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Abstract: This review summarizes experimental and theoretical studies of transition metal complexes
with two types of novel metal-carbon bonds. One type features complexes with carbones CL2 as
ligands, where the carbon(0) atom has two electron lone pairs which engage in double (σ and π)
donation to the metal atom [M]⇔CL2. The second part of this review reports complexes which have
a neutral carbon atom C as ligand. Carbido complexes with naked carbon atoms may be considered
as endpoint of the series [M]-CR3→ [M]-CR2→ [M]-CR→ [M]-C. This review includes some work
on uranium and cerium complexes, but it does not present a complete coverage of actinide and
lanthanide complexes with carbone or carbide ligands.
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1. Introduction

Transition metal compounds with metal-carbon bonds are the backbone of organometallic
chemistry. Molecules with M-C single bonds are already known since 1849 when Frankland reported the
accidental synthesis of diethyl zinc while attempting to prepare free ethyl radicals [1,2]. Molecules with
a [M]=CR2 double bond (carbene complexes) or a [M]≡CR triple bond (carbyne complexes) were
synthesized much later [3–6]. Two types of compounds with metal-carbon double or triple bonds
having different types of bonds are generally distinguished, which are named after the people who
isolated them first. Fischer-type carbene and carbyne complexes are best described in terms of

dative bonds following the Dewar–Chatt–Duncan (DCD) model [7,8] [M]�CR2 and [M(–)]
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1. Introduction 

Transition metal compounds with metal-carbon bonds are the backbone of organometallic 
chemistry. Molecules with M-C single bonds are already known since 1849 when Frankland 
reported the accidental synthesis of diethyl zinc while attempting to prepare free ethyl radicals 
[1,2]. Molecules with a [M]=CR2 double bond (carbene complexes) or a [M]≡CR triple bond 
(carbyne complexes) were synthesized much later [3–6]. Two types of compounds with 
metal-carbon double or triple bonds having different types of bonds are generally 
distinguished, which are named after the people who isolated them first. Fischer-type carbene 
and carbyne complexes are best described in terms of dative bonds following the Dewar–
Chatt–Duncan (DCD) model [7,8] [M]⇄CR2 and [M(─)]  CR(+), whereas Schrock-type 
alkylidenes and alkylidynes are assumed to have electron-sharing double and triple bonds 
[M]=CR2 and [M]≡CR [9–11]. 

This review deals with transition metal complexes with metal-carbon bonds to two types 
of ligands, which have only recently been isolated and theoretically studied. One type of ligand 
are carbones CL2 [12], which are carbon(0) compounds with two dative bonds to a carbon atom 
in the excited 1D state L→Cത←L where the carbon atom retains its four valence electrons as two 
lone pairs that can serve as four-electron donors [13,14]. Thus, carbones CL2 are four-electron 
donor ligands whereas carbenes CR2 are two-electron donors. Carbenes have a formally [15] 

CR(+),
whereas Schrock-type alkylidenes and alkylidynes are assumed to have electron-sharing double and
triple bonds [M]=CR2 and [M]≡CR [9–11].

This review deals with transition metal complexes with metal-carbon bonds to two types of
ligands, which have only recently been isolated and theoretically studied. One type of ligand are
carbones CL2 [12], which are carbon(0) compounds with two dative bonds to a carbon atom in the
excited 1D state L→ C̄←L where the carbon atom retains its four valence electrons as two lone pairs
that can serve as four-electron donors [13,14]. Thus, carbones CL2 are four-electron donor ligands
whereas carbenes CR2 are two-electron donors. Carbenes have a formally [15] vacant p(π) orbital that
can accept electrons in donor-acceptor complexes M�CR2 whereas carbones are double (σ and π)
donors in complexes [M]�CL2. A good Lewis acid acceptor fragment A for a carbene complex has a
vacant σ orbital and an occupied π orbital whereas a suitable acceptor for a carbone is a double Lewis
acid with vacant σ and π orbitals as shown in Figure 1a,b. If the Lewis acid A has an occupied π orbital,
it would lead to π repulsion with the π lone pair of the carbone CL2, whereby the repulsive interaction
is reduced if L is a good π acceptor (Figure 1c). The two electron lone pairs of a carbone may bind
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to one or two monodentate Lewis acids A or protons or to a single bidentate Lewis acid as shown in
Figure 1. The large second proton affinity is a characteristic feature of carbones, which distinguishes
them from carbenes [16]. Examples of all cases are known and are described below.
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Figure 1. Schematic representation of the most important orbital interactions between carbene 
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acid; (d) Carbone with two monodentate Lewis acids. 

It is important to realize that the two electron lone-pairs of a carbone CL2 may additionally 
engage in π-backdonation to the ligands L whose strength depends on the availability of vacant 
π orbitals of the ligands L. Stronger π acceptor ligands L enhance the π-backdonation L←Cത→L 
which leads to wider bending angles at the carbon atom (Figure 2). The significant bending of 
free C(CO)2 [17,18] can straightforwardly be explained in terms of dative bonding in carbon 
suboxide C3O2 [19,20]. The π-acceptor strength of ligands L thus modulates the donor 
interaction of the carbone CL2. 

   

  

Figure 2. Calculated and (in parentheses) experimental bond angles of carbones CL2 with 
different ligands L and partial charges Δq of the divalent carbon atom. The data are taken from 
[19]. 

Figure 1. Schematic representation of the most important orbital interactions between carbene ligands
CR2 and carbones CL2 with Lewis acids A.(a) Carbene complex with a monodentate Lewis acid;
(b) Carbone with a bidentate Lewis acid; (c) Carbone with a monodentate Lewis acid; (d) Carbone with
two monodentate Lewis acids.

It is important to realize that the two electron lone-pairs of a carbone CL2 may additionally engage
in π-backdonation to the ligands L whose strength depends on the availability of vacant π orbitals of
the ligands L. Stronger π acceptor ligands L enhance the π-backdonation L← C̄→L which leads to
wider bending angles at the carbon atom (Figure 2). The significant bending of free C(CO)2 [17,18]
can straightforwardly be explained in terms of dative bonding in carbon suboxide C3O2 [19,20].
The π-acceptor strength of ligands L thus modulates the donor interaction of the carbone CL2.
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Figure 2. Calculated and (in parentheses) experimental bond angles of carbones CL2 with different
ligands L and partial charges ∆q of the divalent carbon atom. The data are taken from [19].

The following list gives some essential features of carbones and their differences to carbenes.
At the same time we want to stress that the distinction between carbenes and carbones are just a useful
classification of compounds, which are a helpful model to explain the structures and reactivity of
molecules. Nature does not exhibit a strict distinction line and there are complexes with electronic
structures that have intermediate features between both classes of compounds. Carbenes and carbones
are two ordering principles like ionic and covalent bonding. Intermediate cases are common and
yet, the two concepts are essential ingredients of chemistry. The first part of this review summarizes
experimental and theoretical work about transition metal complexes with carbone ligands [M]-CL2.

1. Carbones are neutral carbon(0) compounds of the general formula CL2, which possess two
electron lone pairs of electrons of σ and π symmetry, respectively.

2. Carbones CL2 have dative σ bonds L→ C ←L and weaker π backdonation L← C →L which
resemble donor-acceptor bonds in transition metal complexes.
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3. The carbon atom of carbones has very large electron densities and thus, unusually large negative
partial charges.

4. In contrast to carbenes, carbones exhibit high first and second proton affinities (PAs) in the region
of about 290 and 150–190 kcal/mol, respectively. The second PA is a sensitive probe for the
divalent C(0) character of a CL2 molecule. Carbones can take up one and two protons with
formation of [HCL2]+ cations or [H2CL2]2+ dications, respectively.

5. Carbones have a bent equilibrium geometry where the bending angle becomes wider when the
ligand L is a better π acceptor.

6. Carbones can take up one or two monodentate Lewis acids A building the complexes A←C(L2)
and A←C(L2)→A or one bidentate Lewis acid A⇔C(L2).

To the thematic of carbones several review articles were reported previously; A general overview
on species that bear two lone pairs of electrons at the same C-center are summarized in [21],
transition metal adducts of carbones are described in [22], and those of main group fragments
in [23]. Two contributions, [24] and [25], in the series Structure and Bonding (Springer Edition) also
deal with carbone transition metal addition compounds.

The second type of transition metal complexes with a carbon ligand features species with
a naked neutral carbon atom as a ligand [M]-C, which can be considered as endpoint of the
series [M]-CR3 → [M]-CR2 → [M]-CR → [M]-C. Complexes with negatively charged carbon
ligands [M]-C−-, which are isoelectronic to nitride complexes [M]-N and are termed as carbides,
were synthesized in 1997 by Cummins [26]. The first neutral carbon complex [M]-C, which was
prepared and structurally characterized was reported in 2002 by by Heppert and co-workers [27].
They isolated the diamagnetic 16 valence electron ruthenium complexes [(PCy3)LCl2Ru(C)] (L = PCy
and 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene; Cy = Cyclohexyl) by a metathesis facilitated reaction.
Quantum chemical calculations of model compounds suggested that the Ru-C bond in the complexes
is best described by an electron-sharing double bond like in Schrock carbenes, which is reinforced
by a donor bond [Ru]→=C| [28]. The field of neutral carbon complexes was systematically explored
in recent years by Bendix [29]. This review summarizes in its second part the research in transition
metal complexes with a naked carbon atom as ligand [M]-C that has been accomplished since 2002.
The review includes some work on uranium and cerium complexes, but it does not present a complete
coverage of actinide and lanthanide complexes with carbone or carbide ligands.

2. Transition Metal Complexes with Carbone Ligands [M]-CL2

2.1. Transition Metal Addition Compounds of Symmetrical Carbones C(PR3)2

Among the existing carbones with a symmetric P-C-P skeleton, five species (1a–1e) are known
today as donor ligands to various transition metal fragments as outlined in Figure 3. From other linear
or bent carbones with this skeleton, no transition metal complexes are described so far.
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In 1961, 1a was detected by Ramirez [30], and 1b–1d stem from the laboratory of Schmidbaurs
group [31]. Later on, a series of related carbones were synthesized, but for which transition metal
complexes are unknown so far. Quite recently the new amino substituted carbone 1e was published
together with Zn and Rh addition compounds (See Scheme 1) [32]. In the 31P NMR spectra singlets at
about −4.50 (1a), −6.70 (1b), −29.6 (1c), −22.45 (1d), and 12.5 ppm (1e) confirm the symmetric array of
the compounds. All carbones have a bent structure but a linear form of 1a is realized if crystallized
from benzene [33,34]. 1a has a short P-C distance of 1.633(4) Å and the P-C-P angle amounts to
130.1(6)◦ [35]. The carbone 1b exhibits a slightly longer P-C distance of 1.648(4) Å and the introduction
of two less bulky methyl groups allows a more acute P-C-P angle of 121.8(3)◦ [36]. 1d has similar P-C
bond distances of 1.645(12) Å 1.653(14) Å and the acutest P-C-P angle in this series of 116.7(7)◦ [37,38].
For 1c, gas phase electron diffraction studies result in a P-C distance of 1.594(3) Å and a P-C-P angle of
147.6(5)◦ assuming an apparent non-linearity but linearity in the average structure [37]. All structural
parameters of 1e are close to those of 1a (P-C = 1.632(2) Å, P-C-P angle = 136.5(3)◦ [32].
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Scheme 1. Selected transition metal compounds with the carbone 1a as two electron donor ligand;
(a) MI, (b) CdI2, (c) UCl4, (d) Fe(N{SiMe3}2)2, (e) ZnI2.

In Table 1, transition metal addition compounds between carbones with the P-C-P core are
collected. All compounds show longer P-C bonds than the basic carbones as consequence of the
competition of the occupied p orbital at C(0) between the two P-σ* orbitals and those of A.

Table 1. Transition metal complexes with the carbones 1a to 1e including C-M and P-C bond lengths
and P-C-P angles and 31PNMR shifts in ppm.

