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Abstract: The algorithms of electroencephalography (EEG) decoding are mainly based on machine
learning in current research. One of the main assumptions of machine learning is that training and test
data belong to the same feature space and are subject to the same probability distribution. However,
this may be violated in EEG processing. Variations across sessions/subjects result in a deviation of
the feature distribution of EEG signals in the same task, which reduces the accuracy of the decoding
model for mental tasks. Recently, transfer learning (TL) has shown great potential in processing EEG
signals across sessions/subjects. In this work, we reviewed 80 related published studies from 2010 to
2020 about TL application for EEG decoding. Herein, we report what kind of TL methods have been
used (e.g., instance knowledge, feature representation knowledge, and model parameter knowledge),
describe which types of EEG paradigms have been analyzed, and summarize the datasets that have
been used to evaluate performance. Moreover, we discuss the state-of-the-art and future development
of TL for EEG decoding. The results show that TL can significantly improve the performance of
decoding models across subjects/sessions and can reduce the calibration time of brain–computer
interface (BCI) systems. This review summarizes the current practical suggestions and performance
outcomes in the hope that it will provide guidance and help for EEG research in the future.
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1. Introduction

A brain–computer interface (BCI) is a communication method between a user and a computer
that does not rely on the normal neural pathways of the brain and muscles [1]. According to the
methods of electroencephalography (EEG) signal collection, BCIs can be divided into three types,
namely, non-invasive, invasive, and partially-invasive BCIs. Among them, non-invasive BCIs realize
the control of external equipment via EEG and by transforming EEG recordings into a command,
which have been widely used due to their convenient operation. Figure 1 shows a typical non-invasive
BCI system framework based on EEG, which usually consists of three parts: EEG signal acquisition,
signal decoding, and external device control. During this process, signal decoding is the key step to
ensure the operation of the whole system.
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Figure 1. Framework of an electroencephalography (EEG)-based brain–computer interface (BCI) 
system. 

The representation of EEG typically takes the form of a high-dimensional matrix, which includes 
the information of sampling points, channels, trials, and subjects [2]. Meanwhile, the most common 
features of EEG-based BCIs include spatial filtering, band power, time points, and so on. Recently, 
machine learning (ML) has shown its powerful ability for feature extraction in EEG-based BCI tasks 
[3,4]. 

BCI technology based on EEG has made great progress, but the challenges of weak robustness 
and low accuracy greatly hinder the application of BCIs in practice [5]. From the perspective of signal 
decoding, the reasons are as follows: First, one of the main assumptions of ML is that training and 
test data belong to the same feature space and are subject to the same probability distribution. 
However, this assumption is often violated in the field of bioelectric signal processing, because 
differences in physiological structure and psychological states may cause obvious variation in EEG. 
Therefore, signals from different sessions/subjects on the same task show different features and 
distribution. 

Second, EEG signals are extremely weak and are always accompanied by unrelated artifacts 
from other areas of the brain, which potentially mislead discriminant results and decrease the 
classification accuracy. Third, the strict requirements for the experimental conditions of BCI systems 
make it difficult to obtain large and high-quality datasets in practice. It is difficult for a classification 
model based on small-scale samples to obtain strong robustness and high classification accuracy. 
However, large-scale and high-quality datasets are the basis for guaranteeing the decoding accuracy 
of models. 

One promising approach to solve these problems is transfer learning (TL). The principle of TL is 
realizing the knowledge transfer from different but related tasks, i.e., using existing knowledge 
learned from accomplished tasks to help with new tasks. The definition of TL is as follows: A given 
domain D consists of a feature space X and a marginal probability distribution P(X). A task T consists 
of a label space y and a prediction function ݂. A source domain ܦ௦ and a target domain ்ܦ may 
have different feature spaces or different marginal probability distributions, i.e., ܺ௦ ≠ ்ܺ or ௦ܲ(ܺ) ≠்ܲ(ܺ). Meanwhile, tasks ௦ܶ and ்ܶ are subject to different label spaces. The aim of TL is to help 
improve the learning ability of the target predictive function ்݂ (·) in ்ܦ using the knowledge in ܦ௦ 
and ௦ܶ [6]. 

There are two main scenarios in EEG-based BCIs, namely, cross-subject transfer and cross-
session transfer. The goal of TL is to find the similarity between new and original tasks and then to 
realize the discriminative and stationary information transfer across domains [7]. In this study, we 
attempted to summarize the transferred knowledge for EEG based on following three types: 
Knowledge of instance, knowledge of feature representation, and knowledge of model parameters. 

This review of TL applications for EEG classification attempted to address the following critical 
questions: What problems does TL solve for EEG decoding? (Section 3.1); which paradigms of EEG are 
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The representation of EEG typically takes the form of a high-dimensional matrix, which includes
the information of sampling points, channels, trials, and subjects [2]. Meanwhile, the most common
features of EEG-based BCIs include spatial filtering, band power, time points, and so on. Recently,
machine learning (ML) has shown its powerful ability for feature extraction in EEG-based BCI tasks [3,4].

