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Abstract

Compressed sensing (CS) reconstruction methods leverage sparse structure in underlying signals 

to recover high-resolution images from highly undersampled measurements. When applied to 

magnetic resonance imaging (MRI), CS has the potential to dramatically shorten MRI scan times, 

increase diagnostic value, and improve overall patient experience. However, CS has several 

shortcomings which limit its clinical translation such as: 1) artifacts arising from inaccurate sparse 

modelling assumptions, 2) extensive parameter tuning required for each clinical application, and 

3) clinically infeasible reconstruction times. Recently, CS has been extended to incorporate deep 

neural networks as a way of learning complex image priors from historical exam data. Commonly 

referred to as unrolled neural networks, these techniques have proven to be a compelling and 

practical approach to address the challenges of sparse CS. In this tutorial, we will review the 

classical compressed sensing formulation and outline steps needed to transform this formulation 

into a deep learning-based reconstruction framework. Supplementary open source code in Python 

will be used to demonstrate this approach with open databases. Further, we will discuss 

considerations in applying unrolled neural networks in the clinical setting.
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I. INTRODUCTION

Magnetic resonance imaging (MRI) enables non-invasive visualization of soft tissue 

anatomy, but is limited by long scan times and sensitivity to motion artifacts. Scan durations 

are directly related to the number of data samples measured; therefore, collecting fewer 

measurements enables faster imaging. However, sampling below the Nyquist rate will 

introduce aliasing artifacts which may obscure anatomy and reduce diagnostic confidence. 

In fully sampled imaging, trade-offs between resolution and signal-to-noise ratio (SNR) are 

necessary in order to achieve shorter scan times and reduce sensitivity to patient motion.

Over the past decades, constrained image reconstruction methods have been developed to 

enable rapid MRI techniques by leveraging prior information about the underlying signal to 

recover high-resolution images from relatively few measurements [1]. Compressed sensing 

(CS) is one such method that assumes the underlying signal to be sparse (or compressible) in 

some manually chosen transform domain [2]. With this assumption in mind, the signal can 

be iteratively recovered from highly undersampled data by solving a regularized inverse 

problem. Further undersampling rates are achieved by combining compressed sensing with 

parallel imaging [3]– [5], which leverages the localized sensitivity profiles of each receiver 

element in a coil array. The total scan time acceleration achieved by combined parallel 

imaging and compressed sensing (PICS) algorithms is powerful in enabling a broad range of 

clinical applications. For example, high-resolution volumetric imaging that would take 

minutes to acquire can now be achieved in a single breathhold [6]. This strategy minimizes 

the sensitivity of patient motion and increases the diagnostic quality of the resulting images.

Over the past decade since compressed sensing was introduced to MRI, many developments 

have been made to extend this idea and bring it into clinical practice [7], [8]. One area with 

significant research and clinical activity is in multi-dimensional imaging. With more 

dimensions to exploit sparsity, the subsampling factor can be increased substantially (over 

10 fold). As a result, multi-dimensional scans can be completed in clinically feasible scan 

times. For example, a volumetric time-resolved blood flow imaging sequence (4D flow) can 

be performed in a 5–10 min scan instead of an hour long scan needed to satisfy the Nyquist 

criterion [9]. This single 4D flow scan enables a comprehensive cardiac evaluation with flow 

quantification, functional assessment, and anatomical information. Instead of an hour long 

cardiac exam for congenital heart defect patients with complex cardiac anomalies, the exam 

can be completed in a simple-to-execute single 4D flow scan (Fig. 1A). Other examples of 

multi-dimensional compressed sensing include dynamic-contrast-enhanced imaging [10] 

(Fig. 1B), and “extra-dimensional” imaging with 4+ dimensions [11].

Additionally, rapid imaging has significant impact on the clinical workflow. Exam times can 

be significantly shortened to reduce patient burden and discomfort. For pediatric imaging, 

the shortened exam time enables the reduction of the depth and length of anesthesia [7]. For 

extremely short scan times (less than 15 minutes), anesthesia can entirely eliminated.
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A. Remaining Challenges

Much success has been observed by applying compressed sensing to specific clinical 

applications such as for pediatric imaging [7] or for volumetric cardiac imaging [8]. 

