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Abstract: Silk fibroin is a widely and commercially available natural protein derived from silkworm
cocoons. Thanks to its unique amino acid composition and structure, which lead to localized nanoscale
pockets with limited but sufficient hydration for protein interaction and stabilization, silk fibroin has
been studied in the field of enzyme immobilization. Results of these studies have demonstrated that silk
fibroin offers an important platform for covalent and noncovalent immobilization of enzymes through
serving as a stabilization matrix/support with high retention of the biological activity of the enzymes
of interest. In the hope of providing suggestions for potential future research directions, this review
has been written to briefly introduce and summarize key advances in silk fibroin-based materials
for immobilization of both enzymes/biocatalysts (including alkaline phosphatase, β-glucosidase,
glucose oxidase, lipase, urease, uricase, horseradish peroxidase, catalase, xanthine oxidase, tyrosinase,
acetylcholinesterase, neutral protease, α-chymotrypsin, amylase, organophosphorus hydrolase,
β-galactosidase, carbonic anhydrase, laccase, zymolyase, phenylalanine ammonia-lyase, thymidine
kinase, and several others) and non-enzymatic catalysts (such as Au, Pd, Fe, α-Fe2O3, Fe3O4, TiO2, Pt,
ZnO, CuO, Cu2O, Mn3O4, and MnO2).

Keywords: silk fibroin; enzyme immobilization; metal; metal oxide; catalyst

1. Introduction

Silk fibroin, which gives silk unique physiochemical and mechanical properties, is naturally derived
from domesticated Bombyx mori silkworm cocoon silk [1]. Silk fibroin is relatively cheap and readily
available, and has been utilized for traditional textile applications, surgical sutures, and beyond [2–4].
Silk fibroin is a macromolecular protein containing large amounts of glycine, alanine, and serine [5,6],
as well as readily activated chemical groups, such as tyrosyl/phenol, sulfhydryl, and imidazole
groups [7,8]. Because of its unique amino acid sequence, silk fibroin displays conformational transition
from water soluble silk I structure to water-insoluble silk II structure in response to environmental
stimuli (Figure 1). Silk fibroin can be easily developed into various forms under mild, ambient, aqueous
conditions, such as fibers, powders (microspheres/nanoparticles), films, membranes, gels, hydrogels,
and scaffolds. In particular, silk fibroin possesses many important attractive inherent features which
suggest utility as an enzyme stabilization matrix [9], such as relative inexpensiveness, robust mechanical
properties, excellent biocompatibility, high microbial resistance, controllable biodegradability, suitable
stability due to extensive network of hydrogen bond cross-links [10,11], and unique block copolymer
structure consisting of large organized hydrophobic domains (i.e., self-assembled crystalline β-sheets)
and small flexible hydrophilic spacers [12], which could provide a stabilizing microenvironment
for enzyme stabilization [13]. Several different forms of silk fibroin have been investigated to serve
as supports for enzyme immobilization. Immobilization of bioactive enzymes could be built into
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diagnostic and therapeutic applications; immobilization of industrial enzymes would allow reuse of
expensive enzymes for expanded utility in industrial processes like food and cosmetics [13].
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Figure 1. Silk fibroin-based materials for catalyst immobilization. Schematic illustration of silk
fibroin-based material structures and silk fibroin-based methods for enzyme immobilization [13].

In 1976, Inada et al. applied for a patent on enzyme absorption by regenerated silk fibroin fibers
made from liquid silk in vivo [14]. Since then, there have been numerous papers on enzyme-immobilized
silk fibroin, which can be divided into three main approaches, including physical adsorption
(by van der Waals and/or hydrophobic interactions), entrapment (via bulk-loading and encapsulation
in microspheres/nanoparticles), and covalent attachment, respectively (Figure 1). The choice or
combination of immobilization approaches depends on application scenarios/purposes and properties
of the enzymes of interest [13]. Enzymes immobilized in silk fibroin have been characterized
by means of spectrophotometry (such as Fourier transform infrared spectroscopy (FT-IR), nuclear
magnetic resonance (NMR), electron spin resonance (ESR)) and microscopy (such as scanning electron
microscopy (SEM) and atomic force microscopy (AFM)), and evaluated in biosensors showing high
stability. A review of use of silk fibroin as supports for enzyme immobilization was published [15],
and a review of physical and chemical aspects of stabilization of small molecules and proteins in
silk fibroin biomaterials, covering horseradish peroxidase, glucose oxidase, and lipase as well as
several other enzymes, was also published before [13]. However, in the past five years, there were
few reviews of recent advances on the immobilization of enzymes on silk fibroin; even less reviews of
immobilization of non-enzymatic catalysts using silk fibroin as a support have been reported.

This review covers silk fibroin-based immobilization and stabilization of both enzymes/biocatalysts
and non-enzymatic catalysts during preparation, operation, and long-term storage. It is of note
that many readers may have encountered some contents of the immobilization of enzymes in
previous studies; we hope to offer a relatively comprehensive list for readers interesting in the silk
fibroin-based immobilization approach to easily find which enzymes have been investigated, as
well as the corresponding immobilization methods and explored applications. Previously reported
silk fibroin-stabilized enzymes in diverse forms (including fibers, films, scaffolds/sponges, gels,
and powders) were arranged roughly in chronological order to show the development of silk fibroin for
enzyme immobilization (Table 1, Section 2). A variety of silk fibroin-supported metal and metal oxide
catalysts were arranged according to the metal elements in the catalysts, demonstrating capability of
silk fibroin in maintaining activities of non-enzymatic catalysts (Table 2, Section 3). Challenges in the
silk fibroin-based immobilization approach were also discussed, and possible directions for future
research and development were suggested.
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Table 1. Silk fibroin-stabilized enzymes/biocatalysts listed in this review.

Section Immobilized Enzymes/Biocatalysts Forms Methods Explored Applications References

2.1

alkaline phosphatase

woven silk

absorption and covalent bond
through acid methylation,

glutaraldehyde and
azide/diazo-coupling

[7,8,16]
aspartate aminotransferase a

ribonuclease A a

[16]rennet a

glycyl-tRNA-synthetase a

fibers covalent bond through diazo and
cyanogen bromide coupling

[17,18]

scaffolds entrappment calcium phosphate
mineralization

[19]

2.2

β-glucosidase membranes entrappment [20]

eri silk fibrion
microparticles

adsorption cellobiose hydrolysis [21]

naringinase (a bienzyme system of
α-l-rhamnosidase and flavonoid-β-glucosidase) a

nanoparticles glutaraldehyde juice debittering [22]

2.3

glucose oxidase membranes entrapment and glutraldehyde [23]

membranes entrapment glucose sensor [24–26]

nonwoven fabrics glucose sensor [27]

gels [28–38]

invertase a powders [33]

membranes from waste
silk

glucose sensor [39,40]

membranes of
regenerated silk fibroin
and poly(vinyl alcohol)

entrappment glucose sensor [41–43]

films glucose sensor [44]

untreated films glucose sensor [9,45]

composite films of carbon
nanotubes and silk fibroin

glucose/O2 biofuel cell [46]

films on graphene glucose sensor [47]

microneedles glucose sensor [48]
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Table 1. Cont.

Section Immobilized Enzymes/Biocatalysts Forms Methods Explored Applications References

2.4

lipase membranes entrappment [49]

untreated films [9,45]

woven fabrics olive oil hydrolysis and
dodecanoic acid

esterification

[50]

gelled silk fibroin-calcium
alginate spheres

transesterification of
soybean oil with ethanol

for biodiesel

[51,52]

spheres enzymatic kinetic
resolution of halohydrins

[53]

fibers glutaraldehyde sunflower oil hydrolysis
for fatty acids

[54]

cholesterol oxidase a woven mats N-ethyl-N’-(3-dimethylaminopropyl)
carbodimide and

N-hydroxysuccinimide ligand
chemistry

[55]

2.5
urease membranes from silk

larvae
entrappment urea electrode [56]

membranes urea removal for wearable
artificial kidney

[57]

2.6 uricase membranes urate sensor [58]

2.7

horseradish peroxidase membranes from silk
larvae

H2O2 sensor [59]

membranes from waste
silk

H2O2 sensor [60–65]

dehydrogenases a

[65]glucose oxidase a

cholesterol oxidase a

membranes of
regenerated silk fibroin
and poly(vinyl alcohol)

H2O2 sensor [66–69]

a bienzyme system of horseradish peroxidase and
lactate oxidase a

lactate sensor [70]

scaffolds/sponges carbodiimide chemistry [71]

solutions [9,45]
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Table 1. Cont.

Section Immobilized Enzymes/Biocatalysts Forms Methods Explored Applications References

2.7

films entrapment [72,73]
lysozyme a

microspheres encapsulation [74]

inkjet printing [75]

optical gratings entrapment [76,77]

Au nanoparticles-silk
fibroin

H2O2 sensor [78]

Fe3O4 nanoparticles-silk
fibroin

glutaraldehyde electroenzymatic
oxidation of bisphenol-A

[79]

2.8

catalase films on graphite reduction of H2O2 and
NO

[80]

membranes adsorption and covalent
cross-linking

[81]

inkjet printing bubble-propulsive
self-motile micro-rockets

[82]

2.9 xanthine oxidase membranes electrode for estimating
fish freshness

[83]

2.10
tyrosinase fibrous matrix glutaraldehyde large-scale production of

L-DOPA
[84]

composite films of carbon
nanotubes-cobalt

phthalocyanine-silk
fibroin

bisphenol A sensor [85]

graphene-silk peptide
nanosheets

[86]

2.11
acetylcholinesterase Au nanoparticles-silk

fibroin
pesticide sensor [87]

silk fibroin-carbon
nanotubes

adsorption [88]

2.12
neutral protease

nanoparticles glutaraldehyde
hydrolyze sericin

[89]L-asparaginase a

β-glucosidase a
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Table 1. Cont.