1-M 31P NMR C-M P-C P-C-P Ref

Transition metal complexes with the carbone 1a
1a-Ni(CO)2 19.20 1.990(3) 1.677(3) 1.676(3) 132.13(16) [39]
1a-Ni(CO)3 9.92 2.110(3) 1.681(3) 1.674(3) 124.58(19) [39]

1a-ZnI2 17.8 2.000(9) 1.691(9) 1.703(8) 128.3(6) [40]
1a-CdI(µ I2)CdI-1a 18.5 2.25(1) 1.700(9) 1.68(1) 124.8(7) [40]
[1a-Hg-1a][Hg2Cl6] 21.2 2.057(6) 2.082(7) 1.731(6) 1.706(6) 1.737(6) 1.702(7) 124.2(4) 125.7(3) [41]

[1a-Ag-1a]I 13.6 2.115(8) 2.134(7) 1.656(7) 1.690(7) 1.667(7) 1.663(7) 128.5(5) 129.1(5) [42]
[1a-Cu-1a]I 15.8 1.944(5) 1.951(5) 1.683(6) 1.688(6) 1.673(6) 1.694(5) 125.6(3) 128.3(3) [41]

[1a-ReO3][ReO4] 29.5 1.997(7) 1.771(8) 123.1(4) [43]
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Table 1. Cont.

1-M 31P NMR C-M P-C P-C-P Ref

1a-CuCl 16.5 1.906(2) nr 123.8(1) [44]
1a-Cu-C5H5 8.5 nr nr nr [45]

1a-Cu-C5Me5 7.5 1.922(6) 1.668(5) 1.660(6) 136.0(4) [45]
1a-CuPPh3 3.7 nr nr nr [45]

1a-AgCl 16.5 nr nr nr [44]
1a-AgCp* 6.5 nr nr nr [45]

1a-Au-C≡C-R
R = C6H4NO2-p nr 2.082(2) 1.688(2) 1.682(2) 133.64(13) [46]

1a-Au-CH(COMe)2 nr nr nr nr [46]
1a-AuCl 13.7 14.4 nr nr nr [44]

[1a-Ir(COD)]PF6 nr nr nr nr [47]
1a-VCl3 21.13 2.050(3) 1.712(2) 1.722(2) 123.6(2) [48]

1a-FeCl (µ Cl2)FeCl-1a par 2.043(7) 1.689(7) 1.712(7) 121.3(4) [49]
1a-Fe[N(SiMe3)2]2 par 2.147(2) 1.702(2) 1.720(2) 120.0(1) [50]

1a-FeCl2 par 2.055(8) 1.709(7) 1.702(7) 122.7(5) [49]
1a-Fe(CH2Ph)2 par 2.097(5) 1.694(5) 1.671(5) 124.5(3) [49]

1a-FeCl[N(TMS)2] par nr nr nr [49]
1a-FeOTf[N(TMS)2] par 2.040(3) 1.701(3) 1.704(3) 122.1(2) [49]

1a-UCl4 nr 2.411(3) 1.705(3) 1.719(3) 125.05(16) [51]
1a-(AuCl)2 21.2 2.078(3) 2.074(3) 1.776(3) 1.776(3) 117.30(15) [46]

[1aH-Ag-1aH](BF4)3 23.6 2.221(5) 1.770(7) 1.779(7) 119.9(4) [52]
[1aH-Au-1aH](OTf)3 26.1 nr nr nr [46]

[1aH-AuCl](OTf) 22.1 nr nr nr [46]
Transition metal complexes with the carbone 1b

1b-Fe[N(SiMe3)2]2 par 2.100(2) 1.694(2) 1.696(1) 120.8(9) [50]
1b-Ni(CO)3 2.6 2.091(2) 1.683(2) 1.673(2) 122.3(1) [53]
1b-Ni2(CO)5 12.1 2.080(5) 2.070(5) 1.742(5) 1.743(5) 117.1(3) [53]

[1bH-AuC6F5](CF3SO3) 22.7 2.029(6) 1.781(2) 1.792(2) 119.1 [54]
[1bH-AuCl](CF3SO3) 22.1 nr nr nr [54]

Transition metal complexes with the carbone 1c
[1c-W(CO)2(Tp*)]PF6 36 2.11(1) 1.75(2) 1.77(1) 114.5(8) [55]

1c-(AuMe)2 nr nr nr nr [56]
Transition metal complexes with the carbone 1d

1d-Ni(CO)3 3.5 2.0661(9) 1.712(2) 1.722(2) 117.19(9) [48]
Transition metal complexes with the carbone 1e

1e-ZnCl2 28.9 1.994(2) 1.686(2) 125.3(1) [32]
1e-Rh(CO)(acac) 32.9 2.092(3) 1.685(3) 128.56(17) [32]

Occupied d orbitals of Ni in the 1a-Ni(CO)3 complex elongate the C-Ni bond to a carbone
(2.110 Å) [39] but this leads to a relative short bond length to a NHC (1.971 Å) moiety [57]. In contrast,
UCl4 leads to a short bond to a carbone (2.411 Å) [51] indicating an appreciable U-C double bond
character and a long one to a NHC base (2.612 Å) [58,59].

The cation [1a-ReO3]+ holds the longest one with 1.771(8) Å indicating an appreciable C=Re
double bond character. This feature applies also in part to 1a-UCl4 and 1c-W(CO)2N3 with elongated
P-C bonds(See Scheme 2); a partial C-U double bond is confirmed by theoretical calculations.
Similar long P-C bonds are found in the trication [1aH-Ag-1aH]3+, in 1a-(AuCl)2(See Scheme 3),
and in 1b-Ni2(CO)5(See Scheme 4), where the carbone provides each two electrons to two accepting
Lewis acids as depicted in Figure 1d.
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ligand. (a) Ni(CO)4, (b) Ni(CO)4 under CO atm, (c) Fe(N{SiMe3}2)2, (d) AuX(tht).

The P-C-P angles are in the range between 115◦ and 132◦ reflecting the required space of the
appropriate Lewis acid. The 31P NMR shift of the carbone 1a amounts to about −5 ppm and those
of the related addition compounds are shifted to lower fields and range between 4 ppm and 30 ppm.
All iron(II) complexes of 1a and 1b are paramagnetic and 31P NMR spectra could not be obtained.

For the 31P NMR spectrum of the carbone 1b, a shift of−6.70 ppm was recorded [31]. With exception
of 1b-Ni(CO)3 which resonate at 2.6 ppm, low field shifts between 12 and 22 ppm were found when 1b
act as a four electron donor [40].

Further, 1e-ZnCl2 (See Scheme 5) [32] and 1a-ZnI2 [53] have closely related structural parameters
but exhibit shorter C-Zn bond lengths than to related NHC-addition compounds (∆ = 0.051 Å) [60].
In both compounds a nearly perpendicular array of the ZnX2 and the PCP plane are found. No tendency
for an additional N-coordination to the amino ligand of 1e is recorded for the ZnCl2 addition compound.
In contrast the Rh-C distances in 1e-Rh(CO)2(acac) are longer (∆ = 0.117 Å) than in the corresponding
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NHC compound [61] and a partial π interaction was found by DFT calculation. Rh also shows no
tendency for coordination of the adjacent amino groups [32].
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2.2. Transition Metal Addition Compounds of Carbones C(PR3)2 with an Additional Pincer Function

Starting material for 2a is not the free carbone Ph2P-CH2-PPh2-C-PPh2-CH2-PPh2, which could
not be prepared so far, but the dication [Ph2P-CH2-PPh2-CH2-PPh2-CH2-PPh2]2+ as reported
by Peringer [62]. Later on, Sundermeyer studied the deprotonation of the cation [Ph2P-CH2-
PPh2-CH-PPh2-CH2-PPh2]+ by quantum chemical methods giving more or less stable tautomers
of 2a, see Figure 4. Deprotonation of the tautomer C of 2a generates the anionic pincer ligand
[Ph2P-CH-PPh2-CH-PPh2-CH-PPh2]− [2c]− [63]. The same working group also published the X-ray
structure of the pincer ligand 2b with the P-C-P angle of 133.76(13)◦ and P-C distances of 1.633(2) and
1.642(2) Å; the 31P NMR shift δ = −5.6 ppm [64].

Various cationic complexes where reported with the pincer ligand 2a (See Figure 4) and group 10
metal halides and one dication with the group 11 metal Au. The 31P NMR shifts range between 32 and
41 ppm(See Table 2). As with 1a the carbone carbon atom of 2a is basic enough to accept a proton to
generate complexes of the type 2aH-MCl dications with all group 10 elements (See Scheme 6).

Molecules 2020, 25, x FOR PEER REVIEW 8 of 54 

 

2.2. Transition Metal Addition Compounds of Carbones C(PR3)2 with an Additional Pincer Function  

Starting material for 2a is not the free carbone Ph2P-CH2-PPh2-C-PPh2-CH2-PPh2, which 
could not be prepared so far, but the dication [Ph2P-CH2-PPh2-CH2-PPh2-CH2-PPh2]2+ as 
reported by Peringer [62]. Later on, Sundermeyer studied the deprotonation of the cation 
[Ph2P-CH2-PPh2-CH-PPh2-CH2-PPh2]+ by quantum chemical methods giving more or less stable 
tautomers of 2a, see Figure 4. Deprotonation of the tautomer C of 2a generates the anionic 
pincer ligand [Ph2P-CH-PPh2-CH-PPh2-CH-PPh2]− [2c]− [63]. The same working group also 
published the X-ray structure of the pincer ligand 2b with the P-C-P angle of 133.76(13)° and 
P-C distances of 1.633(2) and 1.642(2) Å; the 31P NMR shift δ = −5.6 ppm [64]. 

Various cationic complexes where reported with the pincer ligand 2a (See Figure 4) and 
group 10 metal halides and one dication with the group 11 metal Au. The 31P NMR shifts range 
between 32 and 41 ppm(See Table 2). As with 1a the carbone carbon atom of 2a is basic enough 
to accept a proton to generate complexes of the type 2aH-MCl dications with all group 10 
elements (See Scheme 6). 

 

Figure 4. Tripodal basic pincer ligand 2a with its tautomers, the anionic pincer ligand 2cH- and 
the pyridyl pincer ligand 2b. 

Table 2. Transition metal complexes with the phosphine based pincer ligands 2a and the 
pyridyl based pincer ligand 2b; C-M and P-C distances are included and 31P NMR shifts in 
ppm. 

 
31P 

NMR 
C-M P-C P-C-P Ref 

Transition metal complexes with the tripodal carbone 2a 
[2a-(PdCl)]Cl 34.5 2.062(2) 1.694(3) 124.9(2) [62,65] 
[2a-(NiCl)]Cl 36.4 1.942(4) 1.6925(18) 125.1(2) [65] 

[2a-(NiCl)]2NiCl4 nr 1.930(7) 1.696(7) 1.701(7) 126.3(4) [65] 
[2a-(PtCl)]Cl 35.7 2.060(4) 1.692(5) 124.86(15) [65] 

[2a-(NiMe)][AlCl2Me2] 31.8 1.959 1.697 120.9 [66] 
[2a-(AuCl)]TfO2 nr 2.080(8) 1.723(8) 124.5(5) [67] 

[2a-(AuCl)](NO3)2 40.8 2.060(3) 1.721(3) 125.1(2) [67] 
[2a-(AuI)](TfO)2 41.1 2.082(8) 1.723(8) 124.9(5) [67] 

Figure 4. Tripodal basic pincer ligand 2a with its tautomers, the anionic pincer ligand 2cH− and the
pyridyl pincer ligand 2b.



Molecules 2020, 25, 4943 8 of 48

Table 2. Transition metal complexes with the phosphine based pincer ligands 2a and the pyridyl based
pincer ligand 2b; C-M and P-C distances are included and 31P NMR shifts in ppm.