However, the potential that compressed sensing brings is not fully realized in terms of 

maximal acceleration and breadth of applications. A number of challenges limit the use of 

compressed sensing for clinical practice.

In compressed sensing, the regularization function is typically designed to promote sparsity 

of the signal in a manually chosen transform domain, such as Wavelet or finite differences 

[2]. However, depending on the choice of transform, this assumption may not accurately 

model the underlying distribution of the data. For example, finite difference constraints (also 

known as total variation) can be used to dramatically reduce noise-like aliasing artifacts 

from the reconstructed images [12], but rely on the assumption that the image consists of 

piece-wise constant regions. For high undersampling rates, this can lead to unrealistic 

looking reconstructions with a cartoon-like appearance. More complex priors are highly 

desirable in order to sufficiently represent the complexity of the target data.

Second, compressed sensing is sensitive to tuning various optimization parameters. One 

example of these parameters is the regularization parameter, which determines the weight of 

the regularization term with respect to the data consistency term in the optimization’s 

objective. Increasing the regularization parameter will improve the perceived SNR of 

reconstructed images. However, while the perceived SNR improves, fine structures in the 

reconstructed images may be over-smoothed, or new image textures may be introduced, 

resulting in an artificial appearance of images. For high subsampling factors, the optimal 

value of the regularization parameter can vary among scans and patients making manual 

parameter tuning infeasible. The impact of the regularization parameter on the 

reconstruction performance is illustrated in Fig. 2.

Lastly, compressed sensing usually has long reconstruction times due to use of iterative 

optimization algorithms. To achieve clinically acceptable image quality, the number of 

iterations may vary between 50 to over 100 depending on acquisition parameters [15]. For 

this reason, the number of iterations is set conservatively high to ensure convergence for 

various sets of acquisition parameters. Even with GPU acceleration, reconstruction times 

can vary from several minutes to over an hour depending on dataset size, dimensionality, and 

spatial encoding scheme. Long reconstruction times further lead to delays and queues in 

clinical workflows, as well as require expensive dedicated computational hardware.

B. Current Solutions

Much research has attempted to solve these challenges. The performance of compressed 

sensing is highly dependent on the regularization function and regularization parameters 

used. To reduce textural artifacts and bias, the regularization needs to be carefully chosen 

and hand-tuned for each application. Another class of constrained reconstruction methods 

which leverage low-rank structure in the underlying signal was concurrently developed with 

sparse CS [16]. In contrast to sparsity-based constraints which are enforced in a pre-selected 

transform domain, low-rank constraints are adaptive and depend on the subspace 
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characteristics of each dataset. These methods are highly suitable for certain dynamic 

imaging applications, but can produce over-smoothed images when the underlying signals 

are not rank-deficient. Low-rank constraints have since been combined with sparsity-based 

constraints to achieve more expressive regularization functions [17]. However, these 

methods require extensive parameter tuning for each additional constraint.

Typically, the regularization parameter is fixed for all scans based on empirical tuning within 

a small number of datasets. This approach is shown to be effective for moderate 

subsampling rates across many patients in large clinical studies [7], [8]. Ideally, the 

regularization parameters should be chosen for each scan based on the system noise. 

However, many other factors such as patient motion contribute to measurement error. 

Previous works have shown that automatic parameter selection for each patient can improve 

image quality of compressed sensing reconstructions [18]. This comes at the cost of 

additional reconstruction time; as a result, automatic parameter selection is uncommon in 

practice.

In regards to reconstruction times, preconditioning techniques can reduce the number of 

iterations necessary for algorithmic convergence, but often require more computations per 

iteration [19]. Further acceleration in reconstruction time can be achieved by early 

truncation of the iterative reconstruction [20].

Most of these solutions require manual adjustment of the original compressed sensing 

problem to specific applications. This tuning and redesigning process requires extra time and 

effort, and constant attention as hardware and clinical protocols evolve. Previous solutions to 

automate some of this process involve additional memory and more complex computations.

C. Overview

To overcome the obstacles with compressed sensing, deep learning has recently become a 

compelling and practical approach [13], [14], [21]–[25]. The purpose of this tutorial is to 

review an existing framework for extending compressed sensing to a deep learning-based 

approach using unrolled neural networks. We also discuss a number of new challenges when 

using this framework including considerations for clinical deployment. We have released 

supplementary python code on GitHub1 to demonstrate an example of this deep learning-

based compressed sensing framework.

