

