31P NMR C-M P-C P-C-P Ref

Transition metal complexes with the tripodal carbone 2a
[2a-(PdCl)]Cl 34.5 2.062(2) 1.694(3) 124.9(2) [62,65]
[2a-(NiCl)]Cl 36.4 1.942(4) 1.6925(18) 125.1(2) [65]

[2a-(NiCl)]2NiCl4 nr 1.930(7) 1.696(7) 1.701(7) 126.3(4) [65]
[2a-(PtCl)]Cl 35.7 2.060(4) 1.692(5) 124.86(15) [65]

[2a-(NiMe)][AlCl2Me2] 31.8 1.959 1.697 120.9 [66]
[2a-(AuCl)]TfO2 nr 2.080(8) 1.723(8) 124.5(5) [67]

[2a-(AuCl)](NO3)2 40.8 2.060(3) 1.721(3) 125.1(2) [67]
[2a-(AuI)](TfO)2 41.1 2.082(8) 1.723(8) 124.9(5) [67]
[2aH-PdCl]Cl2 42.4 2.102(3) 1.803(3) 121.9(2) [62]
[2aH-PtCl]Cl2 44.4 2.106(4) 1.811(4) 1.823(4) 120.4(2) [62]
[2aH-NiCl]Cl2 32.7 1.990 1.801–1.834 121.1 [65,66]

[2aH-(CuCl)]PF6 nr 2.304(2) 1.745(2) 125.26(14) [63]
2a-(CuCl)2 20.4 2.2041 1.718 122.86(14) [63]
2a-(CuI)2 22.5 2.4936 1.717 126.3(4) [63]

2a-(CuSPh)2 19.8–19.0 2.195 1.712 126.9(7) [63]
Transition metal complexes with the tripodal carbone 2b

2b-(CeBr3THF) −10.2 2.597(6) 1.672(6) 122.5(4) [68]
2b-(CeBr)-2b nr 2.573(6) 2.597(6) 1.684(7) 120.5(4) [68]

2b-(UCl4) nr 2.471(7) 1.696(7) 121.3(4) [41]
2b-(TiCl3) [57] 18.24 2.144(6) 1.670(3) 1.670(3) 129.9(4) [64]
2b-(Cr(CO)3) 6.97 2.212(2) 1.651(3) 1.650(3) 133.6(2) [64]
2b-(MnCl2) par 2.1843(14) 1.6671(17) 1.6636(17) 127.70(9) [64]
2b-(CoCl2) par 2.015(6) 1.680(7) 1.661(7) 127.5(3) [64]

2b-[Mo2(CO)7] 9.49 2.355(4) 1.722(4) 1.724(4) 120.4(2) [64]
[2b-(PdCl)]Cl 31.6 2.004(4) 1.689(4) 1.676(4) 132.4 [64]
2b-[Ni2(CO)4] 34.20 2.0635(18) 1.7142(18) nr [64]

2.0912(18) 1.7146(18)
2b-(Cu2Cl2) 21.4 nr 1.714(3) 121.51(14) [63]

1.718(2)
2b-(Cu2I2) 21.5 nr 1.679(5) 128.5(3) [63]

1.702(5)
[2b-Cu2(PPh3)2](PF6)2 32.9 nr 1.709(10) 126.8(6) [63]

1.693(9)
2b-Cu2(PC6H4OMe)2](PF6)2 32.8 nr 1.707(3) 123.64(18) [63]

1.710(3)
[2b-Cu2(DPEPhos)](PF6)2 29.7 nr 1.710(4) 124.0(2) [63]
[2b-Cu2(XantPhos)](PF6)2 34.9 nr 1.712(4)

1.7064(19) 122.10(11) [63]
[2b-Cu2(dppf)](PF6)2 36.5 nr 1.7211(18)

1.730(6) 121.8(4) [63]
2b-Cu2(SC6F5)2 23.1 nr 1.717(6)

1.710(3) 123.70(17) [63]

2b-Cu2(Carb)2 22.8 nr
1.710(3)
1.726(2) 120.45(15) [63]
1.728(2)

Transition metal complex with 2cH

2cH-(CuPPh3) 23.6 2.196(3) 1.761(3) 124.26(17) [63]
1.777(3)
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A series of complexes with the N,C,N pincer ligand sym-bis(2-pyridyl)
tetraphenylcarbodiphosphorane (2b) were reported recently by the group of Sundermeyer.
Remarkable is the molybdenum complex 2b-[Mo2(CO)7] in which 2b provides four pairs of electrons
for donation to a Mo2 unit with an Mo-Mo separation of 3.0456(5) Å [64]. This coordination mode is
continued in a series of dicopper complexes presented by the same working group and prepared
as depicted in Scheme 7. The addition of [Cu]PF6 to 2b followed by treatment with two eq. of PR3

generated the cationic complexes [2b-(CuPPh3)](PF6)2 and [2b-(CuP{C6H4OMe}3](PF6)2, respectively;
2b-(CuCarb)2 was obtained from 2b-(CuCl)2 and two eq. of CarbH/NaOtBu (CarbH = carbazol) [63].
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Scheme 7. Selected compounds with the pincer ligand 2b as two and four electron donor. (a) CeBr3

in THF, (b) UCl4, (c) 2 eq. of Mo(CO)3(NCMe)3, (d) 2 eq. of Ni(CO)4, (e) 2 eq. of CuX, (f) 2 eq. of
[Cu]PF6/1 eq. of P-P.

For the cationic complexes [2b-Cu2(P-P)]2+ the chelating ligands are: DPEPhos = bis[(2-
diphenylphosphino)phenyl] ether, XantPhos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene,
dppf = 1,10-bis(diphenyl-phosphino)ferrocene. The germinal nature of both Cu(I) centers leads to
Cu-Cu distances in the range of 2.55–2.67 Å. Most of the Cu(I) complexes show photoluminescence upon
irradiation with UV light at room temperature [63].

Further, 2cH-CuPPh3 is an example of a complex with a deprotonated form of 2a and longer P-C
distances are observed due to the protonation of the central carbon atom [63].

2.3. Transition Metal Addition Compounds of Carbones C(PR3)2 with an Additional Ortho Metallated
Pincer Function

The source for the Rh complex 3a-Rh(PMe3)2H was the half pincer compound 5a-Rh(C6H8)
(vide infra) upon reacting with PMe3 under loss of cod (see Scheme 8). 3a-Pt(SMe2) forms upon
reacting 1a with [Me2Pt(SMe2)]2 and loss of 4 molecules of CH4 [69]. PEt3 replaces the labile bonded
SMe2 group of 3a-Pt(SMe2) to produce 3a-PtEt3, which is transformed with P(OPh)3 into 3a-Pt(OPh)3.
The dication [3a-PtPEt3(µ-Ag2)Et3PPt-3a]2+ was obtained upon addition of AgOTf to 3a-PtPEt3.
According to the carbone C atom as four electron donor the Pt complexes with µ-Ag functions show
long Pt-C distances between 1.737 and 1.749 Å (mean values) and the 31PNMR shifts are in the narrow
range of 33 and 36 ppm (See Table 3) [70]. More complicated is the formation of 3a-Pt(CO), which stems
from the hydrolysis of the related 3a-Pt(CCl2) complex (not isolated) [71].
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Table 3. Transition metal complexes with ortho metallated tripodal pincer ligand 3a derived from 1a
and the related pincer ligand 3b and 31P NMR shifts.

3-M 31P NMR C-M P-C P-C-P Ref

Transition metal complexes with the tripodal ligand 3a
3a-Rh(PMe3)2H 8.56 2.203(3) 1.674(3) 138.32(18) [69]

3a-PtSMe2 30.42 nr nr nr [69]
3a-PtCO 41.5 2.037(5) 1.706(3) 128.4(3) [71]
3a-PtPEt3 28.5 2.067(2) 1.697(2) 124.88(14) [70]

3a-PtP(OPh)3 nr nr nr nr [70]
[3a-PtPEt3(µ-AgPPh3)3](OTf) 32.5 2.130(4) 1.737 126.0(2) [70]

[3a-PtP(OPh)3(µ-AgPEt3](OTf) 36.0 2.105(3) 1.743 122.9(2) [70]
[3a-PtPEt3(µ-Ag2)Et3PPt-3a](OTf)2 33.4 2.128(3) 1.749 125.29(18) [70]

3aH-PtCl 27.9 2.077(6) 1.796(6) 123.4(4) [71]
Transition metal complexes with the tripodal ligand 3b

3b-Pt(CO) 46.9 2.002(5) nr 133.3(3) [72]
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The carbone complex 3b-Pt(CO) was obtained from reacting the yldiide platinum complex
(see Scheme 9) with 1 atm CO that inserts into the N-Si bond of the yldiide.
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2.4. Transition Metal Complexes with P-C-P Five Membered Ring

The carbone 4 (see Figure 6) was obtained by deprotonation of the cation [4H]+. According to two
P atoms in different chemical environments two doublets in the 31P NMR spectrum were recorded at
δ = 60.0 and 71.5 ppm; 2JPP = 153 Hz. From X-ray determination stem the P-C(1) and P-C(2) distances
of 1.644(19) and 1.657(17) Å, respectively, and the P-C-P angle amounts to 104.82(10)◦ [73]. The bond
lengths (see Table 4) are close to that reported for the carbone 1a.
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Table 4. Transition metal complexes with the cyclic carbone 4, containing 31P NMR shifts and relevant
structural parameters.

4-M 31P NMR M-C P1-C P2-C P-C-P Ref

4-PdCl(π-C3H5) 61.2 71.9 (225) 2.120(2) 1.673(2) 1.694(2) 106.66(13) [73]
4-RhCl(nbd) 64.6 75.7 (230) 2.115(18) 1.676(18) 1.702(18) 106.86(10) [73]
4-Rh(CO)2Cl 68.2 75.6 (224) nr nr nr [73]

4-AuOBut 64.1 60.4 (225) 2.018(6) 1.674(7) 1.687(7) 108.5(4) [74]
4-CuOBut 69.8 62.6 (195) 1.8923(15) 1.6763(15) 1.6887(15) 106.90(8) [74]

4-CuCl 63.2 70.6 (186) 1.8914(19) 1.6700(19) 1.6869(19) 107.20(11) [74]

From the cyclic and asymmetric carbone 4 six transition metal complexes (see Scheme 10) are
known in which the ligand acts as two electron donor via the C atom. As in the starting compound
4 the P2-C bond distances are slightly longer than P1-C bond. Addition of CuCl and AuCl(SMe2)
to 4H+/tBuOK generates the compounds 4-CuOtBu and 4-AuOtBu, respectively. In CH3Cl2 or
CHCl3 4-CuOtBu is converted into 4-CuCl [74]. 4-Rh(CO)2Cl stems from the reaction of 4 with
[{RhCl(CO)2}2] [73]. 4-CuOtBu and 4-AuOtBu catalyze the hydroamination or hydroalkoxylation of
acrylonitrile [74].

Molecules 2020, 25, x FOR PEER REVIEW 14 of 54 

 

 

Figure 6. Structure of compound 4. 

Table 4. Transition metal complexes with the cyclic carbone 4, containing 31P NMR shifts and 
relevant structural parameters. 

4-M 31P NMR M-C P1-C P2-C P-C-P Ref 
4-PdCl(π-C3H5) 61.2 71.9 (225) 2.120(2) 1.673(2) 1.694(2) 106.66(13) [73] 
4-RhCl(nbd) 64.6 75.7 (230) 2.115(18) 1.676(18) 1.702(18) 106.86(10) [73] 
4-Rh(CO)2Cl 68.2 75.6 (224) nr nr nr [73] 
4-AuOBut 64.1 60.4 (225) 2.018(6) 1.674(7) 1.687(7) 108.5(4) [74] 
4-CuOBut 69.8 62.6 (195) 1.8923(15) 1.6763(15) 1.6887(15) 106.90(8) [74] 
4-CuCl 63.2 70.6 (186) 1.8914(19) 1.6700(19) 1.6869(19) 107.20(11) [74] 

From the cyclic and asymmetric carbone 4 six transition metal complexes (see Scheme 10) 
are known in which the ligand acts as two electron donor via the C atom. As in the starting 
compound 4 the P2-C bond distances are slightly longer than P1-C bond. Addition of CuCl and 
AuCl(SMe2) to 4H+/tBuOK generates the compounds 4-CuOtBu and 4-AuOtBu, respectively. In 
CH3Cl2 or CHCl3 4-CuOtBu is converted into 4-CuCl [74]. 4-Rh(CO)2Cl stems from the reaction 
of 4 with [{RhCl(CO)2}2] [73]. 4-CuOtBu and 4-AuOtBu catalyze the hydroamination or 
hydroalkoxylation of acrylonitrile [74]. 

 

Scheme 10. Selected complexes with the cyclic carbone 4. R = iPr. a) [{PdCl(allyl)}2], b) 
[{RhCl(nbd)}2]. 

2.5. Transition Metal Complexes with Asymmetric P-C-P Ligands  

Several asymmetric carbones with orthometallation (5a-M, 5d-M), with an additional 
donor function (5c), or with a functionalized phenyl ring (5b) were reported that form TM 
complexes (see Figure 7). 

Scheme 10. Selected complexes with the cyclic carbone 4. R = iPr. a) [{PdCl(allyl)}2], b) [{RhCl(nbd)}2].

2.5. Transition Metal Complexes with Asymmetric P-C-P Ligands

Several asymmetric carbones with orthometallation (5a-M, 5d-M), with an additional donor
function (5c), or with a functionalized phenyl ring (5b) were reported that form TM complexes
(see Figure 7).
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The neutral asymmetric carbone 5b (X = PPh2) has the structural parameters P1-C = 1.642(2),
P2-C = 1.636(1) Å, and a P-C-P angle of 140.74(8)◦ (see Table 5); the P atoms resonate at δ = −6.9
and −3.4 ppm (2JPP = 93 Hz) [75]. Those of 5c are P1-C = 1.6416(16) Å, P2-C = 1.6398(17) Å,
and P-C-P = 133.25(10)◦ [76]. Three complexes in which the carbone 1a is half-side orthometallated
forming 5a-M complexes are described [69,73,77].