II. UNROLLED COMPRESSED SENSING

A. Background

The MRI reconstruction problem can be formulated as a minimization problem [2]. The 

optimization consists of solving the following equation:

m̂ = argmin
m

1
2‖Am − y‖2

2 + λR(m) (1)

1https://github.com/MRSRL/dl-cs
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where m is the reconstructed image set, A describes the imaging model, and y is the 

measured data in the k-space domain. The imaging model for MRI consists of signal 

modulation by coil sensitivity profile maps S, Fourier transform operation, and data 

subsampling. These sensitivity profile maps S are specific for each dataset y.

The goal of this optimization is to reconstruct an image set m that best matches the 

measured data y in the least squares sense. For highly subsampled datasets, this problem is 

ill posed — many solutions satisfy Eq. 1; thus, the regularization function R(m) and 

corresponding regularization parameter λ incorporate image priors to help constrain the 

problem. In CS, the regularization function is designed to promote transform sparsity in the 

optimal solution. Many optimization algorithms have been developed to solve the 

minimization problem in Eq. 1. For simplicity, we base our discussion on the proximal 

gradient method. We refer the reader to similar approaches based on other optimization 

algorithms [13], [21], [24].

To solve Eq. 1, we split the problem into two alternating steps that are repeated. For the k-th 

iteration, a gradient update is performed as

m(k + ) = m(k) − 2tAH(Am(k) − y), (2)

where AH is the transpose of the imaging model, and t is a scalar specifying the size of the 

gradient step. The current guess of image m is denoted here as m(k+). Afterwards, the 

proximal problem with regularization function R is solved:

m(k + 1) = proxλR m(k + ) = argmin
u

R(u) + 1
2tλ‖u − m(k + )‖2

2, (3)

where u is a helper variable that transforms the regularization into a convex problem that can 

be more readily solved. The updated guess of image m at the end of this k-th iteration is 

denoted as m(k+1), and m(k+1) is then used for the next iteration in Eq. 2. This proximal 

problem is a simple soft-thresholding step for specific regularization functions such as R(m) 

= ‖Ψm‖1 where Ψ is a Wavelet transform [20].

B. Data-Driven Learning

To be able to develop fast and robust reconstruction algorithms for different MRI sequences 

and scans, a compelling alternative is to take a data-driven approach to learn the optimal 

regularization functions and parameters. Some approaches have attempted to directly learn a 

parameterized form of the regularization function using a field-of-experts model [13], [14]. 

This tutorial focuses on a different approach, which is to learn the proximal step in Eq. 3 and 

therefore implicitly learn both the regularization function and regularization parameter. In 

this setup, as described by Refs. [22], [23], [26], the proximal step is replaced with a deep 

neural network which is capable of learning a more natural regularization function than 

transform sparsity. With this in mind, the proximal update step in Eq. 3 can be re-written as:

m(k + 1) = Eθk m(k + ) . (4)
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where Eθk is the neural network and θk are the learned parameters.

The steps of Eqs. 2 and 4 can be unrolled with a fixed number of iterations [27] and be 

denoted as model Gθ (y, A) with inputs of measurements y and imaging model A. The 

training of such a model can then be performed using the following loss function:

min
θ

∑
i

‖Gθ(yi, Ai) − mi‖2
2, (5)

where mi is the i-th ground truth example that is retrospectively subsampled by a sampling 

mask M in the k-space domain to generate yi = M Ai
H mi. For deployment, new scans are 

acquired according to the sampling mask M, and the measured data yi can be used to 

reconstruct images m̂i as

m̂i = Gθ(yi, Ai), (6)

where Ai contains sensitivity profile maps Si that can be estimated using algorithms like 

JSENSE [4] or ESPIRiT [5]. An example network is shown in Fig. 3AB.

C. Neural Network Design for Unrolled MRI Reconstruction

Important considerations must be made when applying deep neural networks to MRI 

reconstruction. This includes handling of complex data [29], circular convolutions in image 

domain for Cartesian data [24], and incorporating the acquisition model [13].