Section Immobilized Enzymes/Biocatalysts Forms Methods Explored Applications References

2.13 α-chymotrypsin electrospun fibers glutaraldehyde [90–92]

2.14 amylase woven fabric glutaraldehyde food and pharmaceutical
industrial applications

[93]

2.15 organophosphorus hydrolase gels entrapment organophosphate
insecticides

[94]

2.16 β-galactosidase polyacrylonitrile grafted
fibers

glyoxal [95]

2.17

carbonic anhydrase silk fibroin-coated
hydroxyapatite
micro-particles

ultrasonically bonded entrapment [96]

hydrogels dual-cross-linking CO2 sequestration [97]

hydrogels Ru(II)-mediated photo-chemical
cross-linking [98]lysozyme a

xylanase a

2.18
laccase hydrogels Ru(II)-mediated photo-chemical

cross-linking
polymerization of pyrrole [99]

grafting of lignin [100]

2.19 zymolyase Fe3O4-embedded silk
fibroin microspheres

Ru(II)-mediated photo-chemical
cross-linking

disruption of yeast cells [101]

2.20 L-asparaginase powders glutaraldehyde anti-leukemia [102–105]

β-glucosidase a [104]

2.21 phenylalanine ammonia-lyase microparticles encapsulation oral enzyme therapy of
phenylketonuria

[106]

2.22 thymidine kinase recombinant
silk-elastin-like protein

polymers

viral gene delivery in
anticancer treatment

[107,108]

a Similar immobilization methods could be extended to enzymes shown in italic font.
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Table 2. Silk fibroin-supported non-enzymatic catalysts listed in this review.

Section Immobilized Non-Enzymatic Catalysts Explored Applications References

3.1

core–shell nanostructured gold (Au) colloid–silk fibroin bioconjugate [109]

Au nanoparticles/reduced graphene oxide oxygen reduction reaction (ORR) [110]

hybrid wool keratin/Au nanoparticles sensors for copper ions and dopamine [111]

Au nanozyme/bovine serum albumin H2O2 sensor [112]

millimeter-large Au single crystals [113]

3.2 palladium (Pd) chemoselective hydrogenation [114–116]

3.3
iron (Fe) phenol hydroxylation [117]

hematite (α-Fe2O3) H2O oxidation [118,119]

ferriferous oxide (Fe3O4) H2O2 sensor [120]

3.4
titanium dioxide (TiO2) and TiO2@Ag nanoparticles photocatalytic degradation of methylene orange [121]

TiO2 and Ni-P metallization layer [122]

3.5
platinum (Pt) nanoparticles conversion of 4-nitrophenol into 4-aminophenol [123]

Pt microspheres on multi-walled carbon nanotubes H2O2 sensor [124]

3.6
zinc oxide (ZnO) photocatalytic degradation of rhodamine B [125]

Au nanoparticles and ZnO nanotubes H2O2 sensor [126]

ZnO/Au layered structure solar energy harvesting [127]

3.7
cupric oxide (CuO) photocatalytic degradation of Congo Red [128]

cuprous oxide (Cu2O) embedded in carbon spheres glucose sensor [129]

3.8
trimanganese tetraoxide (Mn3O4) [130]

manganese dioxide (MnO2) H2O2 sensor [131–135]
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2. Immobilization of Enzymes/Biocatalysts

2.1. Alkaline Phosphatase

Grasset et al. reported using woven silk as a carrier for immobilization of alkaline phosphatase and
aspartate aminotransferase in 1977 [7]. The enzymes were fixed by physical absorption and covalent
bond through acid methylation [7], glutaraldehyde [8], and the azide/diazo-coupling technique [8,16].
These immobilization methods were easy and allowed maintain of enzyme activity [7]. Cordier et al.
investigated the immobilization of ribonuclease A [16], glycyl-tRNA-synthetase, and industrial rennet
onto woven silk using the diazo-coupling method. The immobilized ribonuclease A retained 63%
activity after 7.2 months of storage in 0.1 M NaCl at 0–48 ◦C [16].

Asakura et al. reported immobilization of alkaline phosphatase on silk fibroin fiber by covalent
bond through the diazo and cyanogen bromide coupling methods, characterized the immobilized
enzyme (Michaelis constant Km and maximum activity Vm), and optimized the immobilization
conditions (such as pH, enzyme concentration, reaction time and temperature). They found that
immobilization shifted the optimum pH of the enzyme to the acid side, improved the thermal stability
of the enzyme above 50 ◦C, and maintained activity over a long period [17]. Demura et al. investigated
the immobilized enzyme and silk fibroin during the reaction process and after the reaction by scanning
electron microscopy (SEM), electron spin resonance (ESR), and nuclear magnetic resonance (NMR). In
addition, the activity of the immobilized alkaline phosphatase could be much improved by pretreatment
of silk fibroin fibers by low-temperature plasmas [18].

Samal, Dubruel, and Kaplan studied alkaline phosphatase mediated homogeneously formation
of apatite minerals on porous silk fibroin scaffolds under physiological conditions (Figure 2). It was
explained that the active metallic sites of alkaline phosphatase interacted with the acid (-COOH)
and amino (-NH2) groups of silk fibroin, as a result, alkaline phosphatase was entrapped within
the porous silk fibroin scaffold. The immobilized alkaline phosphatase further induced deposition
of calcium phosphate/mineralization. It was found that the mineral structure varied at different
alkaline phosphatase concentrations, and that 20 mg·mL−1 alkaline phosphatase mineralized silk
fibroin scaffolds maximized MC3T3 osteoblast cell differentiation to obtain bone-like tissue in vitro.
These results demonstrated a simple and efficient strategy to fabricate mineralized scaffolds for bone
tissue engineering applications [19].
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into silk fibroin scaffolds. Reprinted with permission from REFERENCE [19]. Copyright (2014) John
Wiley and Sons.

2.2. β-Glucosidase

Fukui and co-workers reported immobilization of β-glucosidase in insoluble silk fibroin
membrane by drying silk fibroin and enzyme mixture and subsequent ethanol treatment in 1978.
The immobilized β-glucosidase retained 47% activity using p-nitrophenyl-β-d-glucopyranoside as a
substrate, and showed improved stability against heating, electrodialysis, protease/papain treatment,
and storage. It was found that immobilization increased the activation energy of the enzyme slightly,
but did not significantly change pH dependency of the enzyme [20].

Puri and co-workers studied the immobilization of β-glucosidase by adsorption to eri silk fibroin
microparticles with a 62% immobilization yield. The ultrafine powders were produced by a wet milling
and spray drying process without using chemicals. The results showed that immobilization changed
the optimum pH (from 4.0 to 5.0 at 60 ◦C) and kinetics (the Michaelis constant Km from 0.16 to 0.27 mM)
of the enzyme. The immobilized enzyme exhibited enhanced stability under thermal denaturation at
70 ◦C, and good reusability maintaining more than 50% of initial activity for up to eight cycles. Porous
crystalline silk fibroin microparticles provide a promising support for immobilization of β-glucosidase
for effective cellobiose hydrolysis for potential application in biofuel production [21].

Zhang and co-workers studied covalent immobilization of naringinase, which is a bienzyme of
α-l-rhamnosidase and flavonoid-β-glucosidase, on silk fibroin nanoparticles using glutaraldehyde. Silk
fibroin nanoparticles were produced by rapidly adding an aqueous solution of regenerated silk fibroin
into excess organic solvents (acetone). The activities in naringin hydrolysis of the immobilized enzyme
were analyzed by high-performance liquid chromatography (HPLC), showing similar kinetics and
optimum reactive temperature to those of the free enzyme. In addition, the immobilized enzyme could



Molecules 2020, 25, 4929 10 of 41

be easily separated and recovered by simple centrifugation, and be used repeatedly; after 8 repeated
reaction cycles (8–10 h at 55 ◦C for each cycle), the immobilized enzyme retained about 70% residual
activity. These results demonstrated a highly efficient processing technology to produce low-cost
immobilized naringinase, showing great potential in industrial naringin-containing juice debittering
processing [22].

2.3. Glucose Oxidase

Kuzuhara et al. reported immobilization of glucose oxidase in a silk fibroin membrane, which
were treated with 80% methanol (and glutaraldehyde to serve as a control). The immobilized glucose
oxidase recovered 98% activity with 3.71 × 10−3 U glucose oxidase immobilized in 1.1 mg silk fibroin
membrane, maintain activity with only 0.05% enzyme leakage over one month, and exhibited improved
stability to pH and heat at 40–60 ◦C, retaining 100% and 97% activity after 20 min at 60 ◦C and 70 ◦C,
respectively, while free enzyme lost activity at above 60 ◦C. Infrared spectrum of the immobilized
enzyme indicated that structural configuration was random coil inside the silk fibroin membrane and
anti-parallel β-sheet on the surface [23].

Demura at al. studied immobilization of glucose oxidase in regenerated silk fibroin membrane by
simple physical treatment, such as stretching (i.e., uniaxially drawing by placing on a stretcher),
compressing and standing under high humidity (i.e., hydration by placing in a desiccator of
96% relative humidity for 17 h) and methanol-immersion [24–26]. The results showed that the
configuration transition of silk fibroin (from random coil to anti-parallel β-sheet) led to a similar
simultaneous insolubilization of the membrane, and thereby immobilization of the enzyme, regardless
of methanol-immersion and the physical treatment. However, the activity and stability of the
immobilized enzyme depended on the characteristics of the silk fibroin membrane, for instance, the
fraction of anti-parallel β-sheet and permeability of glucose and oxygen. Immobilization improved
stability of the enzymes against pH and heat, although the optimum pH shifted to around pH 7.0.
Furthermore, the glucose oxidase-immobilized silk fibroin membrane was applied in the development
of the glucose sensor in a steady state analysis system based on an oxygen electrode, obtaining a linear
relationship between output and glucose concentration within 0–5 mM for 0.2% enzyme in membrane,
0–9 mM for 0.02% enzyme in membrane, and 0–25 mM for 0.002% enzyme in membrane [25,26].