Table 5. Transition metal complexes with the unsymmetrical carbones 5a–5d; 31P NMR shifts in ppm.

5-M 31P NMR (2JPP) M-C P1-C P2-C P-C-P Ref.

Transition metal complexes of 5a-M
5a-Ptcod(C8H11) 14.9 5.7 (59.8) 2.072(3) 1.694(4) 1.716(4) 114.8(2) [77]

5a-Rhcod(p) 10.15 12.40 (50.9) 2.165(2) 1.693(2) 1.692(2) 124.50(13) [69]
5a-PdC3H5 39.8 9.9 (54) nr nr nr [73]

Transition metal complexes with the carbone 5b
5b-AuCl (X = PPh2) 8.6 18.7 (52) 2.043 1.701(4) 1.696(2) 126.0(2) [75]

5b-AuCl (X = PPh2-AuCl) 25.6 20.2 (47) 2.037(3) 1.690(3) 1.689(3) 131.4(2) [75]
5b-(AuCl)2

(X = PPh2-AuCl) 25.4 26.9 2.089 2.064 1.774(5) 1.763(5) 123.6(3) [75]

5b-PtMe2 (X = Me) 19.3 nr nr nr [78]
Transition metal complexes with the carbone 5c

5c-UCl4 par 2.461(5) 1.699(5) 1.711(5) 120.6(3) [41]
[5cAuPPh3]+ 19.70 15.03 (30.7) 2.067(9) 1.688(9) 1.707(9) 124.3(5) [76]

[5c(CuCl)(AuPPh3)]+ 39.7 26.2 (m) 2.111(4) Au 1.981(5) Cu 1.732(5) 1.750(5) 120.2(3) [76]
[5c(AuCl)(AuPPh3)]+ 35.4 27.5 (m) 2.080(9) Au2 2.127(8) Au1 1.756(9) 119.3(5) [76]

Transition metal complexes with the carbone 5d-M
5d-Pt-5d 19.3 nr nr nr [78]

As depicted in Scheme 11, three neutral complexes of 1a are known in which one of its phenyl
group is orthometallated to produce the 5a-M core. The 31P NMR shift of the unchanged PPh3 group
range between about 6 and 13 ppm whereas for the orthometallated side shifts between 15 and 40 ppm
where recorded. Both P-C distances do not differ markedly and amount to about 1.700 Å.
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2 [PdCl(allyl);

(b) 1/3 [PtI2(cod)]; (c) 1
4 [RhCl(cod)]. All complexes are formed upon release of the cation [1aH]+.

All complexes shown in Scheme 12 have a further PPh2 function at the ortho position of one
phenyl group of 1a. In the complex 5b-(AuCl)2 the carbone provides four electrons for donation with
typical long P-C distances of about 1.770 Å [75].

Molecules 2020, 25, x FOR PEER REVIEW 16 of 54 

 

As depicted in Scheme 11, three neutral complexes of 1a are known in which one of its 
phenyl group is orthometallated to produce the 5a-M core. The 31P NMR shift of the unchanged 
PPh3 group range between about 6 and 13 ppm whereas for the orthometallated side shifts 
between 15 and 40 ppm where recorded. Both P-C distances do not differ markedly and 
amount to about 1.700 Å. 

 

Scheme 11. Selected structures of transition metal complexes with the carbone 5a; (a) ½ 
[PdCl(allyl); (b) 1/3 [PtI2(cod)]; (c) ¼ [RhCl(cod)]. All complexes are formed upon release of the 
cation [1aH]+. 

All complexes shown in Scheme 12 have a further PPh2 function at the ortho position of 
one phenyl group of 1a. In the complex 5b-(AuCl)2 the carbone provides four electrons for 
donation with typical long P-C distances of about 1.770 Å [75]. 

 

Scheme 12. Selected structures of transition metal complexes with the carbone 5b. (a) 
[AuCl(tht)], (b) 2 [AuCl(tht), 3 [AuCl(tht)]. 

Scheme 12. Selected structures of transition metal complexes with the carbone 5b. (a) [AuCl(tht)], (b) 2
[AuCl(tht), 3 [AuCl(tht)].

The paramagnetic 5c-UCl4 exhibits a short C-U distance indicative for a double dative bond of the
carbone C atom as in 2b-UCl4 and was obtained by reacting UCl4 with the dication 5c-H2/NaHMDS.
Upon further coordination of the pyridyl group (U-N = 2.537(4) Å) the U atom attains the coordination
number 6 [41].

[5c-AuPPh3]+ was obtained from reacting the carbone 5c with [PPh3AuCl]/Na[SbCl6]
(see Scheme 13). In the cationic complex [5c-(CuCl)((AuPPh3)]SbF6, the carbone 5c acts as a six-electron
donor with a Cu-N distance of 2.267(6) Å and Cu-Au separation of 2.8483(10) Å. The Cu and Cl atoms
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are each disordered over two positions with occupancy of about 0.8 to 0.2. If CuCl is replaced by AuCl
as in [5c-(AuCl)(AuPPh3)]SbF6 the C-AuPPh3 distance is slightly elongated and no coordination of the
pyridyl N atom is observed. The Au-Au separation is with 3.1274(6) Å too long for a metallophilic
interaction. In both compounds, the carbone C atom constitutes a chiral center according to four
chemical different substituents and acts as a four-electron donor. The PPh3 group resonates between
15 and 27 ppm [76]. In the related symmetric pyridyl-free complex 1a-(AuCl)2, slightly shorter C-Au
(2.076(3) Å) were recorded accompanied by longer P-C (1.776(3) Å) bond lengths [51].
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2.6. Transition Metal Complexes of Carbones with Cyclobutadiene

The carbones 6a and 6b (see Figure 8) can also be seen as an all-carbon four-membered ring
bent allene (CBA); 6a is stable for several hours at −20◦ but decomposes when warmed up to −5◦.
The optimized geometry reveals a very acute allene bond angle of 85.0◦ and coplanarity of the ring
carbon atoms including the two nitrogen atoms. The C=C bonds of the allene fragment amount to
1.423 Å and are significantly longer than in typical linear allenes (1.31 Å). Short CN bonds of 1.36 Å
indicate some double bond character. The CCC carbon atom resonates in the 13C NMR spectrum at 151
ppm. The first and second proton affinities (PAs) are very high amounting to 307 and 152 kcal/mol [79].
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The molecular orbitals show that the HOMO and HOMO-1 have clearly the largest coefficients at
the central carbon atom and exhibit the typical shape of lone-pair molecular orbitals withσ (HOMO) and
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π (HOMO-1) symmetry; however, with reversed order with respect to CDPs and CDCs. To emphasize
the proximity of 6 to CDP carbones, we use the same symbolism mimicking a metal.

The free CBA 6b could not be obtained, but only the cationic 6bH+ and 6bH2
2+ are known and

used as starting compounds for the syntheses of the related transition metal complexes [80].
The 13C NMR shifts of the central carbon atom are shifted to higher fields relative to the starting

free carbone ranging between 124 and 139 ppm (see Table 6).

Table 6. Transition metal complexes with the all carbon ligand 6; 13C NMR shifts (in ppm) of the
donating carbon atom. Distances in Å, angles in deg.

13C NMR C-M C-C C-C-C Ref.

Transition metal complexes with the carbone 6a
6a-RhCl(cod) 136.6 2.038(5) 1.405(6) 88.4(3) [79]
6a-IrCl(cod) 138.6 nr nr nr [79]

6a-RhCl(CO)2 124.7 nr nr nr [79]
6a-IrCl(CO)2 129.2 nr nr nr [79]

Transition metal complexes with the carbone 6b
6b-W(CO)5 130.1 2.319(3) 1.419(4) 88.0(2) [80]

6b-AuCl 123.6 2.001(4) 1.409(5) 90.5(3) [80]
6b-RhCl(CO)2 131.2 2.0602(14) 1.4102(19) 89.73(11) [80]

All complexes of the CBA 6a where obtained by reacting the freshly prepared free carbone 6a
at −20◦ with [{MCl(cod)}2] complexes (M = Rh, Ir). The cod ligand can be replaced by bubbling CO
through solutions of 6a-MCl(cod) to produce the related 6a-MCl(CO)2 compounds (see Scheme 14) [79].Molecules 2020, 25, x FOR PEER REVIEW 19 of 54 
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Transition metal complexes with 6b as ligand were obtained by reacting 1,1,2,4-tetrapiperidino-1
-buten-3-yne with (a) [(tht)AuCl], (b) [RhCl(CO)2]2, and (c) [(NMe3)W(CO)5] during the reaction
rearrangement of the starting buten-3-yne to 6b has occurred [80].

2.7. Carbodicyclopropenylidene

Stephan described the first carbodicarbene stabilized by flanking cyclopropylidenes,
named carbodicyclopropylidene 7 (see Figure 9) [81].
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Figure 9. Possible description of the bonding in the carbone 7.

Neither the neutral singlet 1,2-diphenylcyclopropenylidene as carbene ligand L in 7 nor the carbone
tetraphenylcarbodicyclopropenyliden (CDC) 7 itself are stable compounds at room temperature.
The free carbene L has only been observed in an argon matrix isolated at 10 K and 7 could be
characterized in solution by low temperature NMR spectroscopy; for the central carbon atom a 13C
NMR shift at δ = 133 ppm was recorded at −60 ◦C.

The first and second proton affinities of 7 were determined to be 283 and 153 kcal/mol, respectively.
The molecular structure of 7 was determined by computational methods. Calculations reveal that
the central carbon atom is in a linear environment the C-C distances were calculated at 1.308 Å and
the C-C-C angle to 180◦. The energy difference between the linear allenic structure and the bent
arrangement is shallow amounting to 6.6 kcal/mol for a bending angle of 140◦ and 10 kcal/mol for 130◦.
The highest occupied molecular orbital (HOMO) and HOMO-1 of 7 are degenerate and incorporate the
p(π) orbitals of the C2-C1-C2a fragment.

The central C atom is more negatively charged (−0.19 a.u.) than the adjacent C atoms, suggesting
nucleophilic character [81].

The addition compounds [7-AuNHC-Ad](OTf) and [7-AuNHC-Dipp](OTf) (see Table 7) were
prepared from reacting [7H]+ with KHMDS and the related (NHC)AuOTf at −45◦(see Scheme 15) [81].

Table 7. Complexes with the carbone 7. 13C NMR shifts (in ppm) of the donating carbon atom.

7-M 13C NMR M-C C-C C-C-C Ref.

[7-AuNHC-Ad](OTf) 92.7 2.071(6)
2.047(6) nr nr [81]

[7-AuNHC-Dipp](OTf) 98.0 nr nr nr [81]
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2.8. Carbodicarbenes

Carbodicarbenes, CDCs, are neutral compounds where a bare carbon atom with its four electrons
is stabilized by two NHC ligands which plays the role of a phosphine group as in carbodiphosphoranes,
CDPs. Theoretical studies have demonstrated that this class of compounds could be stable and their
existence was predicted by Frenking [82] and short times later realized by the group of Bertrand [83].

Structural and spectroscopic parameters of the following symmetric CDCs (see Figure 10) are
available: 8a, C-C = 1.343(2) Å, C-C-C = 134.8(2)◦, 13C NMR 110.2 ppm [83]; 8b, C-C = 1.333(2) Å and
1.324(2) Å, C-C-C = 143.61(15)◦ [84]; 8c, C-C = 1.335(5) Å, C-C-C = 136.6(5)◦ (see Table 8) [85].Molecules 2020, 25, x FOR PEER REVIEW 21 of 54 
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Table 8. Collection of transition metal complexes with the CDCs 8a–8h. 13C NMR shifts of the central
carbon atom (in ppm).

13C NMR M-C C-C C-C-C Ref.