Since the data measured during an MRI scan is complex, complex data is used for the MRI 

reconstruction process. As a result, the networks used for MRI reconstruction need to handle 

complex data types. Two approaches can be used to solve this issue. The first approach is to 

convert the complex data into two channels of data. This conversion can be performed as 

concatenating the magnitude of the data with the phase of the data in the channels 

dimension, or concatenating the real component with the imaginary component of the data 

in the channels dimension. The second approach is to build the neural network with 

operations that directly support and exploit structure in complex data. Several efforts have 

been made to enable complex operations in the convolutional layers (with complex back-

propagation) and the activation functions [29]. For demonstration purposes, we construct the 

networks in Fig. 3BC with the first approach because of its simplicity.

Another consideration in building neural networks for MRI reconstruction is handling the 

convolutional operation at the image edges. Assuming zeros beyond the image edges for 

image-domain convolutions is sufficient for most cases, especially when the imaging volume 

is surrounded by air and when no high-intensity signal exists near the edges of the field-of-

view (FOV). However, when these conditions are not satisfied, this assumption may result in 

residual aliasing artifacts. These artifacts are usually observed when the imaging object is 

larger than the FOV. In Cartesian imaging, data are measured in the Fourier space and 

transformed using the fast Fourier transform algorithm (FFT) to the image domain; as a 

result, signals are circularly wrapped. Thus, circular convolutions should be performed when 

applying convolutions in the image domain. For this purpose, we first circularly pad the 
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images before applying the convolutional layers (Fig. 4B). The padding width is set such 

that the “valid” portion of the output has the same image dimensions as the input. Note that 

for data acquired using non-Cartesian trajectories, such as radial or spiral, signal outside of 

the FOV will instead manifest as noise-like artifacts across the image. In these cases, circular 

padding should not be used.

Leveraging a more accurate MRI acquisition model in the neural network will improve the 

reconstruction performance and simplify the network architecture. More specifically, data 

are measured using multi-channel coil receivers. The sensitivity profile maps of the different 

coil elements can be leveraged as a strong prior to help constrain the reconstruction problem. 

Further, by exploiting the (soft) SENSE model [5], the multi-channel complex data (y) are 

reduced to a single-channel complex image (m) before each convolutional network block 

denoted as the proximal block in Fig. 3B. As a further benefit, the learned network can be 

trained and applied to datasets with different numbers of coil channels, because the input to 

the learned convolutional network block only requires a single-channel complex image.

D. Training Data

Reconstructed image quality can vary depending on the quality, authenticity, and diversity of 

the training data used to train the network. Therefore, it is important to consider how 

training data is collected, pre-processed, and augmented.

Training data should be collected at the point in the imaging pipeline where the model will 

be deployed. For the purpose of image reconstruction of subsampled datasets, we would 

need to collect the raw measurement k-space data. Typically, raw imaging data are not 

readily available as only magnitude images are saved in DICOM format and stored in 

hospital imaging databases. Furthermore, these stored magnitude images are often processed 

with image filters which can bias network outputs. Additionally, accurate simulation of raw 

imaging data from DICOM images is difficult to perform if not impossible especially in 

simulating realistic phase information. To facilitate development, a number of different open 

data initiatives have been recently launched, including mridata.org [30] and fastMRI [31]. 

These resources provide an initial starting point for development, but more datasets of 

varying acquisition parameters, field strengths, and vendors are needed.

Data augmentation strategies should be used during training to prevent overfitting to the 

original training dataset. However, care must be taken when applying data augmentation 

transformations. For example, data interpolation is needed for random rotations which may 

degrade the quality of the input data. Other image domain operations may introduce 

unrealistic errors in the measurement k-space domain, such as aliasing in the k-space 

domain. Flipping and transposing the dataset will preserve the original data quality; thus, 

these operations can be included in the training.

Finally, data normalization strategies can help improve the training and the final 

performance of the learned model. For simplicity, the raw measurement data can be 

normalized according to the L2 norm of the central k-space signals. In our demonstration, 

we normalize the input data by the L2 norm of the central 5 × 5 region of k-space. Due to 

similarities to compressed sensing algorithms, training convergence and reconstruction 
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accuracy may be improved by data pre-whitening and normalization by an estimate of the 

noise statistics among different coil array receivers. These noise statistics can be measured 

with a fast calibration scan during which data are measured with no RF excitation.