Moreover, Asakura et al. reported glucose oxidase was immobilized on nonwoven fabrics of silk
fibroin and silk fibroin gel, when applied in the glucose sensor, four times increase in sensitivity was
observed, compared with glucose oxidase immobilized in the silk fibroin membrane [27]. Asakura
and co-workers tried to clarify the enzyme reaction mechanism in the silk fibroin membrane/gel
using nuclear magnetic resonance (NMR), particularly high-resolution multi-nuclei NMR and 13C
cross-polarization/magic angle spinning (CP/MAS) NMR, and electron spin resonance (ESR, Figure 3) to
characterize the state of substrate and immobilized enzyme [28–37]. For example, diffusion coefficient of
small paramagnetic substrate molecules into silk fibroin gel was determined [38]. In addition, Asakura
and co-workers reported immobilization of invertase in silk fibroin powders, which were prepared
from aqueous solutions of silk fibroin by different insolubilization methods. Immobilization improved
thermal stability of invertase. In addition, the structures of silk fibroin powders (spin-labeled at the
OH group of the tyrosine side chain) in the swollen state in water were characterized by electron spin
resonance (ESR) and 13C nuclear magnetic resonance (NMR), and the dry state by Fourier transform
infrared spectroscopy (FT-IR). The results indicated that insolubilization affected the conformational
transition of silk fibroin from the random coil to antiparallel β-sheets [33].
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Figure 3. Schematic representation of immobilization of glucose oxidase in silk fibroin membrane. Left:
water-insoluble membrane (A) in dry state, (B) in aqueous solution, (C) swollen by water, and (D)
relation between ESR spectra patterns and the non-crystalline region in the spin-labeled silk fibroin
membrane. Right: proposed model of glucose oxidase in the membrane. Reprinted with permission
from REFERENCE [32]. Copyright (2004) John Wiley and Sons.

Yu and co-workers reported immobilization of glucose oxidase in regenerated silk fibroin from
waste silk from a silk mill. The glucose oxidase-immobilized membrane was analyzed by Fourier
transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and electronic absorption
bands. The FT-IR spectra showed a composite of the absorption bands of structural characteristics
of both silk fibroin and glucose oxidase. The electronic absorption bands and SEM showed that
glucose oxidase aggregates in the membrane. Then the glucose oxidase-immobilized membrane was
applied in developing tetrathiafulvalene-mediated [39] and ferrocene-mediated [40] glucose sensors,
based on transferring electrons between the immobilized enzyme and a glassy carbon electrode.
The immobilization protected glucose oxidase against auto-inactivation and thermo-deactivation,
resulting in a fast response time and good stability of the sensors. Furthermore, in order to improve
the mechanical property of the membrane, they reported blend membranes of regenerated silk fibroin
and poly (vinyl alcohol) PVA at a ratio of 1:5 for the immobilization of glucose oxidase with ethanol
treatment. The glucose oxidase-immobilized membrane were applied in construction of a glucose
sensor with a hydrogen peroxide probe, which determined glucose with a fast response time, good
reproducibility, high storage and operational stability. In addition, poly (ethylene glycol) PEG was
added as a reagent for making holes in the membrane to decrease resistance to material transport.
The glucose oxidase-immobilized membrane was applied in construction of a glucose sensor through
coupling the Clark oxygen electrode. The resultant glucose sensor showed improved stability in a
broad range of pH and temperature [41–43].

Zhang and co-workers reported immobilization of glucose oxidase in methanol-treated silk fibroin
films with high storage stability; activity maintained in broad pH (5.0–10.0) and temperature (20 to
50 ◦C) ranges, over two years (when stored at 4 ◦C). Based on the glucose oxidase-immobilized silk
fibroin membrane, oxygen electrode and a temperature control system, a glucose sensor was developed,
showing a broad range of linear response for glucose, and capable of detecting over 60 biosamples per
h, and over 1000 repeated times for biosamples [44].
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Kaplan and co-workers reported untreated silk fibroin films loaded with 1 wt% glucose oxidase,
showing good long-term stability over months when stored at 4 ◦C and 25 ◦C. Moreover, it was found
that glucose oxidase showed higher stability in untreated films compared with methanol-treated
films, probably due to stacked β-sheet and thereby more hydrophobic and restrictive structures of
methanol-treated films [9,45].

Chen and co-workers reported development of a high-performance bioanode based on the
composite of ferrocenecarboxaldehyde-immobilized ethylenediamine-functionalized carbon nanotubes
and glucose oxidase-immobilized silk fibroin films (Figure 4). The resultant electrode exhibited good
activity and excellent stability, and used as the bioanode for glucose/O2 biofuel cell [46].
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Pak and co-workers reported a glucose oxidase-immobilized silk fibroin film on graphene field
effect transistor (FET) as a glucose sensor (Figure 5). The sensor exhibited excellent selectivity and
sensitivity, a linear detection range of 0.1 to 10 mM glucose concentration, which was useful for
diabetes diagnostics. This study provided a promising long-term stable, flexible, portable, wearable,
biocompatible and implantable silk fibroin-based sensor for patch type, highly selective, sensitive,
and continuous real-time glucose level monitoring applications [47].
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graphene field effect transistor and proposed mechanism of glucose sensing process. Reprinted with
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Zheng and Lu illustrated design and performance of a glucose oxidase-immobilized silk/D-sorbitol
pyramidal microneedle integrated with platinum (Pt) and silver (Ag) wire-based minimally invasive
electrochemical biosensor for continuous glucose monitoring. The immobilized glucose oxidase
displayed high stability, quick response at low glucose concentrations, and a linear correlation within
1.7–10.4 mM glucose concentration [48].

2.4. Lipase

Asakura and co-workers reported immobilization of lipase in silk fibroin membrane. By methanol
immersion treatment, no leakage of the immobilized enzyme was observed. After being immobilized,
the optimum temperature shifted to 50 ◦C from 20 ◦C of the free enzyme, and stability improved at
50 ◦C with less than 2.5% inactivation of that of the free enzyme; the optimum pH also shifted to higher
values on the alkaline side as compared to that of the free enzyme. The immobilized enzyme and
tributyrin as the substrate was further studied by 13C NMR, implying that the stabilization effect was
mainly attributed to the unique structure of silk II crystalline [49].

Kaplan and co-workers reported immobilization of glucose oxidase, horseradish peroxidase and
lipase in silk fibroin films with respect to long-term storage, maintaining significant activity (>40% and up
to 100%) over 10 months storage at temperatures ranging from 4 to 37 ◦C. The effect of silk film processing
methods on the enzyme stability was investigated and optimized, showing that the immobilized enzymes
were more stable in silk films without methanol treatment than those with methanol treatment. Silk
fibroin structural changes, enzyme distribution and denaturation/renaturation were investigated,
suggesting that the stabilization effect was correlated to intermolecular interaction between silk fibroin
and enzymes, as well as enzyme sensitivity to oxidation and hydrophobic-hydrophilic interfaces in the
microenvironment established by the unique structure of silk fibroin [9,45].

Tan and co-workers studied immobilization of lipase by silk fibers in the form of woven fabric.
The hydrophilic/hydrophobic properties of the silk fibers were tuned by functionalization with
methyl groups via treatment with amino-functional polydimethylsiloxane (PDMS). The effects of pH,
temperature, and organic media with different water content range from 1 to 10% (v/v) on the activity
and stability of lipases were investigated and compared. It was found that lipase immobilized on
hydrophobic silk fibers showed better activity and significantly improved operational stability (over
a wider pH range and a shift in optimum temperature) in olive oil hydrolysis and dodecanoic acid
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esterification, compared with those on hydrophilic silk fibers and the free lipase. In addition, even
after 27 repeated cycles, the yield maintained around 97%. These results indicated that woven silk
fabrics could be a potential lipase immobilization support for industrial applications [50].

Porto and co-workers investigated immobilization of lipase in a blend of gelled silk fibroin-calcium
alginate spheres for enzymatic kinetic resolution of chlorohydrins as substrates. The enantioselectivity
was sufficient for simple and low cost synthesis of alcohols and acetates in good yields and high
enantiomeric purities [51]. Then, the immobilized lipase was applied to catalyze transesterification of
soybean oil with ethanol under different conditions for industrial production of biodiesel (fatty acid
ethyl esters). The optimized conditions were found to be 150 mg of soybean oil, 450 µL of ethanol,
and 30 wt% immobilized lipase, when reacted at 32 ◦C for 48 h, resulting in a biodiesel yield of 42%,
and the immobilized lipase maintained reusable in four repeated cycles [52]. Furthermore, lipase
immobilized on silk fibroin spheres was used in enzymatic kinetic resolution of halohydrins, to obtain
optically active chiral epoxides (in enantiomerically pure form). The immobilized lipase exhibited
good activities, high selectivity and high enantiomeric excess up to 99%, reinforcing versatility of the
biodegradable silk fibroin as an eco-friendly and efficient support for heterogeneous catalysts [53].