Transition metal complexes with the CDC 8a
8a-RhCl(CO)2 64.1 2.089(7) 1.398(10) 121.2(7) [83]

8a-RuCl2(=CHPh)NHC 73.01 mes 2.2069(18) 1.352(3) 1.429(3) 119.84(17) [86]
8a-RuCl2(=CHPh)NHC 73.4 iPr 2.210(7) 1.345(11) 1.439(9) 116.9(6) [86]

Transition metal complexes with the CDC 8b
[8b-PdCl]+ nr 1.973(3) 1.369(5) 1.398(5) 126.5(3) [84]
[8b-Fe0.5]2+ 2.018(3) 1.374(3) 128.4(3) [87]
[8b-Fe0.5]3+ 1.968(4) 1.387(6) 125.2(4) [87]
[8b-Fe0.5]4+ 1.928(3) 1.407(4) 125.4(2) [87]

Transition metal complexes with the CDC 8c
8c-PdClC3H5 nr 2.207(4) 1.404(5) 1.377(5) 119.7(4) [85]
8c-RhCl(CO)2 63.7 2.109(2) 1.411(3) 1.385(3) 117.4(2) [85]

Transition metal complexes with the CDC 8d
8d--RhCl(CO)2 2.123(2) 1.416(3) 1.368(3) 116.8(2) [85]

Transition metal complexes with the asymmetric CDC 8e
8e-PdCl2(POR)3 nr 2.0398(18) 1.395(3) 1.328(3) 119.20(16) [88]
8e-PdCl2PPh3 nr 2.063(2) 1.383(3) 1.409(3) tP 115.63(19) [89]
8e-PdCl2PTol3 nr 2.049(4) 1.374(7) 1.412(8) tP 117.7(4) [89]
8e-PdCl2PCy3 nr 2.111(2) 1.343(3) 1.415(4) tP 123.6(2) [89]

Transition metal complexes with the asymmetric CDC 8f
8f-RhCl(CO)2 67.1 2.117(2) 1.369(3) 1.424(3) 117.8(2) [90]

Transition metal complexes with the asymmetric CDC 8g

8g-RhCl(CO)2 63.2 2.1164(17) 1.374(2)NHC
1.420(3) 118.77(16) [90]

Transition metal complexes with the asymmetric CDC 8h
8h-IrCl(CO)2 nr nr nr nr [91]
8h-IrCl(cod) 166.4 nr nr nr [91]
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Structural parameters of the unsymmetrical CDCs (see Figure 11) are: 8e, C-C = 1.3401(16) Å and
1.3455(16), C-C-C 137.55(12)◦. For 8f, no data are available [90]. 8g: C-C = 1.344(3) Å and, 1.318(3) Å,
C-C-C = 146.11(19)◦ [90]. 8h was obtained at −60◦ by reacting 8hH+ with KMDS, and characterized
spectroscopically. On warming to room temperature, it dimerizes. 13C NMR: δ = 105.5 ppm
(see Table 8) [91].Molecules 2020, 25, x FOR PEER REVIEW 22 of 54 
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8c leads to the allyl complex 8c-PdCl(C3H5) [85].  

As depicted in Scheme 17, introduction of PdCl2P(OiPr)3 to 8e afforded the complex 
8e-PdCl2P(OiPr)3; it features a square planar Pd center with a short interatomic distance of one 
phosphite oxygen atom and the carbon atom of the NHC molecule of 2.890 Å that is smaller 
than the sum of van der Waals radii. This indicates strong attractive interaction between the 
atoms [88]. The three Pd complexes 8e-PdCl2PPh3, 8e-PdCl2PTol3, and 8e-PdCl2PCy3 were 
obtained by reacting the carbone 8e with the appropriate PdCl2PR3; between the NHC and the 
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Figure 11. Unsymmetrical CDCs from which transition metal complexes are reported.

Further, 8a-RhCl(CO)2 was prepared by addition of a suspension of 8a (see Scheme 16) in benzene to
a solution of [RhCl(CO)2]2 [83]. [8b-Fe0.5]2+ contains Fe2+ in octahedral environment coordinated by two
molecules of 8b. Fe(II) can be successively oxidized to the corresponding tri-, tetra-, and pentacationic
species [87].
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(a) Fe(OTf)2(MeCN)2.

The addition compounds 8c-RhCl(CO)2 and 8d-RhCl(CO)2 where obtained upon reacting the
appropriate carbone 8c or 8d with [RhCl(CO)2]2. Similarly, the addition of [Pd(allyl)Cl]2 to 8c leads to
the allyl complex 8c-PdCl(C3H5) [85].
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As depicted in Scheme 17, introduction of PdCl2P(OiPr)3 to 8e afforded the complex
8e-PdCl2P(OiPr)3; it features a square planar Pd center with a short interatomic distance of one
phosphite oxygen atom and the carbon atom of the NHC molecule of 2.890 Å that is smaller than
the sum of van der Waals radii. This indicates strong attractive interaction between the atoms [88].
The three Pd complexes 8e-PdCl2PPh3, 8e-PdCl2PTol3, and 8e-PdCl2PCy3 were obtained by reacting the
carbone 8e with the appropriate PdCl2PR3; between the NHC and the aromatic phosphine substituents
(Ph or Tol) an unexpected π-π interaction was detected. One Ph and one Tol group are nearly parallel
to the imidazole rings with centroid-centroid distances of 3.25 Å (Ph) and 3.30 Å (Tol), respectively [89].
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8f-RhCl(CO)2 and 8g-RhCl(CO)2 stem from reacting the appropriate carbone with [RhCl(CO)2]2 [90].
The cod ligand of [Ir(cod)Cl]2 was replaced by bubbling CO through a mixture with 8h to generate the
complex 8h-IrCl(CO)2 [91].

Some experimental findings indicate that carbodicarbenes also have catalytic properties for a
wide range of transformations, which are currently being actively studied by several groups. Examples
have been reported such as hydrogenation of inert olefins [92], C-C cross-coupling reactions [84],
intermolecular hydroamination [93] and hydroheteroarylation [94]. It seems that this area is still in an
infant stadium and it can be expected that CDCs may be found useful as catalyst for other reactions.

2.9. Tridentate Cyclic Diphosphino CDCs

The carbones 9a and 9b in Figure 12 are functionalized carbodicarbene in which the donating
carbon atom is part of a seven membered ring.
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The neutral 9a and 9b could not be isolated, source for transition metal complexes are the related
cations 9aH+ and 9bH+ (see Table 9) [93].
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Table 9. Transition metal complexes with the carbones 9a and 9b; 13C NMR signal of the central
donating carbon atom.

9-M 13C NMR M-C C-C C-C-C Ref.

Transition metal complexes with the carbone 9a
9a-RhCl 73.0 nr nr nr [93]

[9a-RhNCMe]+ nr 2.043 1.398 1.387 nr [93]
[9a-Rh(CO)]BF4 nr nr nr nr [93]

[9a-Rh(styrene)]BF4 nr 2.075(2) 1.404(3) 1.391(3) 121.7(2) [94]
[9aH-Rh(CO)](BF4)2 nr nr nr nr [94]

Transition metal complexes with the carbone 9b
9b-RhCl 73.4 nr nr nr [93]

[9b-RhNCMe]BF4 nr nr nr nr [93]
[9b-Rh(CO)]BF4 nr nr nr nr [93]

The neutral complexes 9a-RhCl and 9b-RhCl (see Scheme 18) where prepared upon reacting
the cations 9aH+ or 9bH+, respectively with [Rh(cod)Cl]2/NaOMe; if treated with AgBF4/MeCN the
cationic spezies [9a-Rh(MeCN)]BF4 and [9b-Rh(MeCN)]BF4, respectively, were isolated. The related
carbonyl complexes [9a-Rh(CO)]BF4 and [9b-Rh(CO)]BF4 formed similarly upon reaction with
[Rh(CO)2Cl]2/NaOMe [93]. The styrene complex [9a-Rh(styrene)]+ was obtained upon treating
the related chloro complex with styrene/NaBAr4; the styrene complex catalyzes the hydroarylation of
dienes. Protonation of [9a-Rh(CO)]+ with HBF4·OEt2 generates [9aH-Rh(CO)]2+ in which the carbone
acts as four-electron donor [94].
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2.10. Tetraaminoallene (TAA) Transition Metal Complexes

The 13C NMR shift of the central carbon atom amounts to 142.8 ppm. The first and second PAs of
10 are 282.5 and 151.6 kcal/mol, respectively [16,82].

The salt [10-AuPPh3]SbF6 in Scheme 19 is the only transition metal complex of TAA (see Figure 13),
which has been reported so far. Both carbene moieties are planar, but are tilted relative to each other,
to relieve allylic strain. The Au-C bond lengths amounts to 2.072(3) Å and the slightly different C-C
dative bonds has interatomic distances of 1.406(5) and 1.424(5) Å. The central C-C-C bond angle is
reported with 118.5(3)◦ [95].
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Figure 13. Bonding description of tetraaminoallene (TAA) (10). TAA’s may have a bent geometry
with hidden or masked pairs of electrons, which are delocalized but serve as double donor orbitals in
complexes with CO2 and CS2 [96].

2.11. Transition Metal Complexes of Carbones with the P-C-C Skeleton

Mixed carbene-phosphine stabilized carbones from the working group of Bestmann (1974) and
Alkarazo (2009).

The crystal structure of 11a in Figure 14 reveals a planar configuration of the carbene ligand
C(OEt)2. Short P-C and C-C distances indicate some p back donation; P-C = 1.682(4)Å, C-C = 1.316(10)
Å, C-C-C 125.6◦ (see Table 10) [97].
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Table 10. Transition metal complexes with the mixed carbones 11a and 11b. 31P NMR shifts in ppm.

11-M 31P NMR M-C P-C C-C P-C-C Ref.

Transition metal complexes with the carbone 11a
11a-RhCl(CO)2 25.1 nr nr nr [98]

11a-AuCl 26.7 2.014(16) 1.7449(16) 1.362(2) 114.30(12) [98]
11a-(AuCl)2 28.1 2.081(4) 2.103(4) 1.785(4) 1.425(6) 114.2(3) [98]

Transition metal complexes with the carbone 11b
11b-AuCl 22.2 nr nr nr [98]

The neutral Rh complex 11a-RhCl(CO)2 was obtained from reacting the carbone 11a with
[Rh(CO)2Cl]2. Similarly, the complex 11b-AuCl results from reaction of 11b with AuCl(SMe2)
(Scheme 20) [98].
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Addition of CuCl generates the complex 12-CuCl. No spectroscopic or structural details are
available [99].
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A series of carbones (13a, 13b) in Figure 16 based on a P-C-S core containing the neutral S(IV)
ligands SPh2=NMe (Figure 16) were reported by Fujii [100].
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Crystal structures and 31P NMR shifts of the following basic carbones are available (see Table 11):
13a, δ = −2.64 ppm; 13b, δ = −1.39 ppm, P-C = 1.663(2) Å, S-C = 1.602(2) Å, P-C-S = 125.59(15)◦.
The authors revealed a high electron density at the central carbon atom.
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Table 11. Collection of transition metal complexes with the carbones 13a and 13b. 31P NMR signals
(in ppm) are given.

13-M 31P NMR M-C P-C S-C P-C-S Ref

Transition metal complexes with the carbone 13a based on a P-C-S core
13a-AgCl 10.8 2.131 1.711 1.648 121.9 [100]

[13a-AuPPh3](OTf) 15.2 nr nr nr [100]
[13a-(AuPPh3)2](OTf)2 29.7 nr nr nr [100]

Transition metal complexes with the carbone 13b based on a P-C-S core
13b-AgCl 9.13 2.098 1.728 1.636 119.1 [100]

[13b-AuPh3](SbF6) 12.88 nr nr nr [100]
[13b-(AuPPh3)2](SbF6)2 27.45 2.127 2.118 1.788 1.737 115.6 [100]

[13b-Ag-13b][OTf) 8.43 2.160 1.707 1.635 121.8 127.0 [100]
[13bH-AuPPh3](OTf)2 17.1 2.106 1.817 1.782 116.3 [100]

The addition products 13a-AgCl and 13b-AgCl were obtained from reacting [13aH]+ or [13bH]+,
respectively with ion exchange resin (Cl− form) and Ag2O/CH2Cl2. For the other products see
Scheme 21 [100].
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elongated to normal single bonds [100]. 

Scheme 21. Selected structures with the carbones 13a und 13b: (a) 0.5 eq. of AgOTf, (b) 2 eq. of
AuCl(PPh3)/2 eq. of AgSbF6, (c) 1 eq. of AuCl(PPh3)/1 eq. of AgSbF6, (d) ion exchange (OH− form), 1 eq.
of AuClPPh3/1 eq. of AgOTf [100].

Addition of TM fragments to 13a or 13b in Scheme 21 elongates P-C and S-C bond length as
reported for 1a. That of [13bH-AuPPh3](OTf)2 in which 13b acts as four-electron donor are elongated
to normal single bonds [100].