E. Loss Function

The performance of unrolled CS is highly dependent on the loss function used. The easiest 

loss functions to use for training are L1 and L2 losses. The L2 loss is described in Eq. 5 and 

can be converted to an L1 loss by using the L1 norm instead of the L2 norm.

L1 and L2 losses have been previously used to successfully train supervised reconstruction 

networks [13], [23]. Alternative loss functions that further capture the idea of structure or 

perception have also been studied in the literature. For example, a perceptual loss function 

can be constructed using a network pre-trained on natural images to extract “perceptual” 

features [32]. Though general, this feature extraction network should be trained for the 

specific problem domain and the specific task at hand. Generative adversarial networks 

(GANs) [33] can be used to model the properties of the ground truth images and to exploit 

that information for improving the reconstruction quality.

A feature extraction network Dω (m), shown in Fig. 3C, is trained to extract the necessary 

features to compare the reconstruction output with the ground truth. The training loss 

function in Eq. 5 becomes:

min
θ

max
ω

∑
i

‖Dω Gθ yi, Ai − Dω mi ‖2, (7)

where parameters ω are optimized to maximize the difference between the reconstructed 

image Gθ (yi, Ai) and the ground truth data mi. At the same time, parameters θ are 

optimized to minimize the difference between the reconstruction and the ground truth data 

after passing both these images through network Dω to extract feature maps. The 

optimization of Eq. 7 consists of alternating between the training of parameters ω with θ 
constant and the training of parameters θ with ω constant. We refer to this training approach 

as training with an “adversarial loss.”

This min-max loss function in Eq. 7 can be unstable and difficult to train. Two main 

components have been described by Ref. [33] to help stabilize the training. First, Gθ is pre-

trained using either an L1 or L2 loss so that the parameters in this network are properly 

initialized. The network is then fine tuned with the adversarial network using a reduced 

training rate. Second, a pixel-wise cost function is added to Eq. 7:

min
θ

max
ω

∑
i

μ‖Dω Gθ yi, Ai − Dω mi ‖2
2 + ‖Gθ yi, Ai − mi‖2

2 . (8)

The images before passing through Dω can be considered as additional feature maps to help 

stabilize the training process. The hyperparameter μ is used to weigh between the two 

components in the loss function, and must be heuristically tuned during the training phase.
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III. DEMONSTRATION

For demonstration of the unrolled CS reconstruction and for enabling reproducibilty of the 

results, we downloaded 20 fully sampled volumetric knee datasets that are freely available in 

the database of MRI raw data, mridata.org [30]. Each volume was collected with an 8-

channel knee coil, proton density weighting, 320 slices in the readout direction in x, and 

each of these x-slices were treated as separate examples during training and validation. The 

datasets were divided by subject: 15 subjects for training (4800 x-slices), 2 subjects for 

validation (640 x-slices), and 3 subjects for testing. Sensitivity maps were estimated using 

JSENSE [4]. Poisson-disc sampling masks [2] were generated using an acceleration factor R 
of 9.4 with corner cutting (effective R of 12) and a fully-sampled calibration region of 20 × 

20.

The networks in Fig. 3 were implemented in Python using the TensorFlow framework. 

Additional reconstruction components were performed using the SigPy Python package2. 

The reconstruction network was built using 4 iterations; this setup allowed for relatively 

faster training for demonstration purposes. Performance can be improved by increasing the 

number of iterations. Training and experiments were performed on a single NVIDIA Titan 

Xp graphics card with 12GB of memory which supported a batch size of 2. The network was 

trained multiple times using different loss functions: an L1 loss for 20k steps and L2 loss for 

20k steps. For adversarial loss, the network was first pre-trained using an L1 loss for 10k 

steps and then jointly trained with the adversarial loss and an L1 loss for 60k steps (10k 

steps were for the reconstruction network and 50k steps were for the adversarial feature 

extraction network). The data preparation, training, validation, and testing python scripts are 

available on GitHub. Example results are shown in Fig. 5.