BCI technology based on EEG has made great progress, but the challenges of weak robustness
and low accuracy greatly hinder the application of BCIs in practice [5]. From the perspective of signal
decoding, the reasons are as follows: First, one of the main assumptions of ML is that training and test
data belong to the same feature space and are subject to the same probability distribution. However,
this assumption is often violated in the field of bioelectric signal processing, because differences in
physiological structure and psychological states may cause obvious variation in EEG. Therefore, signals
from different sessions/subjects on the same task show different features and distribution.

Second, EEG signals are extremely weak and are always accompanied by unrelated artifacts from
other areas of the brain, which potentially mislead discriminant results and decrease the classification
accuracy. Third, the strict requirements for the experimental conditions of BCI systems make it difficult
to obtain large and high-quality datasets in practice. It is difficult for a classification model based on
small-scale samples to obtain strong robustness and high classification accuracy. However, large-scale
and high-quality datasets are the basis for guaranteeing the decoding accuracy of models.

One promising approach to solve these problems is transfer learning (TL). The principle of TL
is realizing the knowledge transfer from different but related tasks, i.e., using existing knowledge
learned from accomplished tasks to help with new tasks. The definition of TL is as follows: A given
domain D consists of a feature space X and a marginal probability distribution P(X). A task T consists
of a label space y and a prediction function f . A source domain Ds and a target domain DT may have
different feature spaces or different marginal probability distributions, i.e., Xs , XT or Ps(X) , PT(X).
Meanwhile, tasks Ts and TT are subject to different label spaces. The aim of TL is to help improve the
learning ability of the target predictive function fT(·) in DT using the knowledge in Ds and Ts [6].

There are two main scenarios in EEG-based BCIs, namely, cross-subject transfer and cross-session
transfer. The goal of TL is to find the similarity between new and original tasks and then to realize the
discriminative and stationary information transfer across domains [7]. In this study, we attempted to
summarize the transferred knowledge for EEG based on following three types: Knowledge of instance,
knowledge of feature representation, and knowledge of model parameters.

This review of TL applications for EEG classification attempted to address the following critical
questions: What problems does TL solve for EEG decoding? (Section 3.1); which paradigms of EEG
are used for TL analysis? (Section 3.2); what kind of datasets can we refer to in order to verify the
performance of these methods? (Section 3.3); what types of TL frameworks are available? (Section 3.4).

First, the search methods for the identification of studies are introduced in Section 2. Then, the
principle and classification criteria of TL are analyzed in Section 3. Next, the TL algorithms for EEG
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from 2010 to 2020 are described in Section 4. Finally, the current challenges of TL in EEG decoding are
discussed in Section 5.

2. Methodology

A wide literature search from 2010 to 2020 was conducted, resorting to the main databases, such
as Web of Science, PubMed, and IEEE Xplore. The keywords used for the electronic search were TL,
electroencephalogram, brain–computer interface, inter-subject, and covariate shift. Table 1 lists the
collection criteria for inclusion or exclusion.

Table 1. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

• Published within the last 10 years (as transfer
learning (TL) for EEG has been proposed and
developed in recent years).

• A focus on the processing of invasive EEG,
electrocorticography (ECoG),
magnetoencephalography (MEG), source
imaging, fMRI, and so on, or joint studies
with EEG.

• A focus on non-invasive EEG signals (as the
object for discussion in this review).

• No specific description of TL for EEG processing.

• A specific explanation of how to apply TL to
EEG signal processing.

\

The search method of this review is shown in Figure 2, which was used to identify and to narrow
down the collection of TL-based studies, resulting in a total of 246 papers. Duplicates between all
datasets and studies without full-text links were excluded. Finally, 80 papers that meet the inclusion
criteria were included.
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3. Results

3.1. What Problems Does Transfer Learning Solve?

This review of the literature on TL applications for EEG attempted to address the following
critical questions:
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3.1.1. The Problem of Differences across Subjects/Sessions

Although advanced methods such as machine learning have been proven to be a critical tool in
EEG processing or analysis, they still suffer from some limitations that hinder their wide application
in practice. Consistency of the feature space and probability distribution of training and test data is
an important prior condition of machine learning. However, in the field of biomedical engineering,
such as EEG based on BCIs, this hypothesis is often violated. Obvious variation in feature distribution
typically occurs in representations of EEG across sessions/subjects. This phenomenon results in a
scattered distribution of EEG signal features, an increase in the difficulty of feature extraction, and a
reduction in the performance of the classifier.

3.1.2. The Problem of Small Sample Size

In recent years, machine learning and deep neural networks have provided good results for the
classification of linguistic features, images, sounds, and natural texts. A main reason for its success is
that their massive amount of data guarantees the performance of the classifier. However, in practical
applications of BCI, it is difficult to collect high-quality and large EEG datasets due to the limitations of
strict requirements for the experimental environment and available subjects. The performance of these
methods is highly sensitive to the number of samples; a small sample size tends to lead to overfitting
during model training, which adversely affects the classification accuracy [8].

