Table 2.
Comparisons of drug response prediction by QSMART, DNN and statistical methods
| Cancer type | QSMART model | Performance | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| #All | #Drug | #Cancer features | #Interactions | QSMART + (NN/RF/SVM/EN) | Compared method | ||||||||
| Features | Features | Residue | Others | DxM | Others | NN | RF | SVM | EN | ||||
| AG | 2971 | 62 | 31 | 0 | 9 | 4 | 18 | 0.879 | 0.588 | 0.581 | 0.293 | 0.672 | 0.656 |
| Bone | 3410 | 84 | 52 | 0 | 13 | 4 | 15 | 0.856 | 0.621 | 0.667 | 0.370 | 0.693 | 0.819 |
| Breast | 4706 | 129 | 70 | 5 | 26 | 12 | 16 | 0.880 | 0.604 | 0.673 | 0.496 | 0.702 | 0.814 |
| CNS | 4250 | 114 | 65 | 0 | 23 | 11 | 15 | 0.858 | 0.678 | 0.719 | 0.465 | 0.774 | 0.851 |
| Cervix | 1044 | 37 | 29 | 0 | 3 | 1 | 4 | 0.864 | 0.696 | 0.768 | 0.455 | 0.809 | 0.824 |
| Endometrium | 1073 | 33 | 21 | 0 | 4 | 4 | 4 | 0.878 | 0.596 | 0.580 | 0.328 | 0.769 | 0.832 |
| Haematopoietic | 4204 | 119 | 58 | 3 | 24 | 28 | 6 | 0.858 | 0.615 | 0.649 | 0.429 | 0.679 | 0.807 |
| Kidney | 2458 | 73 | 51 | 0 | 3 | 0 | 19 | 0.836 | 0.681 | 0.734 | 0.415 | 0.794 | 0.820 |
| Large intestine | 4628 | 141 | 53 | 10 | 14 | 50 | 14 | 0.814 | 0.617 | 0.692 | 0.495 | 0.736 | 0.794 |
| Liver | 1348 | 48 | 35 | 0 | 4 | 2 | 7 | 0.836 | 0.646 | 0.678 | 0.377 | 0.730 | 0.859 |
| Lung (NSCLC) | 9205 | 207 | 72 | 7 | 35 | 47 | 46 | 0.854 | 0.641 | 0.707 | 0.513 | 0.728 | 0.819 |
| Lung (others) | 7206 | 162 | 58 | 2 | 16 | 46 | 40 | 0.859 | 0.602 | 0.687 | 0.470 | 0.725 | 0.791 |
| Lymphoid | 13302 | 291 | 72 | 54 | 30 | 86 | 49 | 0.873 | 0.647 | 0.740 | 0.495 | 0.758 | 0.834 |
| Oesophagus | 3337 | 91 | 58 | 0 | 17 | 4 | 12 | 0.841 | 0.657 | 0.699 | 0.452 | 0.771 | 0.838 |
| Ovary | 3502 | 113 | 64 | 2 | 18 | 9 | 20 | 0.844 | 0.659 | 0.690 | 0.522 | 0.741 | 0.810 |
| Pancreas | 2421 | 84 | 60 | 0 | 7 | 0 | 17 | 0.833 | 0.693 | 0.737 | 0.492 | 0.784 | 0.816 |
| Pleura | 1431 | 36 | 23 | 0 | 5 | 0 | 8 | 0.805 | 0.629 | 0.623 | 0.303 | 0.776 | 0.837 |
| Skin | 5732 | 132 | 64 | 9 | 21 | 15 | 23 | 0.875 | 0.694 | 0.706 | 0.458 | 0.754 | 0.800 |
| Soft tissue | 1938 | 63 | 45 | 0 | 10 | 2 | 6 | 0.818 | 0.612 | 0.671 | 0.404 | 0.758 | 0.786 |
| Stomach | 2327 | 83 | 49 | 0 | 13 | 16 | 5 | 0.836 | 0.592 | 0.638 | 0.392 | 0.720 | 0.842 |
| Thyroid | 1352 | 33 | 25 | 0 | 5 | 0 | 3 | 0.830 | 0.644 | 0.680 | 0.398 | 0.798 | 0.853 |
| UAT | 3856 | 126 | 50 | 1 | 14 | 4 | 57 | 0.881 | 0.750 | 0.758 | 0.600 | 0.792 | 0.841 |
| Urinary tract | 1454 | 68 | 47 | 0 | 5 | 9 | 7 | 0.863 | 0.645 | 0.683 | 0.433 | 0.754 | 0.847 |
| Overall | 87155 | 0.863 | 0.655 | 0.710 | 0.460 | 0.755 | 0.823 | ||||||
The best performance for each cancer type is highlighted in underlined. The performance of each machine learning method is based on 10-fold cross-validation
, analysis of variance, which did not undergo 10-fold cross-validation. , multiscale convolutional attentive, a drug response prediction method [36]. The performance of MCA is based on its prediction for PKI response (Additional file 2). AG, autonomic ganglia; CNS, central nervous system; DxM, drug–mutation interaction term; EN, elastic net; NN, neural networks; NSCLC, non-small cell lung cancer; , coefficient of determination; RF, random forests; SVM, support vector machine; UAT, upper aerodigestive tract; , the number of drug responses; #Nodes, the number of nodes in the first and second hidden layers of neural networks