IV. CLINICAL INTEGRATION

A. Example Setup

Many of these algorithms are computationally intensive, but these algorithms can leverage 

off-the-shelf consumer hardware. The bulk of the computational burden is now in the 

network, and graphic processing units (GPUs) can be leveraged for this purpose. The 

compute system only needs the minimal central processing unit (CPU) and memory 

requirements to support the GPUs. Using an NVIDIA Titan Xp graphics card, one 320 × 256 

slice took on average 0.1 seconds to reconstruct, 1.8 seconds for a batch of 16 slices, and a 

total of 36.0 seconds for the entire volume with 320 slices. These benchmarks include the 

time to transfer the data to and from the CPU to the GPU. The computational speed can be 

further improved using newer GPU hardware and/or more cards. Alternatively, inference on 

the reconstruction network can be performed on the CPU to be able to leverage more 

memory in a more cost effective manner, but this setup comes with slower inference speed.

2https://github.com/mikgroup/sigpy
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B. Clinical Cases

Through initial developments, we have deployed a number of different models at our clinical 

site. Example results of unrolled compressed sensing with variational networks (VN) [13], 

[14] are shown in Fig. 2. Conventional compressed sensing using L1-ESPIRiT [5] achieved 

high noise when the regularization parameter was too low (0.0005, left column in Fig. 2), 

and high residual and blurring artifacts when the regularization parameter was too high 

(0.05, right column in Fig. 2). The optimal value of the regularization parameter may vary 

with different scans. Compared to conventional compressed sensing, learning a VN (middle 

column in Fig. 2) achieved proper regularization without the need to tune the regularization 

parameter.

The best image prior for multi-dimensional imaging is more difficult to engineer, but these 

larger datasets benefits tremendously from subsampling due to long acquisition times. Thus, 

for multi-dimensional space, a compelling approach is to use data-driven learning. In Fig. 7, 

a reconstruction network consisting of 3D spatiotemporal convolutions was trained on 12 

fully-sampled, breath-held, multi-slice cardiac cine datasets acquired with a balanced 

steady-state free precession (bSSFP) readout at multiple scan orientations. The 

reconstruction network enabled the acquisition of a cine slice in a single heartbeat and a full 

stack of cine slices in a single breathhold [34].

C. Evaluation

For development and prototyping, image metrics provide a straightforward method to 

evaluate performance. These metrics include peak signal-to-noise ratio (PSNR), normalized 

root-mean-square error (NRMSE), and structural similarity (SSIM). These metrics are 

described in the Appendix. However, what is more important in the clinical setting is the 

ability for clinicians to make an informed decision. Therefore, we recommend performing 

clinical studies.

For comparing methods, the evaluation of clinical studies can be performed with blinded 

grading of image quality by multiple radiologists. This evaluation can be based on set 

criteria including overall image quality, perceived signal-to-noise ratio, image contrast, 

image sharpness, residual artifacts, and confidence of diagnosis [14]. Scores from 1 to 5 or 

−2 to 2 are given for each clinical patient scan with a specific definition for each score for 

objectivity. An example of scoring for signal-to-noise ratio and image sharpness is described 

in Table I.

A total number of more than 20 consecutive scans are usually collected to achieve a 

comprehensive and statistically meaningful evaluation for an initial study. The difference 

between two reconstruction approaches can be statistically tested with Wilcoxon tests on the 

null hypothesis to show that there is no significant difference between two approaches. The 

Wilcoxon test is a non-parametric statistical test that evaluates the null hypothesis that the 

scores from the two different reconstructions are from the same distribution. Ideally, the new 

reconstruction algorithm should yield results that are from a different distribution compared 

to the original algorithm.
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V. DISCUSSION

This data-driven approach to accelerated imaging has the potential to eliminate many of the 

challenges associated with compressed sensing, including the need to design hand-crafted 

priors and to hand tune the regularization functions. In addition, the described framework 

inspired by iterative inference algorithms provides a principled approach for designing 

reconstruction networks [22]. However, the data-driven reconstruction framework faces new 

challenges, including data scarcity, generalizability, reliability, and meaningful metrics.

High quality training labels, or fully sampled datasets, are scarce especially in the clinical 

settings where patient motion impacts image quality and where lengthy fully-sampled 

acquisitions are impractical to perform if a faster solution exists. To address data scarcity, an 

important future direction pertains to designing compact network architectures that are 

effective with small training labels and are possibly trained in an unsupervised fashion. Early 

attempts are made in [26] where recurrent neural networks are leveraged for learning 

proximal operators using only a couple of residual blocks that performs well for small 

training sample sizes.