3.1.3. The Problem of Time-Consuming Calibration

A large amount of data are required to calibrate a BCI system when a subject performs a specific
EEG task. This requirement commonly takes a long calibration session, which is inevitable for a new
user. For example, when a subject performs a steady-state visually evoked potential (SSVEP) speller
task, the various commands cause a long calibration time. However, collecting calibration data is
time-consuming and laborious, which reduces the efficiency of the BCI system.

3.2. EEG Paradigms for Transfer Learning

There are four paradigms of EEG-BCIs discussed in this paper and the percentage of these
paradigms across collected studies are shown in Figure 3.
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3.2.1. Motor Imagery

Motor imagery (MI) is a mental process that imitates motor intention without real motion
output [9], which activates the neural potential in primary sensorimotor areas. Different imagery tasks
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will induce potential activity in different regions of the brain. Thus, this response can be converted
into a classification task. The feature of MI signals is often expressed in the form of frequency or band
energy [10]. Due to task objectives and various feature representations, a variety of machine learning
algorithms (e.g., deep learning and Riemannian geometry) can be applied to the decoding of MI [11,12].

3.2.2. Steady-State Visually Evoked Potentials

When a human receives a fixed frequency of flashing visual stimuli, the potential activity of
the cerebral cortex is modulated to produce a continuous response related to the frequency (same or
multiples) of these stimuli. This physiological phenomenon is referred to a SSVEP [13]. Due to their
stable and obvious representation of signals, BCI systems based on SSVEP are widely used to control
equipment such as mobile devices, wheelchairs, and spellers.

3.2.3. Event-Related Potentials

Event-related potentials are responses for multiple or diverse stimuli corresponding to specific
meanings [14]. P300 is the most representative type of ERP, which occurs about 300 ms after a visual or
auditory stimulus. A feature classification model can be used for decoding P300.

3.2.4. Passive BCIs

A passive BCI is a form of interaction that does not rely on external stimuli. It achieves a brain
control task by encoding the mental activity from different states of the brain [15]. Common types of
passive BCI tasks include driver drowsiness, emotion recognition, mental workload assessment, and
epileptic detection [16], which can be decoded by regression and classification models [17,18].

3.3. Case Studies on a Shared Dataset

Analysis between different datasets is not valid because they use different equipment or
communication protocols. In addition, different mental tasks and collecting procedures also bring great
differences to EEG. Therefore, the reviewed studies mainly concentrate on the TL across subjects/sessions
in the same dataset. In Table 2, we briefly summarize the publicly available EEG dataset in this review.

Table 2. Dataset.

Datasets Task Subject Channel Amount of Data
(Per Subject)

Sampling
Rate Reference

BCIC-II-IV 2 MI classes 1 28 3 sessions/416
trials 1000 Hz [19]

BCIC-III-II P300 2 64 5 sessions 240 Hz [20]

BCIC-III-IVa 2 MI classes 5 118 4 sessions/280
trials 1000 Hz [21]

BCIC-IV-2a MI 9 25 2 sessions/288
trials 250 Hz [22]

BCIC-IV-2b 2 MI classes 9 6 720 trials 250 Hz [23]

P300 speller P300 8 8 5 sessions/20
trials 256 Hz [24]

DEAP ER 32 40 125 trials 128 Hz [25]
BCIC -III-

IVC MI 1 118 630 trials 200 Hz [26]

SEED ER 15 64 3 sessions/15
trials 200 Hz [27]

OpenMIIR Music Imagery 10 64
5 sessions/12
trials in four

tasks
512 Hz [28]

CHB-MIT ED 22 23 844 hours’
collection 256 Hz [29]
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3.4. Transfer Learning Architecture

In this review, we summarize previous studies according to “what knowledge should be transferred
in EEG processing.” Multi-step processing for EEG across subjects/sessions results in discriminative
information in different steps. Therefore, determining what should be transferred is the key problem
according to different EEG tasks. Pan et al. [6] proposed authoritative classification approaches based
on “what to transfer.” All papers collected in this review were classified according to this method
(Figure 4). In the following sections, we have selected several representative methods for analysis.
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3.4.1. Transfer Learning Based on Instance Knowledge

It is often assumed that we can easily obtain large amounts of markup data from a source domain,
but this data cannot be directly reused. Instance transfer approaches re-weight some source domain
data as a supplement for the target domain. Based on instance transfer, the majority of the literature
utilized the measurement method to evaluate the similarity between data from the source and target
domains. The similarity metric was then converted into the transfer weight coefficient, which was
directly used to instance transfer by re-weighting the source domain data [30–32]. Herein, we have
listed a few typical methods based on instance transfer.

Reference [33] proposed an instance TL method based on K–L divergence measurements. They
measured the similarity of the normal distribution between two domains and transformed this similarity
into a transfer weight coefficient for the target subject.