Goswami and co-workers reported immobilization of lipase on silk fibroin fibers via covalent
cross-linking with glutaraldehyde for hydrolysis of sunflower oil for production of fatty acids.
A maximum lipase loading of 59 U·g−1 silk fiber was obtained. The immobilized lipase showed
improved stability up to 2 month at 4 ◦C, and could be reused in 4 repeated cycles [54]. Moreover,
cholesterol oxidase was covalently immobilized onto silk fibroin fiber in the form of porous woven
mats. Using N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide ligand
chemistry, the loading efficiency was 70%, and the maximum loading was 0.046 U·cm−2 woven mats.
The immobilized enzyme displayed remarkably storage stability up to 13 months at 4 ◦C, and could be
reused in 25 repeated cycles (for a period of 6 h). These results demonstrated that silk fibroin provided
a suitable enzyme immobilizing matrix with good stability, selectivity, sensitivity, and reproducibility
promising for future development of biosensors [55].

2.5. Urease

Deng and co-workers reported immobilization of urease in silk fibroin (obtained directly from the
middle division of the silk gland in full-grown larvae of living Bombyx mori) membrane by methanol
immersion based on structural transition from random coil to anti-parallel β-sheet for construction of
an urea electrode. The resultant urease-immobilized silk fibroin electrode exhibited high activity, short
response time, superior thermal stability, excellent reproducibility (from batch-to-batch), and favorable
sufficient lifetime (at room temperature for 3 months in air) [56].

Park and co-workers studied immobilization of urease in silk fibroin membrane and evaluated its
performances in terms of urea removal efficacy as a filtering system for peritoneal dialysate regeneration
in wearable artificial kidney (Figure 6). The urease-immobilized silk fibroin membranes showed
high porosity (as revealed by SEM-EDX analysis and porosity test) and water-binding abilities, when
employed as filters, could remove 60% of urea in 50 mg·dL−1 urea solution, and 90% of urea in the
peritoneal dialysate after 24 h filtration. The results suggested that silk fibroin membranes provide
a suitable condition for efficient enzyme immobilization and urea removal, promising in peritoneal
dialysate regenerative systems [57].
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2.6. Uricase

Zhang et al. reported immobilization of uricase in silk fibroin membrane, which together with
and an oxygen electrode was implanted in an amperometric urate sensor in a flow injection system for
clinical diagnoses and fermentation. The urate sensor with a size of less than 10 mm in diameter could
be stored for over 2 years, stable in phosphate buffer (from pH 7.80 to pH 9.00) for 3–4 months, used
repeatedly for more than 1000 times for measurement of biosamples such as human serum or urine,
and measure more than 60 biosamples per hour for rapidly determining uric acid level [58].

2.7. Horseradish Peroxidase

Asakura and co-workers reported immobilization of peroxidase in silk fibroin (obtained directly
from silk larvae) membrane without any chemical cross-linking agents, and applied to biophotosensors
for determining the concentration of hydrogen peroxide generated by the luminol reaction. It was
found that the photocurrent from the photodiode increased linearly with the concentration of hydrogen
peroxide in aqueous solution. In addition, the response time depended on the characteristics of
the peroxidase-immobilized silk fibroin membrane; the response was fast and the intensity of the
photocurrent was strong when peroxidase was distributed asymmetrically in the membrane, compared
with peroxidase uniformly distributed [59].

Yu and co-workers investigated regenerated silk fibroin membrane prepared from waste silk
for immobilization of horseradish peroxidase. The horseradish peroxidase-immobilized silk fibroin
membrane and a glassy carbon electrode were used to fabricate an amperometric H2O2 sensor using
phenazine methosulfate as the electron transfer mediator. The sensor displayed high sensitivity
with a detection limit of 1.0 × 10−7 M, and a response time of less than 5 s for optimum analytical
performance [60]. It was found that other organic agents such as meldola blue, methylene blue (with a
response time of less than 40 s and storage stability over 2 months at 4 ◦C) [61,62], tetrathiafulvalene
(with good reproducibility) [63], cresyl fast violet, catechol violet, methylene violet, brilliant cresyl
blue, toluidine blue, and methylene green [64] could also provide suitable effective electron shuttles in
development of a reliable, low-cost, highly sensitive sensor for H2O2 promising for practical application
in bioanalysis. In addition, a H2O2 biosensor with remarkable long-term stability in organic media for
organic-phase enzymatic assay was also prepared based on ferrocyanide-mediated electron transfer
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between a glassy carbon electrode with immobilized horseradish peroxidase and other enzymes such
as dehydrogenases, glucose oxidase and cholesterol oxidase in water-isopropyl alcohol system [65].

Moreover, in order to improve the mechanical properties, a blend membrane of regenerated silk
fibroin and poly (vinyl alcohol) PVA was prepared for the immobilization of peroxidase by ethanol
treatment for fabrication of a ferrocene-mediated H2O2 sensor [66]. This method could be extended to
other mediators such as meldola blue (with a detection of limit of 0.1 pM) [67], methylene blue (with a
detection limit of 5.0 pM, operating and storage stabilities as well as rapid response time) [68], phenazine
methosulfate, cresyl fast violet, catechol violet, methylene green [69], brilliant cresyl blue, toluidine
blue, and 3-pnaphthoyl-Nile Blue A. Furthermore, immobilization of a bi-enzyme system of lactate
oxidase and horseradish peroxidase in a blend membrane of regenerated silk fibroin and poly (vinyl
alcohol) (PVA) was studied for construction of an amperometric phenazine methosulfate-mediated
sensor highly selective and sensitive to lactate with a rapid response time within 20 s [70].

Oliva et al. investigated intermediates in the enzymatic oxidation reaction of silk fibroin with
H2O2 in the presence of horseradish peroxidase by electron paramagnetic resonance (EPR) and
ultraviolet/visible (UV/Vis) spectrophotometry, demonstrating that in aqueous solutions tyrosine side
chains of silk fibroin as electron donor reacted with horseradish peroxidase and H2O2 generating
phenoxyl radicals [136].

Kaplan and co-workers reported covalent immobilization of horseradish peroxidase in gradient
manner (with bilaterally symmetrical patterns) in three-dimensional (3D) silk fibroin scaffolds/sponges
using water-soluble carbodiimide chemistry [71]. Kaplan and co-workers also reported increasing
horseradish peroxidase activity and storage stability by addition of silk fibroin solution [9,45]. Under
optimum conditions, horseradish peroxidase maintained more than 90% activity when stored at 4 ◦C,
room temperature, and 37 ◦C over 2 months. Using Fourier transform infrared spectroscopy (FT-IR)
and differential scanning calorimetry (DSC), they further investigated the mechanism of stabilization
of horseradish peroxidase as well as lysozyme in silk fibroin films with respect to β-sheet secondary
structure content, water content, and enzyme release through controlling crystallinity by methanol
and proteolytic degradation by protease (Figure 7) [72,73]. Moreover, horseradish peroxidase was
immobilized via freeze-thaw encapsulation in silk fibroin microspheres (about 2 µm in diameter).
The silk fibroin microspheres consisting of physically cross-linked β-sheet structure were prepared
using phospholipid vesicles as templates, which were subsequently removed by methanol or sodium
chloride treatments (Figure 8). Horseradish peroxidase activity was retained [74].
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Omenetto and co-workers investigated bio-printing of silk fibroin (Figure 9). Inkjet-printable
water-based horseradish peroxidase-doped silk fibroin inks were printed on conventional paper,
and less than 5% loss of horseradish peroxidase was observed with 30 min of the printing process [75].
Horseradish peroxidase activity was also preserved when immobilized via entrapment into silk optical
gratings, allowing surface nanopattern down to 125 nm [76,77].
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Ai and Zhu reported preparation of a H2O2 sensor by immobilization of horseradish peroxidase
on gold nanoparticle—silk fibroin-modified glassy carbon electrode. A horseradish peroxidase surface
coverage of 1.8 × 10−9 mol·cm−2 was achieved. The immobilized horseradish peroxidase retained 95%
residual activity when stored at 4 ◦C for 30 days [78]. Ai and co-workers investigated immobilization
of horseradish peroxidase on silk fibroin nanoparticles for electroenzymatic oxidation of bisphenol-A
(organophosphorus compounds) in a membraneless electrochemical reactor (Figure 10). Aminated
magnetic silk fibroin nanoparticles were prepared by covalently bond silk fibroin and poly(amido
amine) PAMAM onto magnetic Fe3O4 nanoparticles. Then horseradish peroxidase was covalently
immobilized onto the silk fibroin nanoparticles via glutaraldehyde. Under the optimum conditions,
80.3% of bisphenol-A was degraded [79].
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2.8. Catalase

Hu and co-workers reported immobilization of horseradish peroxidase and catalase in regenerated
silk fibroin films on graphite electrodes. The catalase-immobilized silk fibroin films exhibited a pair
of well-defined cyclic voltammetric peaks showing potential in development of new biosensors.
The immobilized catalase maintained activity in reduction of H2O2 and nitric oxide [80].

Wang and Fan investigated immobilization of catalase onto ethanol-treated regenerated silk
fibroin membranes through physical adsorption and covalent cross-linking to tyrosinase oxidized silk
fibroin. The immobilized catalase exhibited higher residual enzyme activity, durability, thermal and
pH stability, and alkali resistance than the free catalase [81].

Zhao and Ebbens reported fabrication of rapidly moving bubble-propulsive self-motile
micro-rockets with digitally defined size and shape by alternate inkjet printing of methanol and
silk fibroin ink doped with catalase as a propulsion generating enzyme (Figure 11). The enzymatic
activity was retained even at acidic pH (pH 4), and the enzyme stability was maintained for long
durations [82].
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alternate printing of a silk/PEG ink and methanol to build the second half of the micro-rocket; immersing
the micro-rockets into a fluidic swimming media with ultrasonication to remove from the substrate.
Reprinted with permission from REFERENCE [82]. Copyright (2016) John Wiley and Sons.