While neural networks do not need to be manually hand-tuned scan-to-scan like in 

conventional compressed sensing approaches, they may need to be re-trained or fine-tuned 

for each application to maximize performance. Knoll, et al. showed that reconstructed image 

quality is negatively impacted when a network is applied to data acquired with different 

SNR from that of the training data [35]. Since SNR can vary drastically across different 

applications, the network’s ability to generalize will depend on the heterogeneity of the 

noise statistics in the training data. To improve generalizability, the network can be re-

trained or fine-tuned on heterogeneous data acquired with the SNR and acquisition 

parameter range of interest. However, this strategy requires sufficient training datasets for all 

different settings to be readily available.

Given the scarcity of training examples and the cost to collect these examples, another 

strategy is to design and train networks that are highly generalizable. This generalizability 

can be achieved with smaller networks as discussed before or by training with a larger image 

manifold such as using natural images. With this approach, a loss in performance may be 

observed since a larger than necessary manifold is learned [36]. In the worst case, the images 

reconstructed using this data-driven approach should not be worse than images reconstructed 

using a more conservative approach such as zero-filling or parallel imaging [3], [5].

Regarding generalizability, an important question concerns reconstruction performance for 

subjects with unseen abnormalities. Patient abnormalities can be quite heterogeneous, and 

these abnormalities are rare and unlikely to be included in the training dataset. If not 

designed carefully, generative networks have the possibility of removing or creating critical 

features that will result in misdiagnosis. The optimization-based network architecture 

utilizes data consistency, as exemplified by the gradient update step, for the image recovery 

problem. However, the inherent ambiguity of ill-posed problems does not guarantee faithful 

recovery. Therefore, a systematic study is required to analyze the recovery of images. Also, 

effective regularization techniques (possibly through adversarial training) are needed to 
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avoid missing important diagnostic information. More efforts are needed to develop a 

holistic quality score capturing the uncertainty in the acquisition scheme and training data.

Developing a standard unbiased metric for medical images that assesses the authenticity of 

medical images is extremely important. Here, we discuss the use of different loss functions 

to train the network and common imaging metrics to evaluate the images. Additionally, we 

discuss an example of a possible clinical evaluation that can be performed to assess the 

algorithm in the clinical setting. However, the reconstruction task should ideally be 

optimized and evaluated for the end task which can consist of detection and quantification. 

With significant effort in automating image interpretation, this data-driven framework 

provides an opportunity to pursue the ability to train the reconstruction end-to-end for the 

ultimate goal of improving patient care.

In conclusion, deep learning has the potential to increase the accessibility and 

generalizability of rapid imaging through data subsampling. Previous challenges with 

compressed sensing can be approached with a data-driven framework to create a solution 

that is more readily translated to clinical practice.
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Appendix

Appendix: Imaging Metrics

Imaging metrics are commonly used to evaluate results. This includes peak signal-to-noise 

ratio (PSNR) and normalized root-mean-square error (NRMSE). For these quantities, we use 

the following equations:

MSE(x, xr) = 1
NM ∑

i

N
∑

j

M
|x[i, j] − xr[i, j]|2, (9)

PSNR(x, xr) = 10log10(max(|xr|2)/MSE), (10)

NRMSE(x, xr) = MSE/ 1
NM ∑

i

N
∑

j

M
|xr[i, j]|2, (11)

where x denotes the test image, x[i, j] denotes the value of the test image at pixel (i, j), and 

xr denotes the reference ground truth image.
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Fig. 1. 
Example clinical applications of compressed sensing. In A, two cardiac phases of the 

cardiac-resolved volumetric velocity MRI (4D flow) are shown for the purpose of congenital 

heart defect evaluation. To enable a clinically feasible scan duration of 5–15 minutes while 

maintaining high spatial (0.9 × 0.9 × 1.6 mm3) and high temporal resolutions (22.0 ms), a 

subsampling factor of 15 was used [9]. In B, high spatial (1 × 1 × 2 mm3) with a 14.5-s 

temporal resolution was achieved for a dynamic contrast enhanced MRI using an 

acceleration factor of 6.5 [10]. High spatiotemporal resolutions are required for capturing 

the rapid hemodynamics of pediatric patients.
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Fig. 2. 
Example results of compressed sensing (CS) and variational network (VN) reconstructions 

of 3.25X subsampled data acquired with a 32-channel torso coil [13], [14]. Conventional 

compressed sensing requires tuning of the regularization parameter λ. The optimal value of 

this parameter may vary with different scans. Compared to conventional CS using L1-