Suppose that the normal distribution from the two datasets N0 and N1 can be expressed as:

N0 ∼ N(µ0, Σ0) , N1 ∼ N(µ1, Σ1) (1)

where µi and Σi are the mean value and variance (i = 1/0), respectively. The K–L divergence of the two
distributions can be expressed as:

KL[N0][N1] = 0.5[(µ1 − µ0)]
TΣ−1

1 (µ1 − µ0) + trace
(
Σ−1

1 Σ0
)
− ln

(
detΣ0

detΣ1

)
−K] (2)

where K denotes the dimension of the data, µ represents the mean value, and Σ is the variance, det
represents calculation of the determinant.

The similarity weight δs can be calculated by:

δs =
1/(KL[N0, N1] + ∂)4

Σm
i=1(1/

(
KL[N0, N1] + ∂

)4
)

(3)

where ∂ is the balancing coefficient and KL is the summed divergence of the distribution characteristics
of the target subjects. The results show that instance transfer can effectively reduce the calibration time
and can significantly improve the average classification accuracy of MI tasks.
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Li et al. [34] proposed importance-weighted linear discriminant analysis (IWLDA) with bootstrap
aggregation. They defined the ratio r(x) of test and training input densities as transfer weight:

r(x) =
Pte(x)
Ptr(x)

(4)

where Ptr and Pte represent the marginal probability distribution of the training set and the test
set, respectively.

Then, they optimized the parameters of the LDA model by adding a regularization coefficient and
transfer weights:

min
N∑

i=1

r(xi)(yi − f̂ (xi;θ)
2) + λ‖θ‖ (5)

where yi refers to the target labels corresponding to the feature vectors xi for i-th trials. Parameter θ is
learned by least-squares.

min
N∑

i=1

(yi − f̂ (xi;θ))
2

(6)

where

X =



1, x1

2, x2

.

.

.

.
n, xn


(7)

The least-squares solution can be obtained by:

θ̂IWLDA =
(
XTDX + λI

)−1
XTDy (8)

where λ (≥0) is the regularization parameter, D is the diagonal matrix with the i-th diagonal element,
I is the identity matrix and θ̂IWLDA is the least-squares solution. They also combined the bagging
method that independently constructs accurate and diverse base learners to improve the classification
accuracy and to reduce the variance. The weighted parameters of the LDA model in the target domain
can thus be optimized.

Covariate shift [35] is a common phenomenon in EEG processing across subjects/sessions. It is
defined as follows: Given an input space X and an output space Y, the marginal distribution of Ds is
inconsistent with DT, i.e., PS(x) , PT(x). However, the conditional distribution of the two domains
is the same, PS(y/x) = PT(y/x). Covariate shift obviously affects the unbiasedness of a model in
standard model selection, which reduces the generalization ability of the machine model during EEG
decoding [30].

To address this issue, research has proposed covariate shift adaptation. For example, Raza et
al. [36] proposed a transductive learning model based on the k-nearest neighbor principle. They
initialized the classifier using data from the calibration stage and trained the optimal classification
boundary. Then, adaptation was executed to update the classifier. The updated rules are as follows:

First, the Euclidean distance is used to measure unlabeled and labeled data:

dist(p,q) =

√∑m

j=1

(
q j − p j

)2
(9)

where p and q refer to the unlabeled and labeled data points, respectively, and dist is the Euclidean
distance. Then, the k-nearest neighbors are selected based on the Euclidean distance. Next, this
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distance is converted to inverse form distinv(i), which represents the corresponding pattern in the
training database that is closer to the current unlabeled feature set.

distinv(i) =
1

di
(q,p)

+ ε
(10)

where i is the label and ε = 0.001 is the bias. To decide if the current trial’s features and estimated label
should be added to the existing knowledge base, a confidence ratio CR is calculated:

CR j =

∑k
1 distinv(i)(l(i) == j)∑k

1 distinv(i)

(11)

The CR index is calculated to predict the label for the unlabeled test data. The predicted test data
are then added into the knowledge database, following which the decision boundary is recalculated to
realize the update.

3.4.2. Transfer Learning Based on Feature Representation

TL based on feature representation can be achieved by reducing the difference between two
domains by feature transformation or projecting the feature from two domains into the uniform
feature space [37–39]. Unlike instance transfer, feature representation TL aims to encode the shared
information across subjects/sessions into a feature representation. For example, spatial filtering and
time–frequency transformation are used to transform the raw data into feature representations.

Nakanish et al. proposed a spatial filtering approach called the task-related component analysis
(TRCA) method to enhance the reproducibility during SSVEP tasks and to improve the performance of
an SSVEP-based BCI [40].