2.9. Xanthine Oxidase

Peng and co-workers reported immobilization of xanthine oxidase on a silk fibroin membrane,
which together with a cellulose acetate membrane were made into a bilayer coated wire electrode for
estimating fish freshness. The resultant electrode was based on detecting H2O2 released from reaction
between xanthine oxidase and hypoxanthine in fish tissue samples, showing high sensitivity, good
long-time stability (for 6 weeks or 400 assays) and a detection limit of hypoxanthine of 1 × 10−7 M [83].

2.10. Tyrosinase

Kundu and co-workers studied covalent immobilization of tyrosinase in silk fibroin fibrous
matrix for production of L-DOPA (3,4-dihydroxyphenyl-l-alanine) through bioconversion of tyrosine.
Tyrosinase was cross-linked to silk fibroin using glutaraldehyde coupling, leading to an enzyme loading
of 50,000 U·g−1. The immobilized tyrosinase exhibited high storage (during 10 days), pH (optimum at
pH 5.5) and thermal stability (optimum at 40 ◦C), and reusability, as well as good kinetics/conversion
rates with little mass transfer resistances. This study provided a cheaper and more efficient method
promising for large-scale production of L-DOPA [84].

Ai and Zhu reported immobilization of tyrosinase on a glassy carbon electrode coated by a
composite film of multiwall carbon nanotubes-cobalt phthalocyanine-silk fibroin. Through taking the
unique advantages of silk fibroin stabilization effect, the immobilized tyrosinase retained its activity
and stability, and was applied in fabrication of an amperometric biosensor for sensitive and reliable
determining levels of phenolic compounds, such as assays of bisphenol A in plastic products. With
synergistic effect of immobilized tyrosinase, multiwall carbon nanotubes (with excellent inherent
electron conductivity) and cobalt phthalocyanine (with good electrocatalytic electrooxidation activity),
the biosensor exhibited a well-defined cyclic voltammogram of bisphenol A, a linear correlation
between the current signal and the bisphenol A concentration in a range of 5.0 × 10−8 to 3.0 × 10−6 M
with a detection limit of 3.0 × 10−8 M under optimum conditions [85].
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Li and co-workers reported immobilization of tyrosinase in graphene–silk peptide nanosheets.
The immobilized tyrosinase maintained good catalytic activity, and was used in development of
an amperometric biosensor for determination of phenolic compounds, based on in situ monitoring
of quinine species generated by tyrosinase catalysis of phenolic compounds in the presence of
molecular oxygen. The resultant biosensor displayed wide linear range, good sensitivity, repeatability,
reproducibility and long-term stability, as well as analytical performance with low detection limits of
0.23, 0.35, and 0.72 nM for catechol, phenol, and bisphenol A, respectively. The biosensor was applied
to evaluate trace amounts of bisphenol A leaching from commercial plastic drinking bottles [86].

2.11. Acetylcholinesterase

Ai and Zhu reported immobilization of acetylcholinesterase on gold nanoparticles and silk fibroin
modified platinum electrodes for pesticide analysis. The immobilized acetylcholinesterase retained its
activity, and was applied for development of a simple and inexpensive amperometric biosensor for trace
level determination of carbamate and organophosphate pesticides using acetylthiocholine chloride as
a substrate. The prepared biosensor showed fast response, high sensitivity, good reproducibility and
acceptable stability. Under optimum conditions, the detection limits for methyl paraoxon, carbofuran,
and phoxim were estimated to be 2 × 10−11 M, 1 × 10−10 M, and 2 × 10−9 M, respectively [87].

Kang and co-workers reported immobilization of acetylcholinesterase on regenerated silk fibroin by
non-covalent adsorption. The acetylcholinesterase-immobilized silk fibroin was coated on a multiwall
carbon nanotube-modified glassy carbon electrode, and then developed into an amperometric biosensor
for determination of organophosphate and carbamate pesticides using thiocholine as a substrate.
The immobilized acetylcholinesterase preserved its activity, and the resultant biosensor showed wide
linear ranges, high sensitivity, fast response, well repeatability, acceptable reproducibility, and long-term
stability. The detection limits for methyl parathion and carbaryl were found to be 5.0 × 10−7 M and
6.0 × 10−8 M, respectively. The biosensor was applied to rapidly determine the contents of pesticides
in vegetable samples [88].

2.12. Neutral Protease

Zhang and co-workers reported covalent immobilization of a neutral protease on silk fibroin
nanoparticles. The crystalline silk fibroin nanoparticles were produced by adding an aqueous solution
of silk fibroin into excess organic solvent (i.e., acetone). The neutral protease was efficiently cross-linked
on silk fibroin nanoparticles using glutaraldehyde, obtaining an enzyme loading ratio of 1 IU per 58 mg
silk fibroin. The immobilized neutral protease showed improved thermal and pH stability and activity
in vitro, and was used repeatedly to hydrolyze silk sericin into sericin peptides. The range of molecular
masses of the sericin peptide produced (<30 kDa) could be adjusted by extending the reaction time.
This study provided an inexpensive method for large-scale production of sericin peptides, showing
great potential for practical applications in food processing. In addition, this method was further
employed for immobilization of L-asparaginase and β-glucosidase [89].

2.13. α-Chymotrypsin

Lee and co-workers reported immobilization of α-chymotrypsin onto electrospun silk fibroin
fibers. Silk fibroin fibers were modified with silk sericin using glutaraldehyde. The immobilized
α-chymotrypsin exhibited good stability against denaturation, retaining 78% activity even after 1 h of
ethanol treatment [90]. Moreover, silk fibroin nanofibers with different diameters were prepared by
electrospinning, showing high enzyme loading up to 5.6 wt%. The immobilized α-chymotrypsin on
silk fibroin nanofiber exhibited higher stability and activity, which was eight times of than that on silk
fibroin fiber, and increased along with decrease in the fiber diameter [91]. Furthermore, two different
operation modes for the α-chymotrypsin-immobilized electrospun silk fibroin nanofibrous membrane
were compared, showing lower Michaelis–Menten Km and higher Vmax in the membrane reactor mode
than that in the batch reactor mode [92].
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2.14. Amylase

Rani et al. reported covalent immobilization of amylase on woven silk fibroin fabric through
glutaraldehyde coupling. The woven fabric was chemically charged by chlorination and diazotization
activation. Immobilization improved enzyme thermal stability; the optimum temperature increased to
60 ◦C as compared to 50 ◦C of the free enzyme. The immobilized amylase remained stable for more
than 4–5 months when stored at 4 ◦C in 1 M KCl solution. These results suggested a potential method
for immobilization of amylase in food and pharmaceutical applications [93].

2.15. Organophosphorus Hydrolase/Aryldialkylphosphatase

Naik and co-workers studied immobilization of organophosphorus hydrolase in silk fibroin
through entrapment. Silk fibroin was dissolved in a neutral pH salt solution and dialyzed against water.
An aqueous solution of the regenerated silk fibroin was mixed with organophosphorus hydrolase and
subsequently dried or gelled. Immobilization preserved organophosphate hydrolysis activity and
increased stability of organophosphorus hydrolase under a variety of harsh environmental conditions,
such as thermal denaturation, UV light exposure, detergents, and organic solvents. Silk fibroin
entrapment allowed more complex formulations of organophosphorus hydrolase, such as dispersal
into a polyurethane-based coating, promising for bioremediation of organophosphate insecticides on
an industrial scale and chemical warfare agents [94].

2.16. β-Galactosidase

Monier studied covalent immobilization of β-galactosidase on polyacrylonitrile-grafted natural
worm silk fibers. The modified silk fibers were prepared by graft copolymerization of polyacrylonitrile
in the presence of benzophenone as a photoinitiator, and then activated by hydrazine hydrate.
β-galactosidase was cross-linked by glyoxal. After immobilization, Michaelis–Menten constant Km

increased, Vmax decreased, the optimum pH shifted slightly to 7 as compared to 6.5 of the free enzyme,
and the optimum temperature increased by 5 ◦C, suggesting improved pH and thermal stability [95].

2.17. Carbonic Anhydrase

Barralet and co-workers reported immobilization of carbonic anhydrase on silk fibroin-coated
hydroxyapatite microparticles through ultrasonically bonded entrapment. The immobilized carbonic
anhydrase exhibited a remarkable operational and storage stability. Particularly, immobilized carbonic
anhydrase maintained almost 100% activity after 1 h at 110 ◦C, and 45% activity after 3 weeks at 80 ◦C
in an amine solution, indicating excellent thermal stability over that of the free enzyme [96].

Cha and co-workers reported covalent immobilization of carbonic anhydrase in silk fibroin-based
hydrogels through photo-induced dityrosine chemical cross-linking followed by dehydration-mediated
physical cross-linking via formation of β-sheet structures (Figure 12). The immobilized carbonic
anhydrase retained ~60% activity, storage and thermal stability. In addition, the immobilized carbonic
anhydrase maintained ~97% activity after 6 repeated cycles. The carbonic anhydrase-immobilized silk
fibroin-based hydrogels could be used as a robust biocatalyst for environment-friendly sequestration
of carbon dioxide under mild conditions to produce value-added chemicals (including calcium
carbonate) [97].
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Figure 12. Schematic illustration of proposed mechanism of carbonic anhydrase (CA)-encapsulating
silk hydrogel for CO2 sequestration. Reprinted with permission from REFERENCE [97]. Copyright
(2017) Springer Nature.