2.14. Transition Metal Complex with a P-C-S Core Possessing a Neutral S(II) Ligand

The carbone 14 in Figure 17 contains a phosphine and a S(II) ligand with a free pair of electrons to
stabilize the C(0) atom. However, the bare 14 could not be isolated, but only the protonated cation
[14H]+ and used as starting material [101].
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Figure 18. Sulfur based carbones 15 as ligands for transition metal complexes. 

The molecular structure of 15a was investigated computationally (see Table 12) [102]. For 
the carbones the following parameters were recorded: 15b, C-SII 1.707(2), C-SIV 1.648(2), S-C-S 
106.67(14). 13C NMR, δ = 35.4 ppm [103]. 15c, S-C 1.635(4), 1.636(2); S-C-S 116.8(2) [104]. Similar 
to CDCs the first and second PAs of 15b amount to 288.0 and 184.4 kcal/mol, respectively. 

Table 12. Transition metal complexes with selected bond length (Å) and angles (deg) of the 
carbone ligands 15a to 15c. 13C NMR signal (in ppm) of the central carbon atom. 

15-M 13C NMR C-M SII-C SII-M-SII Ref. 

15a-AgCl not obs 2.058(8) 
1.707(8) 
1.698(8) 

107.3(5) [102] 

[15a-AuPPh3]OTf 65.4 nr nr nr [102] 

[15a-(AuPPh3)2]2+ not obs 
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2.084(5) 

1.782(6) 
1.767(6) 

115.4(3) [102] 

[15aH-AuPPh3]2+ 66.0 2.090(7) 
1.837(7) 
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104.4 [102] 

Transition metal complexes with the CDS 15b 
  C-M SII-C SIV-C SII-M-SIV  

[15b-AuPPh3]OTf 67.4 nr nr nr [102] 

[15b-Ag-15b]OTf not obs 
2.111(7) 
2.097(7) 

1.718(6) 
1.664(7) 

106.3(6) 
[102,10
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Figure 17. Mixed P and S stabilized carbone 14.

The transition metal complex [14-CuN(SiMe3)2](OTf) was prepared upon reacting [14H]+ with
KHMDS/CuCl. X-ray analysis reveals a Cu-C distance of 1.903(4) Å and the P-C and S-C distances
amount to 1.709(5) and 1.677(5) Å, respectively. As found in carbone addition compounds of 13a and
13b the P-C distance is longer than the S-C distance. An acute P-C-S angle of 115.3(2)◦ was recorded.
The 31P NMR signal is shifted to lower fields at 66.5 ppm [101].

2.15. Transition Metal Complexes of Carbones with the S-C-S Skeleton

In the carbones 15 (carbodisulfanes, CDS) the central carbon atom is stabilized by two neutral
S(II) ligands (15a), or S(II), S(IV) groups (15b), or two S(IV) (15c) ligands (see Figure 18).
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The molecular structure of 15a was investigated computationally (see Table 12) [102]. For the
carbones the following parameters were recorded: 15b, C-SII 1.707(2), C-SIV 1.648(2), S-C-S 106.67(14).
13C NMR, δ = 35.4 ppm [103]. 15c, S-C 1.635(4), 1.636(2); S-C-S 116.8(2) [104]. Similar to CDCs the first
and second PAs of 15b amount to 288.0 and 184.4 kcal/mol, respectively.

Table 12. Transition metal complexes with selected bond length (Å) and angles (deg) of the carbone
ligands 15a to 15c. 13C NMR signal (in ppm) of the central carbon atom.

15-M 13C NMR C-M SII-C SII-M-SII Ref.

15a-AgCl not obs 2.058(8) 1.707(8) 1.698(8) 107.3(5) [102]
[15a-AuPPh3]OTf 65.4 nr nr nr [102]
[15a-(AuPPh3)2]2+ not obs 2.116(6) 2.084(5) 1.782(6) 1.767(6) 115.4(3) [102]
[15aH-AuPPh3]2+ 66.0 2.090(7) 1.837(7) 1.805(7) 104.4 [102]

Transition metal complexes with the CDS 15b
C-M SII-C SIV-C SII-M-SIV

[15b-AuPPh3]OTf 67.4 nr nr nr [102]
[15b-Ag-15b]OTf not obs 2.111(7) 2.097(7) 1.718(6) 1.664(7) 106.3(6) [102,105]

[15b-(AuPPh3)2](OTf)2 not obs 2.130(3) 2.103(3) 1.792(3) 1.746(3) 106.27(18) [102]
[15b-Ag2-15b](OTf)2 not obs nr nr nr [105]
[15b-Ag4-15b](OTf)4 not obs 2.192 2.187 nr nr [105]

[15bH-AuPPh3](OTf)2 72.1 2.098(3) 1.796(3) 1.789(3) 106.83(17) [102]
Transition metal complexes with the CDS 15c

C-M SIV-C SIV-M-SIV

[15c-AuPPh3]OTf 65.1 nr nr nr [102]
15c-AgCl not obs 2.134(3) 1.690(3) 1.678(3) 112.16(14) [102]

[15c-(AuPPh3)2](OTf)2 not obs 2.126(4) 2.125(4) 1.789(4) 1.735(5) 112.5(2) [102]
[15c-Ag-15c]OTf 40.0 2.116 2.127 1.671–1.696 114.6 115.6 [105]

[15c-Ag2-15c](OTf)2 43.1 2.147 1.666 1.696 114.7 [105]
[15c-Ag4-15c](OTf)4 nr 2.228 2.193 nr nr [105]

{[15c-(AuPPh3)2AgOTf](OTf)4}2 nr 2.139 2.108 1.757 1.747 116.8 [102]
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15a-AgCl was obtained from [15aH]+ upon treating with Ag2O/CH2Cl2. The salt [15a-AuPPh3]OTf
formed reacting the bare 15a with AuCl(PPh3) followed by addition of NaTfO in THF. [15a-(AuPPh3)2]
(OTf)2 and [15aH-AuPPh3](SbF6) are sketched in Scheme 22 [102].
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[15b-AuPPh3]OTf was obtained analogously formed from reacting 15b with AuCl(PPh3) followed
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The preparation of [15c-AuPPh3]OTf and 15c-AgCl follows the procedure outlined for the related
15b compounds [102]. For the other compounds, see Scheme 24 [102,105]. The hetero hexametallic
cluster {[15c-(AuPPh3)2AgOTf](OTf)4}2 is supported by two carbone ligands that adopt a κ4C,C’,N,N’
coordination mode. The Au-Ag separation amounts to 3.003 Å [102].Molecules 2020, 25, x FOR PEER REVIEW 31 of 54 
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The tetranuclear complex [16-Ag4-16]4+ contains a rhomboidal [Ag4]4+ core surrounded by two
carbones 16 (see Table 13). In this and in [16H-Ag-16H]3+ the donating C(0) acts as a four-electron
donor (see Scheme 25) [105].

Table 13. Transition metal complexes with selected bond length (Å) and angles (deg) of the carbone 16.
13C NMR signal (in ppm) of the central carbon atom.

16-M 13C NMR C-M C-S C-Se S-C-Se Ref.

[16-Ag-16](OTf) not obs. nr nr nr [105]
[16-Ag2-16](OTf)2 52.7 nr nr nr [105]

[16-Ag4-16](OTf)4 not obs 2.174(5) 1.714(5)
1.923(6) 106.4(3) [105]

[16H-Ag-16H](BF4)3 not obs 2.164(4)
2.177(4)

1.772(5) 1.771(5)
1.936(4) 1.948(5) 103.8(2) [103]
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3. Transition Metal Carbido Complexes [M]-C

The second part of this review summarizes the research of transition metal complexes with a
naked carbon atom as ligand [M]-C. They are often termed as carbides, but the bonding situation is
clearly different from well-known carbides of the alkaline and alkaline earth elements E, which are
salt compounds of acetylene EnC2. The electron configuration of carbon atom in the 1D state
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Abstract: This review summarizes experimental and theoretical studies of transition metal 
complexes with two types of novel metal-carbon bonds. One type features complexes with 
carbones CL2 as ligands, where the carbon(0) atom has two electron lone pairs which engage 
in double (σ and π) donation to the metal atom [M]⇇CL2. The second part of this review 
reports complexes which have a neutral carbon atom C as ligand. Carbido complexes with 
naked carbon atoms may be considered as endpoint of the series [M]-CR3 → [M]-CR2 → 
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carbide ligands. 
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1. Introduction 

Transition metal compounds with metal-carbon bonds are the backbone of organometallic 
chemistry. Molecules with M-C single bonds are already known since 1849 when Frankland 
reported the accidental synthesis of diethyl zinc while attempting to prepare free ethyl radicals 
[1,2]. Molecules with a [M]=CR2 double bond (carbene complexes) or a [M]≡CR triple bond 
(carbyne complexes) were synthesized much later [3–6]. Two types of compounds with 
metal-carbon double or triple bonds having different types of bonds are generally 
distinguished, which are named after the people who isolated them first. Fischer-type carbene 
and carbyne complexes are best described in terms of dative bonds following the Dewar–
Chatt–Duncan (DCD) model [7,8] [M]⇄CR2 and [M(─)]  CR(+), whereas Schrock-type 
alkylidenes and alkylidynes are assumed to have electron-sharing double and triple bonds 
[M]=CR2 and [M]≡CR [9–11]. 

This review deals with transition metal complexes with metal-carbon bonds to two types 
of ligands, which have only recently been isolated and theoretically studied. One type of ligand 
are carbones CL2 [12], which are carbon(0) compounds with two dative bonds to a carbon atom 
in the excited 1D state L→Cത←L where the carbon atom retains its four valence electrons as two 
lone pairs that can serve as four-electron donors [13,14]. Thus, carbones CL2 are four-electron 
donor ligands whereas carbenes CR2 are two-electron donors. Carbenes have a formally [15] 

C|. Carbon complexes [M]-C may thus
be considered as carbone complexes [M]-CL2 without the ligands L at the carbon atoms. A theoretical
study showed in 2000 that the 18 valence electron (VE) complex [(CO)4Fe(C)] is an energy minimum
structure with a rather strong Fe-C bond [106]. However, such 18 VE systems could not be synthesized
as isolated species but were only found as ligands where the lone-pair electron at the carbon atom
serves as donor (see below). It seems that the electron lone-pair at carbon in the 18 VE complexes
[M]-C makes the adducts too reactive to become isolated.

It came as a surprise when Heppert and co-workers reported in 2002 the first neutral adducts
with a naked carbon atom as a ligand, which are the formally 16 VE diamagnetic ruthenium complexes
[(PCy3)LCl2Ru(C)] (L= PCy and 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene; Cy = Cyclohexyl) [27].
A subsequent bonding analysis of the model compound [(Me3P)2Cl2Ru-C] considered five different
models A–E for the Ru-C bonds that are shown in Figure 20 [28]. It turned out that the best description
for the bonding interactions is a combination of electron-sharing and dative bonds. An energy
decomposition analysis [107] suggested that the model B provides the most faithful account of the
bond, where the σ bond and the π bond in the Cl2M plane come from electron-sharing interactions
Cl2M=C whereas the π bond in the P2M plane is due to backdonation (Me3P)2Ru→C. The compounds
[(PCy3)LCl2Ru(C)] should therefore be considered as 18 VE Ru(IV) adducts. The following section
summarizes the research of transition metal complexes with a naked carbon atom as ligand [M]-C that
has been accomplished since 2002.   
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atom in the compound [(R3P)2Cl2Ru-C].

3.1. The System RuCl2(PCy3)2C ([Ru]C)

By far the most known complexes with carbido ligands that have been synthesized and structurally
characterized are ruthenium adducts. The progress in the chemistry of ruthenium carbido complexes
was reviewed in 2012 by Takemoto and Matsuzaka [108]. In the following, we summarize the present
knowledge on ruthenium carbido complexes which has been reported in the literature.

The X-ray analysis of [Ru]C in Figure 21 exhibits a Ru-C distance of 1.632(6) Å. A signal at
471.8 ppm was attributed to the ligand carbon atom [109]. A general route to carbon complexes is
described in [110].
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Figure 21. The [Ru]C core.