Suppose that two domain signals consist of two parts: A task-related signal s(t) and a task-unrelated
signal z(t). A multichannel signal from x(t) can be calculated as:

xi(t) = a1,i s(t) + a2,iz(t), i = 1, 2, 3 . . . n (12)

where i represents the number of channels and a refers to the project coefficients; 1 and 2 represent labels.

y(t) = xi(t)
n∑

i=1

x(t) =
n∑

i=1

(a1,i s(t) + a2,iz(t)) (13)

where y(t) refers to the target data, and the optimization goal is to solve a1,i = 1 and a2,i = 0. The
covariance between the j1 − th and the j2 − th trials is described as:

c j1, j2 = Cov
(
y( j1)(t), y( j2)(t)

)
=

n∑
i1i2=1

wi1wi2Cov(x( j1)(t), x( j2)(t)) (14)

All combinations of the trials are summed as:

Nt∑
j1, j2=1, j1, j2

c j1, j2 = ωTSω (15)

where j represents the number of trials and ω refers to the spatial filters. Matrix s is defined as:

si1,i2 =

Nt∑
i1,i2=1,i1,i2

Cov
(
x j1

i1
(t), x j2

i2
(t)

)
(16)
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The variance of y(t) is constrained to obtain a finite solution:

Var
(∑

(t)
)
= ωTQω = 1 (17)

The optimization is calculated as:

ω̃ = argmax
ωTSω
ωTQω

(18)

where ω̃ is the optimal spatial filter. Finally, the correlation coefficient is calculated by Pearson’s
correlation analysis between the data from the two domains. In their study, spatial filters as a feature
representation were transferred to the target domain. The results showed that this method significantly
improves the information transfer rates and classification accuracy. Based on this research, Tanaka [41]
improved the TRCA method by maximizing the similarity across group of subjects, and they named
this novel method group TRCA. The results showed that the group representation calculated by
the group TRCA method achieve high consistency between two domains and offer effective data
supplementation during brain–computer interaction.

CSP is a popular method for feature extraction, which is often used for MI classification. During
calculation, a spatial filter is adopted to maximize the separation between the class variances of EEG.
However, heterogeneous data across subjects/sessions causes poor classification performance of the
model in the training stage. One feasible approach to solve the limitation is regularization. Lotte [42]
presented regularized CSP to improve the classification accuracy across subjects. In their study, they
discussed two strategies. One of them was regularizing the covariance matrix estimated. They can be,
respectively, expressed as:

S̃i = (1− γ)S̃i + γI (19)

Ŝi = (1− β)ciSi + βDi (20)

where Si represents the initial spatial covariance matrix for class i, S̃i is the regularized estimate, I
is the identity matrix, ci is a constant scaling parameter, and Di represents the generic covariance
matrix. The regularization parameters can be defined as γ and β. This strategy aims to optimize the
covariance matrix by transforming other subjects’ data into covariance combined with the regularization
parameters and by transferring this feature to the target subject.

Another approach is regularizing the CSP objective function. CSP uses spatial filtersω to extremize
the function:

J(ω) =
ωTC1ω

ωTC2ω
(21)

where Ci is spatial covariance matrix from class i. This approach optimizes CSP algorithms by
regularizing the CSP objective function itself:

GP1(ω) =
ωTS1ω

ωTS2ω+ ∂P(ω)
(22)

where P(ω) represents a penalty function for the measurement distance between the spatial filter and
the prior information. The goal of the objective function is to maximize GP1(ω) and to minimize P(ω).
∂ is a user-defined regularization parameter. The prior information from the source domain provides a
good solution to guide the optimization direction of the estimation of spatial filters.

In addition, adaptation regularization is a typical feature TL method based on the structural risk
minimization principle and the regularization theory. Cross-domain feature transfer is mainly operated
by three methods: (1) Utilize the structural risk minimization principle and minimize the structural
risk functional; (2) minimize the distribution difference between the joint probability distributions;
(3) maximize the manifold consistency underlying the marginal distributions [43]. In recent research,
Chen et al. [44] developed an efficient cross-subject TL framework for driving status detection. They
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used adaptation regularization to measure and reduce the difference of the features from the two
domains and to extract the features by filtering algorithms. The results showed that this framework
can achieve high recognition accuracy and good transfer ability.

3.4.3. Transfer Learning Based on Model Parameters

The assumption of model parameter TL is that individual models across subjects/sessions should
share some parameters. The key step of this approach is to find shared parameter information and to
realize knowledge transfer. The domain adaption (DA) of a classifier is the common method of model
parameter transfer. The knowledge of the parameter information from Ds is reused and adjusted
according to the prior distribution of DT [45]. A DA method, named adaptive extreme learning
machine (ELM), was proposed by Bamdadian et al. [46]. ELM is a single-hidden layer feedforward
neural network, which determines the output weights by operating the inverse operation of the hidden
layer weight matrices [47]. This method has two steps: First, the classifier is initialized by data from
the calibration session. Then, the update rule for the output weight based on least-square minimization
is calculated. The update rule is calculated as follows:

The initial output weight α can be defined as:

α = H+T = ϕ−1HTT (23)

where H is the output matrix of hidden layer, ϕ = HTH and H+ refer to the Moore–Penrose
pseudo-inverse of H, and T represents the label category. The updated weight αm+1 is calculated as:

αm+1 = αm + ϕ−1
k+1HT

k+1(Tk+1 −Hk+1α
m) (24)

ϕk+1 = ϕk + HT
k+1Hk+1 (25)

ϕ−1
k+1 = ϕ−1

k −ϕ
−1
k HT

k+1

[
I + Hk+1ϕ

−1
k HT

k+1

]
Hk+1ϕ

−1
k (26)

where k is k-th hidden node,ϕ is orthogonal matrix calculated by H. The experiential results showed that
adaptive ELM can significantly improve the classification accuracy in MI classification across subjects.