Our group fabricated high water content silk fibroin-based hydrogels with tunable elasticity
through Ru(II)-mediated photo-chemical cross-linking of tyrosine residues [137–139]. The resultant
hydrogels exhibited a good performance as efficient and effective carriers for immobilization of
carbonic anhydrase, xylanase, and lysozyme against pH denaturation (Figure 13). The immobilized
carbonic anhydrase not only retained >60% activity for p-nitrophenyl acetate (p-NPA) hydrolysis at
the optimum pH value of 8, but also showed activity at unfavorable acidic pH values down to 3, as
compared to complete deactivation of the free enzyme under the same experimental conditions. In
addition, immobilization enabled recyclability. The immobilized xylanase and lysozyme achieved
better activity at an unfavorable basic pH value of 9. This study provides insight into the silk
fibroin-based hydrogel approach for the promising applications in fairly simple and straightforward
enzyme immobilization [98].
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2.18. Laccase

Our group extended the above-mentioned Ru(II)-mediated photo-chemical cross-linked silk
fibroin-based hydrogels to immobilization of laccase. The immobilized laccase was employed for in situ
polymerization of pyrrole using the as-prepared hydrogels as molecular templates (Figure 14), giving
rise to polypyrrole-coated hydrogels with an electrical conductivity of (1.0 ± 0.3) × 10−3 S·cm−1 [99].
Moreover, the laccase-immobilized silk fibroin-based hydrogels were used for fabrication of regenerated
silk fibroin-alkaline lignin composite hydrogels (Figure 15). The immobilized laccase retained activity
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in efficiently catalyzing inter- and intra-molecular covalent coupling between phenolic groups of
alkaline lignin and tyrosine residues of silk fibroin using ambient air. The resultant composite hydrogels
displayed enhanced mechanical strength and anti-ultraviolet properties, representing a new type of
sustainable value-added materials based on silk and lignin. In addition, this study demonstrated
that diffusional limitations encountered in application of immobilized enzymes including physical
adsorption of reactant and trapping of product could be turned into advantages and making good use
for constructing composite hydrogels [100].
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Copyright (2020) Elsevier.
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2.19. Zymolyase

Our group further studied immobilization of the lytic enzyme zymolyase on Fe3O4-embedded silk
fibroin magnetic microspheres, which were prepared by solvent (ethanol)-induced self-assembly of silk
fibroin surrounding Fe3O4 magnetic nanoparticles, presynthesized by a co-precipitation method. Then
zymolyase was covalently attached onto surface of the magnetic microspheres by the above-mentioned
Ru(II)-mediated photochemical cross-linking method with high immobilization efficiency, showing
an enzyme loading capacity of 100 mg·g−1. The immobilized zymolyase exhibited good activity and
stability for disruption of S. cerevisiae cells in a wide range of pH. At unfavorable acidic pH of 4, the
immobilized zymolyase retained 81% activity as compared to complete deactivation of the free enzyme.
In addition, the zymolyase-immobilized microspheres showed a saturation magnetization value of
53.8 Gs, enabling recyclability of the immobilized zymolyase by simple magnetic separation. The study
validated silk fibroin magnetic microspheres as promising enzyme immobilization platforms with
superior performance [101,140].

2.20. L-Asparaginase

Shen and co-workers studied covalent immobilization of L-asparaginase on silk fibroin powder
by glutaraldehyde. The immobilized L-asparaginase showed increased the enzyme substrate affinity
(a Km value of 0.844 × 10−3 mol·L−1 approximately 6 times lower than that of the free enzyme) and
circulating half-life (63 h longer than 33 h of the free enzyme), improved thermal and pH stability,
resistance to trypsin digestion, and storage stability (with 80% activity retained after 30 days at
room temperature) [102]. Moreover, Zhang et al. reported immobilization of L-asparaginase on silk
fibroin nanoparticles by adding a mixture of regenerated silk fibroin and L-asparaginase into excess
acetone rapidly. L-asparaginase was efficiently immobilized in the silk fibroin nanoparticles, with
no observation of enzyme leaching. The L-asparaginase-immobilized silk fibroin nanoparticles were
50–120 nm in diameter, with 90% activity and similar Michaelis–Menten kinetics as compared to the free
enzyme [103]. Considering that L-asparaginase is a drug effective in treatment of acute lymphoblastic
leukemia, silk fibroin immobilization of L-asparaginase enabled potential use in practical clinic. In
addition, this method could be extended to immobilization of other therapeutic enzymes, such as
β-glucosidase [104]. Wang and co-workers studied optimization of L-asparaginase immobilization on
silk fibroins. The optimum conditions were found to be an enzyme loading of ~16 wt%, a temperature
of 4 ◦C, a pH of 7.0 and a period of 8 h [105].

2.21. Phenylalanine Ammonia-Lyase

Inoue et al. studied immobilization of phenylalanine ammonia-lyase in silk fibroin microparticles
by encapsulation. The silk fibroin microparticles were ~150 µm in diameter. The immobilized
phenylalanine ammonia-lyase showed enhanced thermal and storage stability, with 75.4% activity
retained after storage at 48 ◦C for 82 days as compared to 34.4% of the free enzyme. The immobilized
phenylalanine ammonia-lyase also showed resistance to chymotrypsin and trypsin proteolysis, allowing
retaining activity in the intestinal tract following oral administration, which was proved by in vivo
experiments in rat duodenum using cinnamate as a model. Silk fibroin immobilization of phenylalanine
ammonia-lyase provided a promising oral enzyme therapy of phenylketonuria [106].

2.22. Thymidine Kinase

Ghandehari and co-workers studied immobilization of herpes simplex virus thymidine kinase
(HSVtk)-ganciclovir (GCV) system in recombinant silk-elastin-like protein polymers. The recombinant
silk-elastin-like protein polymers, which are composed of tandem repeats of a six amino acid sequence
commonly found in silk fibroin (GAGAGS) and a five amino acid sequence commonly found in elastin
(GVGVP), irreversibly form hydrogel networks at 37 ◦C based on β-sheet formation of the silk-like
sequences. Due to swelling properties, the hydrogels have been investigated for viral gene delivery
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in anticancer treatment using virus-mediated gene directed enzyme prodrug therapy. The efficacy
of the HSVtk-GCV system for head and neck cancer gene therapy was significantly improved by
immobilization in the recombinant silk-elastin-like protein polymers [107]. Recombinant silk-elastin-like
protein polymers were also found to improve the anticancer activity using adenoviral-directed enzyme
prodrug therapy for intratumoral viral delivery of thymidine kinase-1 and luciferase genes, offering a
promising approach for head and neck cancer gene therapy [108].

3. Immobilization of Non-Enzymatic Catalysts

3.1. Gold (Au)

In 1956, Akabori and co-workers reported silk proteins as supports of zero-valent metal catalysts
for asymmetric hydrogenation [141–144]. However, since then few advances have been noted. Recently,
Naka and Chujo reported preparation of a highly monodispersed core-shell nanostructured gold
colloid–silk fibroin bioconjugate through in situ reduction of Au(III) ions by the tyrosine residues of silk
fibroin. Gold colloid-silk fibroin bioconjugates with an average size of 45 nm and gold nanoparticle cores
with an average size of 15 nm were obtained. The bioconjugate solution rendered high stability during
storage in air at room temperature for more than three months, providing promising protein-metal
colloid conjugates for application in biotechnology, biochemistry and medicine [109].

Wu and co-workers studied a flowerlike composite of Au nanoparticles and reduced graphene
oxide. The composite was prepared in a facile, rapid and green approach in the presence of regenerated
silk fibroin (Figure 16). Regenerated silk fibroin easily and tightly absorbed onto reduced graphene oxide
surfaces by π-π stacking and H-bonding, and provided nucleation sites for binding Au nanoparticles,
thanks to its amino acid composition such as glycine, alanine, serine, and tyrosine. The composite
could be redispersed in water stably. The composite showed improved catalytic activity toward ORR
in electrochemistry, as well as absorption throughout visible and near-infrared region in colorimetric
sensing [110].
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Figure 16. Schematic illustration of procedure for silk fibroin-assisted synthesis of flowerlike composites
of Au nanoparticles and reduced graphene oxide. Reprinted with permission from REFERENCE [110].
Copyright (2013) American Chemical Society.

Liu and co-workers studied mesoscopic construction of wool keratin-Au nanoparticle–silk fibroin
hybrid materials (Figure 17). Wool keratin was introduced to in-line synthesize Au nanoparticles,
because of high content of mercapto group (-SH). The wool keratin-Au nanoparticle–silk fibroin hybrid
materials showed extraordinary fluorescence emission with long-term stability and high-intensity,
which could be applied for rapid detection of copper ions (Cu2+) in drinking water with high sensitivity
and selectivity. After carbonization, the wool keratin-Au nanoparticles–silk fibroin hybrid materials
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turned into secondary hybrid materials of carbon-Au with good electrical conductivity, which could be
used in fabrication of high-performance electrochemical sensors for dopamine [111].
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from REFERENCE [111]. Copyright (2019) American Chemical Society.