ESPIRiT [5] (left and right columns), learning a VN (middle column) achieves proper 

regularization without the need of manual tuning the regularization parameter.
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Fig. 3. 
Neural network architecture for MRI reconstruction. One residual block (ResBlock) [28] is 

illustrated in A with f feature maps. The ResBlock is used as a building block for the 

different networks. In B, one iteration of the reconstruction network is depicted where the i-
th dataset is passed through the k-th iteration. Matrix Ai represents the imaging model, mi 

represents the dataset in the image domain, and yi represents the dataset in the k-space 

domain. The final output can be passed through the network in C to extract feature maps that 

can be compared to the feature maps extracted from the ground truth data using the same 

network. The tanh activation function in C is used to ensure that the values in the outputted 

feature maps are within ±1.
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Fig. 4. 
Circular convolutional layer for MRI reconstruction. Current deep learning frameworks 

support zero-padding for convolutional layers (shown in A) to maintain the original 

dimensions. However, data are measured in the frequency space, and the FFT algorithm is 

used to convert this data into the image domain. Thus, for Cartesian imaging, circular 

convolutions should be performed. This circular convolution can be performed by first 

circularly padding the input data as shown in B and cropping the result to the original input 

dimension. For cardiac cine imaging, images can also be circular padded in time to take 

advantage of cyclical dynamics such as heart motion. Examples of 8X subsampled datasets 

reconstructed using a 3D unrolled neural network with and without circular spatiotemporal 

padding are shown in C. Images reconstructed with circular convolutions depict reduced 

error at image edges and heart tissue at end-systole (red arrows).
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Fig. 5. 
Demonstration results of a volumetric knee dataset that is subsampled with an acceleration 

factor R of 9.4 with corner cutting (effective R or 12). In the bottom row, the volume was 

reconstructed slice by slice using three networks trained with different loss functions. The 

reconstruction using the network trained using the L1 and L2 losses yielded the best results 

in terms of PSNR, NRMSE, and SSIM. However, the reconstruction using the network 

trained with the adversarial loss yielded results with most realistic texture.
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Fig. 6. 
Example development cycle for the data-driven learning framework. In A, fully sampled raw 

k-space datasets are first collected and used to perform realistic simulation of subsampling. 

The reconstruction algorithm is then built, trained, and internally validated in B. Lastly, the 

reconstruction model is deployed and clinically evaluated in C.
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Fig. 7. 
Clinical deployment of a 3D spatiotemporal convolutional reconstruction network for two-

dimensional cardiac-resolved imaging. Above, a prospectively acquired short-axis dataset 

acquired with with 11.6 fold subsampling using a 32-channel cardiac coil was reconstructed 

using compressed sensing (L1-ESPIRiT) [5] and a trained 3D reconstruction network. These 

reconstructions were compared with the fully sampled reference images (acquired in a 

separate scan). The 3D network was able to reconstruct fine structures such as papillary 

muscles and trabeculae with less blurring than L1-ESPIRiT (red arrows). Furthermore, y-t 

profiles (plotted along yellow dotted line) show that the 3D network images depict more 

natural cardiac motion compared to L1-ESPIRiT with total variation, which introduced 

staircasing artifacts (orange arrows).
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TABLE I

EXAMPLE SCORING CRITERIA TO EVALUATE METHODS.

Score Overall Image Quality Signal-to-Noise Ratio Sharpness

1 Nondiagnostic All structures appear to be too noisy. Some structures are not sharp on most images.

2 Limited Most structures appear to be too noisy. Most structures are sharp on some images.

3 Diagnostic Few structures appear to be too noisy on most images. Most structures are sharp on most images.

4 Good Few structures appear to be too noisy on a few images. All structures are sharp on most images.

5 Excellent There is no noticeable noise on any of the images. All structures are sharp on all images.
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