Another strategy is ensemble learning, which combines multiple weak classifiers from the source
domain into a strong classifier. Dalhoumi et al. [48] proposed a novel ensemble strategy based on
Bayesian model averaging. They calculated the probability of having a class label yq+1 given a feature
vector hq+1:

P(yq+1/xq+1) =
N∑

n=1

P

 y
xn

q+1, jn

P
(

jn
T

)
(27)

where xn
q+1 is the logarithmic variance feature vector, jn is a set of hypotheses from the source domain,

and T is the test set. The hypothesis prior P
( jn

T

)
is estimated in the following method:

w∗ = argmin
p∑

p=1

l

 N∑
n=1

jn
(
xn

p

)
yp

 (28)

p
(

jn
T

)
= w∗n (29)

where xk
p is the projection of the feature vector x on the spatial filters of subject k. The learned ensemble

classifier can be used to predict labels for the target user:

h∗ =
N∑

n=1

w∗n jn (30)
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The results showed that this ensemble strategy can improve the classification performance in
small-scale EEG data by evaluation on a real dataset.

In recent years, deep neural networks have provided good results for the processing of EEG
signals [49,50]. Due to their end-to-end model structure and automatic feature extraction ability, deep
neural networks minimize the interference of redundant information and improve the classification
performance. Inspired by computer vision, a deep neural network learns generic feature representations
by lower layers of the model. Specific feature representations with the relevant specific subjects or
sessions are learned by the high layer [51]. Therefore, freezing lower layers and fine-tuning higher
layers is a good way to realize model parameter transfer based on deep learning.

Zhao et al. [52] proposed an end-to-end deep convolution network for MI classification. To avoid
the limitation of a small sample and overfitting, they utilized the data from Ds to pre-train the source
network and to transfer the parameters of several layers to initialize the target network. First, the
network was pre-trained using data from the source domain. Then, they used the M source subjects
Ws to initialize the nth layer’s target network by a weight average:

Wt
n =

M∑
m=1

ρmWs
mn (31)

where ρ represents the strength of the source network and Ws
mn refers to the connecting weights of the

nth layer to the next layer. The next stage is to fine-tune the target initialized network by data from
DT. The results showed that the parameter transfer strategy can reduce the calibration time for new
subjects and can help the deep convolution network to obtain better classification performance.

Raghu et al. used CNN combined with TL to recognize epileptic seizures [53]. They proposed
two different transfer methods: To finetune a pre-trained network and then extract image features
by said pre-trained network, and to classify the status of brain using an SVM. Popular networks
such as Alexnet, VGG16net, VGG19net, and Squeezenet, were used to verify the performance of the
proposed framework.

The summary of collected studies is shown in Table 3.
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Table 3. Summary of transfer learning for EEG decoding.

Pattern Reference Type Transfer Method Feature Extraction Datasets Results

MI [33] ITL Similarity measurement with KL
divergence LR+CSP 19 subjects’ data, BCIC-IV-2a,

and BCIC-III-4a 70.3% and 75% and 75%

MI [54] ITL Informative subspace transferring and
selective ITL with active learning LDA BCIC-IV-2b \

MI [55] FTL Ensemble learning and adaptive learning LDA NIPS 68.1%

MI [56] ITL Similarity measurement with Jensen
Shannon ratio and rule adaptation TL CSP+LDA BCIC-IV-2a 77%

MRP [57] ITL MMD and regularized discriminative
spatial pattern Linear RR BCIC-I-1 and BCIC-II-4 \

P300 [58] ITL Ensemble learning generic information Bayesian LDA 8 participants’ data 62.5%

SSVEP [59] ITL Variability assessment Fisher’s
discriminant ratios Cluster 8 subjects’ data \

P300 [60] ITL Dynamically adjusts weights of instances Liner SVM BCIC-III-2 and dataset of P300
speller 74.9%

MI [61] ITL Selective informative with normalized
entropy LDA BCIC-IV-2b 75.8%

MI [62] ITL Selective informative expected decision
boundary LDA BCIC-IV-2a 75.6%

MI [63] MTL Domain adaptation parallel transport on
the cone manifold of SPD Linear SVM BCIC-IV-2a \

DD [64] ITL Selective transfer learning Linear regression 15 subjects’ data 66%

MI [65] ITL Composite local temporal correlation CSP
Frobenius distance

Liner quadratic
Mahalanobis BCIC-III-IVa 89.21%

SSVEP [66] ITL Ensemble learning and similarity
measurement with mutual information LDA 10 healthy subjects’ data \

Cognitive
detection [67] ITL Similarity measurement by Pearson’s

correlation coefficient SVM 28 subjects’ data 87.6%

ERP [68] FTL Probabilistic zero framework Unsupervised adaptation Akimpech dataset \
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Table 3. Cont.