Addition of PdCl2(SMe2)2 gives the complex [Ru]C→PdCl2(SMe2), while with Mo(CO)5(NMe3)
the carbonyl complex [Ru]C→Mo(CO)5 is generated (see Table 14) [29,109]. A series of [Ru]C→PtCl2L
complexes were obtained by Bendix from reacting the dimeric complex {[Ru]C→PtCl2]2 with various
ligands L (L = PPh3, PCy3, P(OPh)3, AsPh3, CNtBu, CNCy). Complexes with bridging ligands L
such as {[Ru]C→PtCl2]2bipy, {[Ru]C→PtCl2]2pyz, and {[Ru]C→PtCl2]2pym formed upon displacing
ethylene from the related (C2H4)PtCl2-L-PtCl2(C2H4) by [Ru]C. {[Ru]C→PtCl]2(µ-Cl)pz results from
an ethylene complex and [Ru]C as depicted in Scheme 26 [111]. A series of Pt, Pd, Rh, Ir, Ag, Ru
complexes were presented by Bendix with X-ray data and 13C NMR shifts of the ligand carbon atom
ranging between 340 and 412 ppm [112]. Sulfur containing TM complexes with the metals Pd, Pt, Au,
and Cu stem from the same laboratory. The sulfur ligands are ttcn = 1,4,7-trithiacyclononane and
S4(MCp*)3 (see Figure 22) [113].
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Table 14. Selected structural (in Å and deg) and spectroscopic (13C NMR in ppm) details of [Ru]C
addition compounds.

13C NMR Ru-C M-C Ru-C-M Ref

[Ru]C→PdCl2(SMe2) 381.23 1.662(2) 1.946(2) 175.1(1) [109]
{[Ru]C→PdCl3}− 380.9 nr nr nr [112]
[Ru]C→Mo(CO)5 446.31 nr nr nr [109]
[Ru]C→PtCl2Py 350.34 nr nr nr [29,111]

[Ru]C→PtCl2NCr(dbm)2 nr 1.676(2) 1.899(2) 174.5(1) [29]
{[Ru]C→PtCl3}− 344.7 nr nr nr [29,112]
{[Ru]C→PtCl2}2 326.23 1.676(8) 1.871(8) 1796(4) [29,111]

[Ru]C→PtCl2PPh3 388.81 1672(2) 1.983(2) 173.7(1) [111]
[Ru]C→PtCl2P(OPh)3 387.54 1.659(2) 2.001(2) 179.3(2) [111]
[Ru]C→PtCl2AsPh3 374.68 1.670(2) 1.949(2) 171.9(2) [111]
[Ru]C→PtCl2CNtBu 376.26 1.661(2) 1.967(6) 176.5(3) [111]
[Ru]C→PtCl2CNCy 376.04 nr nr nr [111]
[Ru]C→PtCl2PCy3 396.77 1.666(3) 1.971(2) 174.5(2) [111]

[Ru]C→PtCl2(dmso) 349.0 [112]
{[Ru]C→PtCl2}2bipy 348.27 1.679(3) 1.891(4) 171.4(2) [111]
{[Ru]C→PtCl2}2pyz 342.48 1.668(6) 1.895(6) 176.3(3) [111]
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Table 14. Cont.

13C NMR Ru-C M-C Ru-C-M Ref

{[Ru]C→PtCl2}2pym 341.36 1.678(3) 1.893(3) 176.0(2) [111]
{[Ru]C→PtCl}2(µ-Cl)pz 355.09 1.678(4) 1.909(4) 169.9(2) [111]

[Ru]C→AuCl 395.3 nr nr nr [112]
{[Ru]C→Au←C[Ru]}+ 395.3 nr nr nr [112]

{[Ru]C→IrCl(CO)←C[Ru]} 397.4 nr nr nr [112]
{[Ru]C→Rh(CO)}2(µ-Cl)2 396.4 nr nr nr [112]

[Ru]C→RhCl(cod) 411.7 nr nr nr [112]
[Ru]C→IrCl(cod) 387.6 nr nr nr [112]

{[Ru]C→Ag(4′-H-terpy)} 433.5 nr nr nr [112]
{[Ru]C→Ag(4′-Ph-terpy)} 433.1 nr nr nr [112]

[Ru]C→Ag(ttcn) nr 1.653(4) 1.876(4) 177.3(2) [112]
[Ru]C→Cu(ttcn) nr 1.622(7) 2.098(7) 176.9(5) [112]

[Ru]C→Pd-S4(MoCp*)3 nr 1.672(3) 1.971(3 178.3(2) [112]
[Ru]C→Pt-S4(MoCp*)3 nr 1.689(7) 1.896(7) 178.2(5) [112]
[Ru]C→Pd-S4(WCp*)3 nr 1.668(5) 1.959(5) 178.1(3) [112]
[Ru]C→Pt-S4(WCp*)3 nr 1.699(9) 1.874(9) 178.8(6) [112]
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The X-ray analysis of NHC[Ru]C in Figure 23 exhibits a Ru-C distance of 1.605(2) Å. A signal 
at 471.5 ppm was attributed to the ligand carbon atom. No addition compounds were described 
so far [27]. 
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3.2. The System RuCl2(PCy3)(NHC)C (NHC[Ru]C)

The X-ray analysis of NHC[Ru]C in Figure 23 exhibits a Ru-C distance of 1.605(2) Å. A signal at
471.5 ppm was attributed to the ligand carbon atom. No addition compounds were described so
far [27].
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3.3. The System (NHC)Cl3RuC− (NHC[Ru]−C)

Treating the carbene complex (NHC)Cl2(PCy3)Ru=CH2 in Figure 24 at 55◦ in benzene generated
the neutral complex depicted in Figure 25. X-ray analysis revealed a Ru1-C distance of 1.698(4) Å and
the Ru2-C distance of 1.875(4) Å with a Ru-C-Ru angle of 160.3(2)◦. In the 13C NMR the bridging C
atom resonates at the typical value of 414.0 ppm [114].
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3.4. The system RuClX(PCy3)2C ([Ru]XC)

Various carbido complexes were reported in which one or both chloride ions in [Ru]C are replaced
by X (X = Br, I, CN, NCO, NCS) (see Figure 26). {[Ru](MeCN)C}OTf is the first cationic carbido
complex which is also starting point for most of the substituted carbido complexes. X-ray data for
{[Ru](MeCN)C}OTf, [Ru](CN)2C, [Ru](Br)C, and [Ru](NCO)C are available (see Table 15) [115].
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Table 15. Carbido complexes with the [Ru]XC core.

13C NMR Ru-C M-C Ru-C-M Ref

{[Ru](MeCN)C}OTf 464.75 nr nr nr [115]
[Ru](CN)2C 464.70 nr nr nr [115]

[Ru](F)C 474.58 nr nr nr [115]
[Ru](Br)C 471.38 nr nr nr [115]
[Ru](I)C 469.74 nr nr nr [115]

[Ru](CN)C 474.91 nr nr nr [115]
[Ru](NCO)C 473.51 nr nr nr [115]
[Ru](NCS)C 477.50 nr nr nr [115]

3.5. The Systems OsCl2(PCy3)2C and OsI2(PCy3)2C ([OsX]C)

The carbido complexes [OsX]C in Figure 27 were studied by X-ray analysis. The most important
structural parameter is the Os-C separation, which for X = Cl amounts to 1.689(5) Å [116]. Single-crystal
X-ray diffraction reveals that molecular [OsX]C adopts an approximately square-pyramidal core
geometry, with the carbido ligand occupying the apical position and a short Os-C bond. In the 13C
NMR spectrum the signal at 471.8 ppm for X = Cl was attributed to the ligand carbon atom. It was
synthesized via S-atom abstraction from the thiocarbonyl complex Os(CS)(PCy3)2Cl2 by Ta(OSi-t-Bu3)3.
The diiodo derivative was synthesized from [OsCl]C upon reacting with 10 eq of Me3SiI and exhibits a
13C NMR signal at 446.14 ppm.
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3.6. The System [Tp*Mo(CO)3≡C]− ([Mo]−C)

The reaction between Tp*Mo(CO)2CCl (see Figure 28) and KFeCp(CO)2 generates the carbido
complex [Mo]C→FeCp(CO)2 (see Table 16) [117]; see alternative synthesis from Tp*Mo(CO)2C-Li and
ClFeCp(CO)2 [118]. When Tp*Mo(CO)2CSe was allowed to react with [Ir(NCMe)(CO)(PPh3)2]BF4 the
tetranuclear carbido complex (µ-Se2)[Ir2-{[Mo]C}2(CO)2(PPh3)2] was obtained (see Figure 29) [119].
A solution of Tp*Mo(CO)2CBr in THF was treated with BuLi followed by addition of HgCl2
resulted in the formation of the carbido complex [Mo]C→Hg←C[Mo] [120]. The platinum complex
[Mo]C→Pt(PPh3)2Br was prepared from reacting [(HB(pz)3]Mo(CO)2CBr with [(PPh3)2Pt(C2H4)] [121].
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Table 16. Compounds with [Mo]−C core with Tp* = [HB(pzMe2)3]− or [HB(pz)3]−.

Mo-C M-C Mo-C-M 13C NMR Ref

Tp* is [HB(pzMe2)3]−

[Mo]C→FeCp(CO)2 1.819(6) 1.911(8) 172.2(5) 381 [117]
(µ-Se2)[Ir2-{[Mo]C}2(CO)2(PPh3)2] 1.843(5) 1.974(5) 171.3(3) 168.2(3) 286.1 [119]

[Mo]C→Hg←C[Mo] nr nr nr 373 [120]
[Mo]C→AuPPh3 nr nr nr nr [122]

Tp* is [HB(pz)3]−

[Mo]C→Pt(PPh3)2Br nr nr nr 339.0 [121]
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3.7. Unique Mo Carbido Complex

A further unique carbido complex was described recently as shown in Figure 30. A signal at
360.8 ppm in the 13C NMR spectrum was assigned to the ligand carbon atom [123].
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3.8. The System [Tp*W(CO)3≡C]− ([W]−C)

Reaction of [W]C-Li(THF) with NiCl2(PEt3)2 produced the complex [W]C→NiCl(PEt3)2 in
Figure 31 [124]. Similarly, with [W]C-Li(THF) and FeCl(CO)2Cp or HgCl2 the compounds
[W]C→Fe(CO)2Cp and [W]C→Hg←C[W], respectively, were obtained. [W]C→AuPEt3 was prepared
from reacting [W]C→SnMe3 with AuCl(SMe2) followed by addition of PEt3. A similar reaction with
AuCl(PPh3) yielded [W]C→AuPPh3. [W]C→AuAsPh3 and [W]C→AuPPh3 form a tetrameric assembly
as depicted in Figure 32. The X-ray analysis of the tetrameric unit revealed Au-C distances of 1.995 and
2.078 Å and the W-C distance is 1.877 Å [122].
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The terpyridine complex salt {[W]C→Pt(terpy)}PF6 was obtained from [W]C-Li and [PtCl(terpy)]PF6;
the neutral complex [W]C→PtCl(terpyC[W]) (see Figure 33) was prepared from the same starting material
and [PtCl2(phen)] (see Table 17) [125].
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Table 17. Compounds with [W]−C core. Tp* = [HB(pzMe2)3]−.

W-C M-C W-C-M 13C NMR Ref

[W]C→NiCl(PEt3)2 nr nr nr nr [124]
[W]C→Fe(CO)2Cp nr nr nr nr [122]
[W]C→Hg←C[W] nr nr nr nr [122]
[W]C→AuAsPh3 nr nr nr nr [122]
[W]C→AuPPh3 nr nr nr nr [122]
[W]C→AuPEt3 nr nr nr 397.7 [122]

{[W]C→Pt(terpy)}PF6 1.835(5) 1.938(5) 176.3(3) 368 [125]
[W]C→PtCl(terpyC[W]) 1.853(14) 1.890(14) 173.4(9) 331.3 [125]

3.9. The Systems N3MoC and O3MoC

The potassium salt of NMOC− in Figure 34 is dimeric with two K+ ions bridging two anions and
can be transformed with the crown ethers 2.0-benzo-15-crown-5 and 1.0 2,2,2-crypt into the related ion
pairs. X-ray analysis of the crown ether salt revealed a Mo-C distance of 1.713(9) Å [26,126].
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The complex [OW]C→Ru(CO)2Cp was prepared from reacting [OW]C-Et with Ru(C≡CMe)(CO)2Cp
under loss of MeCCEt. The ligand C atom resonates at 237.3 ppm (1JWC = 290.1 Hz). Distances are
W-C = 1.75(2) Å, Ru-C = 2.09(2) Å and the W-C-Ru angle amounts to 177(2) ◦ [127].