Zhao and co-workers studied loading of Au nanozyme stabilized by bovine serum albumin using
silk fibroin hydrogels as carriers, leading to a solid-state biocompatible sensor for visual detection of
H2O2 by fluorescence quenching. The sensor showed fast response, good stability and high sensitivity
with a detection limit of 0.072 mM. Considering that H2O2 is an important biological indicator, the
Au nanozyme-silk fibroin hybrid hydrogels showed great potential for in vivo continuous H2O2

monitoring in clinical diagnosis of diseases [112].
Mezzenga and Li studied production of millimetric large Au single-crystals in the presence of silk

fibroin (Figure 18). Due to its unique amino acid sequence and supramolecular assembly architectures,
silk fibroin has mild reducing and strong capping effects. Together with Cl−, two-dimensional (2D) Au
single-crystals with an unprecedented lateral length of ~2.4 mm and a planar area of ~3.4 mm2 were
successfully synthesized. These Au single-crystals represented unique platforms for catalysis, sensing,
and optoelectronics applicable in nanotechnology, biomedicine, and environments [113].
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3.2. Palladium (Pd)

Sajiki and Hirota reported silk fibroin supported zero-valent palladium Pd(0) catalyst for
chemoselective hydrogenation (Figure 19). The catalyst was prepared by reduction of silk fibroin
conjugated palladium(II) acetate Pd(OAc)2 by methanol and/or silk fibroin at room temperature in air.
The catalyst displayed highly dispersed Pd within 1–10 wt% of silk fibroin, and good chemoselectivity
in heterogeneous phase hydrogenation of olefins and azides in the presence of aromatic carbonyls
and halogens or an O-benzyl protective group. In addition, the catalyst could be easily manipulated
(cutting by scissors and separation by tweezers or simple filtration), and exhibited stability over a year
at room temperature [114–116].
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Figure 19. Preparation of silk fibroin supported palladium (Pd/Fibroin) catalyst for chemoselective
hydrogenation. Reprinted with permission from REFERENCE [116]. Copyright (2005) Elsevier.

3.3. Iron (Fe)

Bayraktar and co-workers studied use of silk fibroin fibers as supports of iron catalyst for
phenol hydroxylation reactions. The catalyst was prepared by a simple method using formic acid
at room temperature with no observation of significant iron leaching. The catalyst was flexible and
easy-handling, and exhibited excellent activity in hydroxylation of phenol to dihydroxybenzenes
(catechol and hydroquinone) using hydrogen peroxide as an oxidant, achieving phenol conversions of
3.3%, 61.2%, and 80.3% at 25 ◦C, 40 ◦C, and 60 ◦C, respectively. In addition, the catalyst was reusable
for three repeated cycles without significant decrease in activity [117].

Chen and co-workers reported silk fibroin supported magnetic hematite (α-Fe2O3) nanostructures
by a hydrothermal method. The resultant α-Fe2O3 showed uniformly monodispersed morphologies
with fine size and shape control by varying silk fibroin concentration, including quasi-nanocubes,
nanospheres, and nanoparticles [118]. In addition, hematite mesocrystals with uniform porous
nanostructures and controllable morphologies were synthesized through a biomineralization process
using silk fibroin as a biotemplate (Figure 20). The synthesized α-Fe2O3 exhibited good photocatalytic
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performance for oxygen evolution via water oxidation in the visible-light-driven [Ru(bpy)3]2+-persulfate
system. These results provided an efficient and green approach for large-scale production of functional
mesocrystals, promising in energetic and environmental research fields [119].
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Figure 20. Schematic presentation of α-Fe2O3 biomineralized hematite mesocrystal prepared in the
presence of silk fibroin, and its application as catalyst in photocatalytic water oxidation. (a) Proposed
reaction mechanism using Na2S2O8 as sacrificial electron acceptor, and [Ru(bpy)3]2+ as photosensitizer.
(b) Time courses of O2 evolution under photo irradiation (λ = 470 nm) at room temperature. Reprinted
with permission from REFERENCE [119]. Copyright (2014) American Chemical Society.

Shao and co-workers used regenerated silk fibroin-based hydrogels with 10% hydroxypropyl
methylcellulose for simple and facile in situ synthesis of magnetic ferriferous oxide (Fe3O4) via
co-precipitation of Fe2+ and Fe3+. The resultant magnetic hydrogels exhibited excellent peroxidase-like
catalytic activity in 3,3′,5,5′-tetramethylbenzidine (TMB)-mediated detection of H2O2 with a low limit
of 1 × 10−6 mol·L−1. In addition, the low-cost catalyst showed long-term stability under various
conditions, promising for environmental chemistry and biotechnology applications [120].

3.4. Titanium Dioxide (TiO2)

Liu and co-workers reported densely and uniformly assembly of TiO2 and TiO2@Ag nanoparticles
on silk fibroin fabric via enediol ligand–metal oxide bonding through a pad-dry-cure and durable-press
treatment process (Figure 21). The nanoparticles were modified by 3-(3,4-dihydroxyphenyl) propionic
acid (DHBPA); the fabric was treated with dimethyloldihydroxyethyleneurea (DMDHEU) resin using
1,2,3,4-butanetetracarboxylic acid (BTCA) with the assistance of sodium hypophosphite (NaH2PO2);
the carboxylic acid groups of DHBPA reacted with the hydroxyl groups of DMDHEU, covalently
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cross-linking the nanoparticles onto the fabric. The TiO2- and TiO2@Ag-loaded silk fibers exhibited
high photocatalytic activity in photodegradation of methylene orange under UV illumination [121].Molecules 2020, 25, x FOR PEER REVIEW 29 of 41 
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Figure 21. Schematic illustration of TiO2@Ag nanoparticles covalently bonded onto pre-modified silk
fibroin fiber surface. Reprinted with permission from REFERENCE [121]. Copyright (2011) Elsevier.

Chang and co-workers studied co-deposition of anatase TiO2 and amorphous Ni-P metallization
layer on silk textile via supercritical carbon dioxide promoted electroless plating to fabricate a
flexible composite toward wearable devices. The resultant silk textile was endowed with electrically
conductivity of Ni-P and photocatalytic activity of TiO2 with a critical concentration of 30 g·L−1 [122].

3.5. Platinum (Pt)

Tang and Wang reported convenient and facile in situ synthesis of platinum nanoparticles on
silk fabric through reduction of platinum ions by heat treatment. The effect of ion concentration,
pH, and temperature was systematically investigated, showing that low acidic condition and high
temperature were conducive to formation of platinum nanoparticles. The platinum substituted silk
fabric exhibited excellent catalytic activity in conversion of 4-nitrophenol into 4-aminophenol [123].

Ran and Huang studied electrochemical deposition of platinum microspheres on multi-walled
carbon nanotubes coated carbonized silk fabric, which was prepared by carbonization at 950 ◦C
under an inert atmosphere (Figure 22). The resultant material possessed good electrical conductivity,
and could be used to fabricate electrodes with a good sensitivity towards electrochemical detection of
H2O2. After further immobilization of glucose oxidase through immersing into a mixture of glucose
oxidase and Nafion, an efficient flexible electrochemical glucose sensor with high sensitivity and good
stability could be obtained. This study provided a simple method for design of wearable electronic
devices [124].
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Chen and Xu reported synthesis of a composite of Au nanoparticles and ZnO nanotubes in the 
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biomineralization strategy using natural silk fibroin fibers extracted from silkworm cocoons as 
templates for anchoring zinc nitrate Zn(NO3)2. During calcination, the silk fibroin fiber template was 

Figure 22. Schematic illustration of preparation process of glucose sensors based on glucose oxidase
(GOx)-immobilized platinum microspheres (Pt) and multiwalled carbon nanotube (MWCNT)-coated
carbonized silk fabric silk fabric (CSF). Reprinted with permission from REFERENCE [124]. Copyright
(2018) Elsevier.

3.6. Zinc Oxide (ZnO)

Zhang and co-workers studied deposition of metal oxide layers on electrospun silk fibroin
nanofibers through atomic layer deposition (ALD), using ZnO as a model considering its wide
applications in antibacterial, optical, and sensing (Figure 23). The ZnO layer displayed hexagonal
wurtzite structure, excellent uniformity and 3D conformity, and exhibited temperature-dependent
photocatalytic activity in photodegradation of rhodamine B under UV exposure. This study provided
an easy, efficient, and controllable method for fabrication of multifunctional organic/metal oxide
composite biomaterials [125].
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Figure 23. Schematic illustration of preparation of silk/ZnO silk/ZnO nanofibers. (A) Fabrication of
electrospun silk nanofibers and surface modification by layer-by-layer deposition of ZnO through
ALD. (B) SEM images for (a) silk and (b) silk/ZnO materials. Reprinted with permission from
REFERENCE [125]. Copyright (2017) American Chemical Society.

Chen and Xu reported synthesis of a composite of Au nanoparticles and ZnO nanotubes in
the presence of silk fibroin fibers (Figure 24). The ZnO nanotubes were prepared by a convenient
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biomineralization strategy using natural silk fibroin fibers extracted from silkworm cocoons as
templates for anchoring zinc nitrate Zn(NO3)2. During calcination, the silk fibroin fiber template was
removed, and Zn(NO3)2 decomposed into ZnO forming nanotubes. Then, Au nanoparticles were
coated on the surface of the ZnO nanotubes by electrostatic absorption. The resultant composites of
Au nanoparticles-ZnO nanotubes showed catalytic activity in reduction of H2O2, and thereby used to
construct an electrochemical sensor for non-enzymatic detection of H2O2. The sensor exhibited high
sensitivity and selectivity with a detection limit of 0.1 µM [126].
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Figure 24. Schematic presentation of fabrication process of the non-enzymatic H2O2 sensor based on
silk fibroin fibers modified with AuNPs/ZnO-NTs. Reprinted with permission from REFERENCE [126].
Copyright (2018) Elsevier.

Chen and co-workers reported facile fabrication of ZnO/Au layered structure on silk textiles.
Smooth and uniform coverage of Au metallic layer on silk was achieved by supercritical carbon
dioxide promoted electroless plating; then wurtzite ZnO was homogeneously coated on the Au
metallized silk by cathodic deposition. The resultant composite displayed high electrically conductive
and photocatalytic performance, promising for flexible and wearable devices such as in solar energy
harvesting applications [127].

