Skip to main content
. 2020 Oct 16;18:3287–3300. doi: 10.1016/j.csbj.2020.10.011

Table 1.

Techniques and algorithms used for steady-state and dynamic MFA and FBA.

Type  Advantages  Disadvantages  Description  Ref. 
Static Optimisation approach  Simple implementation
Suitable for GeM models 
Fast  
Provides a simple, not very detailed solution  
Cannot predict metabolic shifts 
Separates culture period into intervals of pseudo steady-state and performs an FBA optimisation for each of them   [131]
[132]
Dynamic Optimisation Approach  Detailed representation of metabolism  
Can describe metabolic shifts
Accurate parameter estimation in differential equations necessary   
Need to avoid overfitting 
Performs optimization over the whole period of interest with the use of differential equations to describe biomass and media concentrations   [132]
[133]
[54]
DMFA  Calculates intracellular fluxes  Requires extracellular metabolite concentrations thus, cannot be used in underdetermined systems  Uses a linear spline function to calculate intracellular fluxes  [55]
Describes intracellular fluxes using linear changes of the fluxes though time  [134]
Multi-objective optimisation  Uses the duality theorem to achieve optimality Numerical challenges arising from the DAE formulation  Uses logarithmic barrier functions on the constraints of the primal and dual problem. Converts them to a DAE with the dynamic balance equations for the substrates  [135]
Deals with LP infeasibility that can be caused during time integration  Requires careful objective function setting to achieve realistic solution  DFBA using lexicographic optimisation to deal with the LP feasibility problem  [136]