Pattern Reference Type Transfer Method Feature Extraction Datasets Results

MI [69] FTL DA with power spectral density CNN BCIC-IV-2a \

MI [70] FTL Many-objective optimization Linear SVM BCIC-III-IVa 75.8%

VEP [71] FTL Active semi-supervised TL SVM 14 subjects’ experiments \

MI [72] FTL Adaptive Selective CSP Discriminant analysis 6 participant experiments 61%

MI [34] FTL CSA Importance-weighted LDA BCIC-III dataset 79.1%

MI [73] ITL Instance TL based p-hash CNN BCIC-IV-2b

MI [74] FTL Informative TL with AL LDA BCIC-IV-2a 67.7%

MI [75] MTL Modifications of CSP SVM BCIC-III-IVa \

MI [76] MTL k-nearest neighbors principle SVM+LDA BCIC-IV-b \

ER [77] FTL Transfer recursive feature elimination Least-squares SVM DEAP dataset 78%

SSVEP [78] MTL Least-squares transformation \ 8 participant experiments 82.1%

MI [79] FTL Domain transfer multiple kernel boosting SVM BCIC-III-Iva
5 subjects’ data

81.6%
76%

SSVEP [80] FTL Spatial filtering transfer TRCA 10 subjects’ data \

SSVEP [81] FTL Reference template transfer MestCCA 10 subjects’ data \

SSVEP [82] FTL Reference template transfer Transfer template-CCA 12 subjects’ data 85%

SSVEP [83] FTL Reference template transfer Adaptive combined-CCA 10 subjects’ data 83%

MI [84] FTL Fuzzy TL based on generalized
hidden-mapping RR SVM BCIC-IV-2a 89.3%

MI [46] MTL Adaptive extreme learning machine SVM+ELM 12 subjects’ data 71.8%

MI [48] MTL Classifier ensemble LDA BCIC-IV-2a \

MI [13] FTL Regularized CSP with TL LDA BCIC-III-IVa 78.9%

Multitask [85] FTL Geometrical transformations on
Riemannian Procrustes analysis /

8 publicly available BCI
datasets \
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Table 3. Cont.

Pattern Reference Type Transfer Method Feature Extraction Datasets Results

ERP [86] FTL Spectral transfer using information
geometry MDRM 15 subjects’ data 62%

MI [87] FTL Space adaptation LDA BCIC-IV-2a 77.5%

MI [88] FTL Feature space transformation LDA PhysioNet datasets 72%

MI [89] FTL Tangent space-based TL LDA BCIC-IV-2a \

ER [90] FTL Transfer component analysis and kernel
principle component analysis SVM SEED 77.96%

MI [91] FTL Transfer kernel CSP SVM BCIC-III-IVa 81.14%

MI/
ERP [92] FTL Affine transform Minimum distance mean

and Bayesian classifier
BCIC-IV-2a and Brain Invaders

experiment \

SSVEP [93] ITL Riemannian similarities Bootstrapping 12 subjects’ data 80.9% & 81.3%

MI [94] FTL Multitask learning RR+SVM 10 healthy subjects’ data and
an ALS subject’s data 85%

Imagined
speech [95] ITL Inductive transfer learning Naïve Bayesian classifier 27 subjects’ data 68.9%

MI [96] FTL Transferable discriminative
dimensionality reduction KNN+SVM 5 subjects’ data 74.4%

MI [7] FTL Nonstationary information transfers LDA 5 subjects’ data and
BCIC-III-IVa 80.4%

MI [97] MTL Fine-tuned based on VGG16 CNN BCIC-IV-2b 74.2%

MI [98] MTL Fine-tuned based on pre-trained network CNN BCIC-IV-2a 69.71%

ErrPs [99] MTL Fine-tuned based on pre-trained network CNN 15 epilepsy patients’ data 81.50%

Music
Imagination [100] MTL Fine-tuned based on AlexNet LSTM OpenMIIR dataset 30.83%

ErrPs [101] MTL Fine-tuned based on pre-trained network CNN 31 subjects’ data 84.1%

DD [102] ITL Source domain selection Weighted adaptation
regularization 16 subjects ‘data \
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Table 3. Cont.

Pattern Reference Type Transfer Method Feature Extraction Datasets Results

Attention
detection [103] ITL Subject adaptation CNN 8 subjects ‘data 84.17%

MI [52] ITL Subject transfer CNN BCIC-IV2a and
BCIC-IV-2b

0.56 and 0.65
(MK)

MI [104] MTL Fine-tuned based on pre-trained network RBM BCIC-IV2a and
12 subjects’ data 88.9%

P300 [105] MTL Fine-tuned based on pre-trained network CNN BCIC-III-2 90.5%

MI [106] MTL Fine-tuned based on pre-trained network CNN BCIC-IV-2b 0.57 (MK)

MI [107] MTL Fine-tuned based on pre-trained network Conditional variational
autoencoder PhysioNet datasets 73%

Music
Imagination [108] FTL Cross-domain encoder Attention decoder-RNN OpenMIIR datasets 37.9%

MI [36] ITL Covariate shift detection and adaptation Linear SVM BCIC-IV-2a
BCIC-IV-2b