3.7. Cupric Oxide (CuO) and Cuprous Oxide (Cu2O) Nanoparticles

Park and co-workers reported facile synthesis of uniform CuO nanoparticles using silk fibroin
as template through a simple wet chemical method from a precursor aqueous solution containing
Cu2+ copper(II) acetate monohydrate and silk fibroin in the presence of sodium dodecyl sulfate under
alkali condition (Figure 25). The CuO crystal structure, morphology, shape, size, and surface properties
of the nanoparticles could be controlled by tuning the amount of silk fibroin in the nanoparticles.
The silk fibroin/CuO hybrid mesoporous nanoparticles showed excellent photocatalytic performance
in photodegradation of Congo Red (128.30 mg·g−1 with 0.1% silk fibroin). These results showed great
potential in applications of photocatalytic purification of sewage [128].
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Figure 25. Schematic illustration of possible mechanism of SF/CuO nanoparticle formation. Reprinted
with permission from REFERENCE [128]. Copyright (2017) Elsevier.

Zhang and co-workers reported direct synthesis of core–sheath structured Cu2O nanoparticles
embedded in carbon spheres on carbonized silk fabrics. The materials were prepared by loading
Cu-BTC on silk fabric followed by carbonization, resulting in flexible and soft carbon cloth with good
electrical conductivity. When fabricated into an electrode, the resultant non-enzymatic glucose sensor
showed superior electrochemical performance, in terms of high sensitivity, selectivity, and stability,
as well as a low detection limit of 0.29 µM. These results offered a promising low price flexible yet
self-supported electronic device for detection of blood sugar levels in practical applications [129].

3.8. Trimanganese Tetraoxide (Mn3O4) and Manganese Dioxide (MnO2) Nanoparticles

Morsali and co-workers reported silk yarn coated with sphere-like trimanganese tetraoxide
(Mn3O4) nanoparticles by a simple sonochemical method via sequential dipping in potassium
hydroxide and manganese(II) nitrate alternatively under ultrasound. Presence and abundance of Mn
element on silk yarn was confirmed by powder X-ray diffraction (XRD) and wavelength dispersive
X-ray (WDX) characterization. Scanning electron microscopy (SEM) analysis showed that size of the
Mn3O4 nanoparticles decreased along with decrease in pH [130].

Shaabani and co-workers reported in situ heterogeneous production of manganese dioxide (MnO2)
nanostructures on natural silk fibers by simple immersion in an aqueous solution of permanganate
(KMnO4), where the silk fibers served as a reducing agent. The MnO2 coating exhibited high catalytic
activity, selectivity, and recyclability in aerobic oxidation (using alkyl arenes, alcohols, and oximes
as models), and tandem oxidative synthesis of organic compounds (using a one-pot two-component
reaction of aromatic hydrocarbons of petroleum naphtha as a model) [131].

Singh and Dicko reported in situ synthesis and stabilization of MnO2 nanoparticles on four
different silk yarns (i.e., mulberry, tasar, muga, and eri silks). The resultant hybrids displayed good
performance in catalytic oxidation of dyes (such as methylene blue) [132]. They further studied the
catalytic origin of silk stabilized MnO2 nanoparticles through evaluation of their catalase, oxidase,
and peroxidase-like activities using H2O2, 3,3′,5,5′-tetramethylbenzidine (TMB), O-phenylenediamine
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as substrates (Figure 26). It was found that the MnO2-silk hybrid could be used as oxidoreductase
enzyme mimics [133]. Moreover, sonication (using 3 mm probe sonicator, 30 W, 20 kHz in the presence
of 0.5 mM of KMnO4 at 20–24 ◦C) was found to enhance stability of smaller and more monodispersed
MnO2 nanoparticles on silk films for the enzyme mimic application, such as achieving higher
catalytic activity and stability with 3,3′,5,5′-tetramethylbenzidine (TMB) substrate [134]. In addition,
a polypyrrole-MnO2-silk hybrid prepared by combined supercritical carbon dioxide impregnation
of pyrrole and sonochemical transformation of KMnO4 on silk fibers was reported. The prepared
hybrid showed independent and complementary conductivity and enzyme-like catalytic activities in
degradation of H2O2, and thereby could be fabricated into soft electrodes and sensors for detection of
H2O2 [135].

Molecules 2020, 25, x FOR PEER REVIEW 33 of 41 

 

presence of 0.5 mM of KMnO4 at 20–24 °C) was found to enhance stability of smaller and more 
monodispersed MnO2 nanoparticles on silk films for the enzyme mimic application, such as achieving 
higher catalytic activity and stability with 3,3′,5,5′-tetramethylbenzidine (TMB) substrate [134]. In 
addition, a polypyrrole-MnO2-silk hybrid prepared by combined supercritical carbon dioxide 
impregnation of pyrrole and sonochemical transformation of KMnO4 on silk fibers was reported. The 
prepared hybrid showed independent and complementary conductivity and enzyme-like catalytic 
activities in degradation of H2O2, and thereby could be fabricated into soft electrodes and sensors for 
detection of H2O2 [135]. 

 
Figure 26. A proposed mechanism for MnO2 formation and deposition on and into the silk fiber upon 
sonication. The stabilized MnO2-silk hybrid showed catalytic activities like catalase, oxidase, and 
peroxidase. Reprinted with permission from REFERENCE [133]. Copyright (2020) Elsevier. 

4. Summary and Outlook 

Silk fibroin-based materials have been found to be excellent stabilizing carries/supports for 
immobilization of catalysts, including both enzymes and non-enzymatic catalysts. An advantage in 
using silk fibroin is its capability of both adsorption/entrapment of catalysts by physical or 
mechanical treatment and covalent coupling of catalysts by chemical treatment. Silk fibroin in various 
forms of gel, powder, fiber, and membrane has been prepared depending on the explored 
applications ranging from chemicals, pharmaceuticals, food, agriculture, energy, environment, and 
pulp and paper industry [25,26,32,39,40,59]. However, there are still challenges and further needs for 
commercializing silk fibroin-stabilized enzymes and silk fibroin-supported metal catalysts as cheap 
and sustainable catalysts. 

Three possible directions are suggested for future research and development: (1) industrially 
important enzymes, (2) therapeutic enzymes, and (3) metal/metal oxide catalysts. For example, lipase 
and amylase are two important industrial enzymes in food market, in which more ‘‘green’’ 
enzymes/biocatalysts are favored. In addition to food and cosmetics, diagnostic and therapeutic 
applications also favor more “safe” enzymes/biocatalysts and biocompatible immobilization 
materials. Because catalytic activity of enzymes and metal/metal oxide tends to be lost as a result of 
chemical modifications, conformational change, degradation, aggregation, and leakage during 
preparation, operation and storage, the challenge in stabilization of catalysts using the silk fibroin-
based approach remains selecting appropriate immobilization methods and rational design strategies 
[13]. 

The research of silk fibroin-based materials for catalyst immobilization is an interdisciplinary 
area, overlapping chemistry, biology, materials, chemical engineering and bioengineering (Figure 
27). For example, chemists can contribute on catalyst synthesis and analysis, and catalysis mechanism 
clarification. Biologists can contribute on protein engineering, directed evolution, and enzyme 
characterization. In particular, immobilized catalysts encounter problems such as diffusion 

Figure 26. A proposed mechanism for MnO2 formation and deposition on and into the silk fiber upon
sonication. The fiber to the left is the native silk with sericin coating (a), thefibroin brins (b),and thefibrils
(c). The stabilized MnO2-silk hybrid showed catalytic activities like catalase, oxidase, and peroxidase.
Reprinted with permission from REFERENCE [133]. Copyright (2020) Elsevier.

4. Summary and Outlook

Silk fibroin-based materials have been found to be excellent stabilizing carries/supports for
immobilization of catalysts, including both enzymes and non-enzymatic catalysts. An advantage
in using silk fibroin is its capability of both adsorption/entrapment of catalysts by physical or
mechanical treatment and covalent coupling of catalysts by chemical treatment. Silk fibroin in
various forms of gel, powder, fiber, and membrane has been prepared depending on the explored
applications ranging from chemicals, pharmaceuticals, food, agriculture, energy, environment, and pulp
and paper industry [25,26,32,39,40,59]. However, there are still challenges and further needs for
commercializing silk fibroin-stabilized enzymes and silk fibroin-supported metal catalysts as cheap
and sustainable catalysts.

Three possible directions are suggested for future research and development: (1) industrially
important enzymes, (2) therapeutic enzymes, and (3) metal/metal oxide catalysts. For example,
lipase and amylase are two important industrial enzymes in food market, in which more “green”
enzymes/biocatalysts are favored. In addition to food and cosmetics, diagnostic and therapeutic
applications also favor more “safe” enzymes/biocatalysts and biocompatible immobilization materials.
Because catalytic activity of enzymes and metal/metal oxide tends to be lost as a result of chemical
modifications, conformational change, degradation, aggregation, and leakage during preparation,
operation and storage, the challenge in stabilization of catalysts using the silk fibroin-based approach
remains selecting appropriate immobilization methods and rational design strategies [13].

The research of silk fibroin-based materials for catalyst immobilization is an interdisciplinary
area, overlapping chemistry, biology, materials, chemical engineering and bioengineering (Figure 27).
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For example, chemists can contribute on catalyst synthesis and analysis, and catalysis mechanism
clarification. Biologists can contribute on protein engineering, directed evolution, and enzyme
characterization. In particular, immobilized catalysts encounter problems such as diffusion limitations,
chemical engineers can contribute in providing solutions in terms of mass transfer, heat transfer,
momentum transfer, and chemical reaction process. Researchers from different disciplines may need to
collaborate to address the challenges for successful practice of silk fibroin-based catalyst immobilization.
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