3.10. Symmetrically Bridged Carbido Complexes M=C=M

3.10.1. The Fe=C=Fe Core

[Fe(TPP)]2C was obtained from FeIII(TPP)Cl in the presence of iron powder by reacting with
CI4 (TPP = 5, 10, 15, 20-tetraphenylporphyrin; according to FeII the complex is diamagnetic [128].
The complex was also obtained upon reacting Fe(TPP) with Me3SiCCl3 [129]; see also [130]. An X-ray
analysis was performed in [131] and later in [130]. The Mössbauer spectrum is published in [132].
[Fe(TTP)]2C (TTP = tetratolylporphyrine) was similarly obtained from Fe(TTP) with Me3SiCCl3 [129].
[Fe(oep)]2C (oep = octaethylporphyrine) was prepared from [ClFe(oep)] and HCCl3 and studied by
X-ray analysis ans Mössbauer spectroscopy (see Table 18) [132].

Table 18. Fe-C distances (in Å) and Fe-C-Fe angles (in deg). 13C NMR of the bridging carbon atom
in ppm.

13C NMR Fe-C Fe-C Fe-C-Fe Ref

[Fe(TPP)]2C nr 1.683(1) 1.675 180 [130,131]
[Fe(TTP)]2C nr nr nr nr [129]
[Fe(oep)]2C nr 1.6638(9) 1.6638(9) 179.5(3) [132]

(TPP)Fe=C=Fe(CO)4 nr nr nr nr [121]
(TCNP)Fe=C=Fe(CO)4 nr nr nr nr [121]

[Fe(pc)]2C nr nr nr nr [95]
{[Fe(pc)]2C}(I3)0.66 nr nr nr nr [95]

[(py)Fe(pc)]2C nr 1.69(2) 1.69(2) 177.5(8) [133]
[(1-meim)Fe(pc)]2C nr 1.70(1) 1.70(1) 178(1) [134]
[(4-Mepy)Fe(pc)]2C nr nr nr nr [133]

[(pip)Fe(pc)]2C nr nr nr nr [133]
[(thf)Fe(pc)]2C nr 1.71(2) 1.64(2) 180(1) [130]

[(thf)(TPP)Fe=C=Fe(pc)(thf)] nr 1.71(1) 1.65(1) 179(1) [130]
(Bu4N)2{[(F)Fe(pc)]2C} nr 1.687(4) 1.687(4) 179.5(3) [135]
(Bu4N)2{[(Cl)Fe(pc)]2C} nr nr nr nr [135]
(Bu4N)2{[(Br)Fe(pc)]2C} nr nr nr nr [135]

The mixed carbido compounds (TPP)Fe=C=Fe(CO)4, and (TCNP)Fe=C=Fe(CO)4 (TCNP = Tetrakis-
p-cyanophenylporphyrinate) were synthesized from [(TPP)FeCCl2] or (TCNP)FeCCl2 and [Na2Fe(CO)4];
characterization proceeded via IR spectroscopy [121].

[Fe(pc)]2C was prepared from [ClFe(pc)]− and KOH/HCCl3 [132], or from Fe(pc) and CI4 in
the presence of sodium dithionite [95,136], see also [134]. It also forms upon hydrolysis of (Bu4N)2

{[(F)Fe(pc)]2C}in acetone [135]. Oxidation with I2 generates {[Fe(pc)]2C}(I3)0.66 which was characterized
by IR, Mössbauer spectroscopy and powder X-ray diffraction [95].

A series of six-coordinate N-Base adducts of µ-carbido phthalocyanine complexes were reported.
The pyridine adduct [(py)Fe(pc)]2C was obtained y dissolution of [Fe(pc)]2C in warm pyridine [133]
and characterized by Mössbauer spectroscopy [136] and X-ray analysis [133]. [Fe(pc)(1-meim)}2C
was similarly obtained as the TPP derivate; starting with pcFe and CI4 followed by addition of
sodium dithionite gave the µ-carbido bridged dimer; an X-ray diffraction analysis was reportedd
(1-meim = 1-methylimidazole, pc = phthalocyanine) [134]. [(4-Mepy)Fe(pc)]2C and [(pip)Fe(pc)]2C
were similarly obtained and studied by IR and Mössbauer spectroscopy [136].

[(thf)Fe(pc)]2C forms on dissolving [Fe(pc)] in THF. The asymmetric µ-carbido complex
[(thf)(TPP)Fe=C=Fe(pc)(thf)] stems from the reaction of [FeCCl2(TPP)] with [Fe(pc)]-; both compounds
were characterized by X-ray analyses [130].
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Anionic six-coordinate µ-carbido complexes (Bu4N)2{[(hal)Fe(pc)]2C}were reported (hal = F. Cl.
Br) and obtained from reacting [Fe(pc)]2C with (Bu4N)(hal) (F: RT, Cl: 115◦, Br: 140◦) in solution (F)
and in a melt [135].

3.10.2. The Rh=C=Rh Core

[Rh(PEt3)2(SGePh3)]2C was obtained upon reacting Rh(PEt3)2(SGePh3)CS with Rh(PEt3)3(Bpin) via
the intermediate mixed carbido complex (SGePh3)(PEt3)2Rh=C=Rh(PEt3)2(SBpin) which rearranges
to this complex and [Rh(PEt3)2(SBpin)]2. The X-ray analysis was performed (see Table 19) [137]
[Rh(PEt3)2(SBpin)]2C was prepared earlier by the same working group from Rh(PEt3)3(Bpin) and
0,5 eq of CS2 (X-ray data (see Table 19). Addition of MeOH generated the carbido complex
[Rh(PEt3)2(SH)]2C [138]. [Rh(Cl)(PPh3)2]2C resulted from reacting the thiocarbonyl complex
Rh(Cl)(PPh3)2CS with HBCat. The central C atom resonates at 424 ppm (t, 1JRhC = 47 Hz).
In the chloro complex the chloride ion can be replaced with K[(H2B(pz)2], K[(H2B(pzMe2)2],
or K[(HB(pz)3] to produce the carbido complexes [Rh(H2B(pz)2)(PPh3)]2C, [Rh(H2B(pzMe2)2)(PPh3)]2C,
and [Rh(HB(pz)3)(PPh3)]2C, respectively (see Figure 35). The unusual asymmetric carbido complex
[Rh2H(µ-C)(µ-C6H4PPh2-2){HB(pzMe2)3}2] contains a RhI atom with a shorter Rh-C distance, while the
RhIII –C distance is longer [139].

Table 19. Rh-C distances (in Å) and Rh-C-Rh angles (in deg). 13C NMR of the bridging carbon atom
in ppm.

13C NMR Rh-C Rh-C Rh-C-Rh Ref

[Rh(PEt3)2(SGePh3)]2C 425.8, 1JRhC = 47 1.788(4) 1.798(4) 175.6(2) [137]
[Rh(PEt3)2(SBpin)]2C nr 1.790(7) 1.766(7) 176.1(4) [137,138]

[Rh(PEt3)2(SH)]2C nr nr nr nr [137]
[Rh(Cl)(PPh3)2]2C 424.4, 1JRhC = 47 1.7828(19) 1.7828(19) nr [139]

[Rh(H2B(pz)2)(PPh3)]2C nr 1.7644(11) 1.7644(11) 169.1(7) [139]
[Rh(H2B(pzMe2)2)(PPh3)]2C nr 1.7794(9) 1.7794(9) 168.8(6) [139]

[Rh(HB(pz)3)(PPh3)]2C nr 1.7761(7) 1.7761(7) 163.7(4) [139]
[Rh2H(µ-C)(µ-C6H4PPh2-2){HB(pzMe2)3}2] 447.2 1JRhC = 40, 50 1.740(6) 1.818(6) 165.9(3) [139]Molecules 2020, 25, x FOR PEER REVIEW 44 of 54 
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3.10.3. The Ru=C=Ru Core

The tetranuclear carbido complex [Ru(PEt3)Cl(µ-Cl3)RuAr]2C was prepared from the reaction of
[(p-cymene)Ru(µ-Cl)3RuCl(C2H4)-(PCy3)] with HCCH in THF. X-ray analysis adopts Ru-C distances
of 1.877(9) Å and a Ru-C-Ru angle of 178.8(9)◦(see Figure 36) [140].
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Five coordinate [Ru(pc)]2C with pc = phthalocyaninate was obtained from H[RuCl2(pc)] and CCl2
(in situ from KOH/HCCl3) [132]. The related pyridine adduct with six-coordinate Ru(IV) [(py)Ru(pc)]2C
was obtained upon dissolution of [Ru(pc)]2C in warm pyridine. X-ray analysis revealed a Ru-C distance
of 1.77(1) Å and a Ru-C-Ru angle of 174.5(8)◦ [136].

3.10.4. The Re=C=Re Core

The unique carbido complex [Re(CO)2Cp]2C in Figure 37 results from reaction of [Re(thf)(CO)2

(η-C5H5)], CS2, and PPh3 (with the aim of the thiocarbonyl complex [Re(CS)(CO)(η-C5H5)]) as
by-product in small amounts. X-ray analysis revealed Re-C distances of 1.882(14) and 1.881(14) Å and
a Re-C-Re angle of 173.3(7)◦. A 13C NMR shift for the bridging carbon atom at δ = 436.4 ppm was
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Crystals were analyzed by X-ray diffraction and revealed a Fe=C distance of 1.605(13) Å and a 
C=Re distance of 1.957(12) Å. The Fe-C-Re angle amounts to 173.3(9)°; the Fe-C distance is 
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3.10.5. The W=C=W Core

The oxo complex (tBu3SiO)2(O)W=C=WCl2(OSitBu3)2 in Figure 38 formed in high yield from
thermolysis of [(siloxo)2Cl(CO)W]2 in toluene with loss of CO; in the 13C NMR spectrum the carbide
C atom resonates at δ = 379.14 ppm (JWC = 200, 180 Hz). Degradation of the (silox)4C12W2(CNAr)
complex afforded the imido µ-carbido compound (tBu3SiO)2(NR)W=C=WCl2(OSitBu3)2; the 13C NMR
shift of the µ-C atom appears at δ = 406.25 ppm. X-ray analysis revealed a tetrahedral tungsten core
with a W-C distance of 1.994(17) Å (W1) and a distorted square-pyramidal tungsten core with a shorter
distance of 1.796(17) Å (W2). The W-C-W bond angle amounts to 176.0(12)◦ [142].
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3.11. Asymmetrically Bridged Carbido Complex Fe=C=M

3.11.1. The Fe=C=Re Core

The asymmetrical carbido complex (TPP)Fe=C=Re(CO)4Re(CO)5 in Figure 39 was prepared upon
reacting the dichlorocarbene complex (TPP)Fe=CCl2 with 2 eq of pentacarbonylrhenate, [Re(CO)5]−,
under release of CO and 2 Cl−; TPP is tetraphenylporphyrin. Crystals were analyzed by X-ray
diffraction and revealed a Fe=C distance of 1.605(13) Å and a C=Re distance of 1.957(12) Å. The Fe-C-Re
angle amounts to 173.3(9)◦; the Fe-C distance is somewhat smaller than in [(TPP)Fe]2C and the Re-C
distance is appreciable longer than in [Re(CO)2Cp]2C. In the 13C NMR spectrum the central carbido C
atom resonates at 211.7 ppm [143].
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3.11.2. The Fe=C=Mn Core

The carbido bridged di-manganese complex (TCNP)Fe=C=Mn2(CO)9 (TCNP = tetrakis
(p-cyanophenyl)porphyrinate) (see Figure 40) was synthesized from [(TCNP)Fe=CCl2] and two
eq. of Na(Mn(CO)5 in THF and characterized with elemental analysis, IR, and UV spectroscopy [121].
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3.11.3. The Fe=C=Cr Core

Two compounds with the Fe=C=Cr core have been reported by the group of Beck and characterized
by elemental analysis, IR, and UV spectroscopy. Thus, (TPP)Fe=C=Cr(CO)5 and (TAP)Fe=C=Cr(CO)5

(see Figure 41) were prepared upon reacting the related dichlorocarbene iron complexes [(L)Fe=CCl2]
with Na2[Cr(CO)5] in THF (TAP = tetrakis(p-methoxyphenyl)porphyrinate) [121].
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4. Conclusions

The experimental and theoretical research with regard transition metal complexes with carbone
ligands [M]-CL2 and carbido complexes [M]-C has blossomed in the recent past and it can be foreseen
that it will remain a very active area of organometallic chemistry in the future. The well-known family
of transition metal complexes with C1-bonded carbon ligands that comprise alkyl (CR3), carbene (CR2),
and carbyne (CR) groups has been extended by carbones (CL2) and carbido (C) ligands. The summary
of recent work, which is described in this review, indicates that carbone and carbido complexes are still
largely terra incognita and that many new discoveries can be expected.
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