73.8% and
69.7%

MWA [109] FTL Cross-subject statistical shift Random forest 9 subjects‘ data \

MI [110] MTL Fine-tuned based on multiple network CNN BCIC-IV-2a and
BCIC-IV-2b \

MI [111] MTL Four-strategy model transfer learning Deep neural network BCIC-IV-2a \

MI [112] ITL Subject–subject transfer CNN 3 subjects’ data \

P300 [113] ITL Subject–subject transfer Linear SVM 22 subjects’ data 68.7%

ER [114] ITL Measurement on Riemannian geometry
instance transfer SVM MDME and SDMN datasets \

DD [40] FTL Adaptation regularization based TL Multiple classifier 23 subjects’ data and
NIH physio bank 89.59%

ED [53] MTL Fine-tuned based on pre-trained network GoogLeNet and Inception
v3 TUH open-source database 82.85% and

88.30%

ED [115] MTL Fine-tuned based on pre-trained network CNN and bidirectional
LSTM CHB-MIT EEG dataset 99.6%
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Table 3. Cont.

Pattern Reference Type Transfer Method Feature Extraction Datasets Results

ED [116] MTL Fine-tuned based on pre-trained network CNN CHB-MIT EEG dataset 92.7%

MI [117] FTL Spatial filtering transfer and matrix
decomposition ELM BCIC-III-IVa and

BCIC-IV-1
89%
62%

SSVEP [41] FTL Spatial filtering transfer Group TRCA Benchmark dataset \

MI [118] MTL Adversarial inference CNN 52 subjects’ data \

ER [119] FTL Power spectral density feature
Polynomial/Gaussian

kernels/ naïve Bayesian
SVM

DEAP, MAHNOB-HCI, and
DREAMER \

MWA [120] FTL Ensemble learning Stacked denoising
autoencoder 8 subjects’ data 92%

MI [121] FTL Data mapping and ensemble learning LDA BCIC-IV-2a 0.58 (MK)

MI [122] FTL Center-based discriminative feature
learning CNN BCIC-III-IVa 76%

“\” represents that there is no specific description or else multiple descriptions for the results.
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4. Discussion

Based on the numerous papers surveyed herein, we briefly summarized the development of the
application of TL to EEG decoding. This will help researchers scan the status of this field and receive
useful guidance in future work.

According to the various studies surveyed in this paper, it is not hard to determine the points of
interest that researchers focus on. As shown in Figure 2, more studies have focused on active BCI (i.e.,
MI, SSVEP, and ERP) among these different EEG paradigms. One possible explanation is that the goal
of these mental activity decoding studies is to categorize EEG from different classes. This would allow
many machine learning methods to be applied to this paradigm. From Table 2, it can be seen that the
application scenarios of TL in the existing literature have focused almost only on classification and
regression tasks.

The method of model parameter transfer is not applicable to only a few subjects with initially
low BCI performance. The feature of EEG from these subjects exhibits inseparability in feature space.
Therefore, the parameter optimization of the classifier does not significantly improve the classification
results. It is worth noting that the adaptive strategy of the classifier should be considered a supplement
to achieve the goal of a calibration-free mode of operation [123]. The combination of TL and the
adaptive strategy may receive increasing attention in future studies.

It is also worth noting that TL showed good results across subjects/experiments, but the detail
of variability across sessions/subjects was unclear. Some studies proposed that the Bayesian model
is a promising approach to capture variability. This model is built based on multitask learning, and
variation in some features is often extracted, such as spectral and spatial [124,125].

Due to its end-to-end structure and competitive performance, deep learning has been successful
in processing EEG data [126]. However, the computational power and small-scale data are a limitation
during practical operation. A hybrid structure based on TL and deep learning is a promising way to
address this issue. For example, one of the methods is fine-tuning the pre-trained network, which
has proven to be effective. With the development of deep learning technology, the research for such a
hybrid structure is still a hot topic for future research.

As reported in the above-cited studies, TL is instrumental in EEG decoding across subjects/sessions.
However, knowledge transfer across tasks/device is still a blank field. This issue is worth exploring
and will make EEG-based BCI systems much more practical.

5. Conclusions

In this paper, we reviewed the research on TL for EEG decoding that was published between
2010 and 2020. We discussed numerous approaches that can be divided into three categories: Instance
transfer, feature representation transfer, and parameter of classifier transfer. Based on the summary of
their results, we can conclude that TL can effectively improve the decoding performance in classification
and regression tasks. In addition, TL provides adequate performance in initializing BCI systems for
a new subject, which reduces the length of time of the calibration process. Although there are some
limitations for using TL for EEG decoding, such as the scope of application of TL and suboptimal
performance on some occasions, TL shows strong robustness. Overall, TL is instrumental in EEG
decoding across subjects/sessions. In addition, achieving a calibration-free model of operation and
higher accuracy of decoding are worthy of further research.
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Abbreviations: List of Acronyms

AL Active learning
ALS Amyotrophic Lateral Sclerosis
ATL Active Transfer Learning
BCIC Brain Computer Interface Competition
CCA Canonical Correlation Analysis
CNN Convolution Neural Network
CSA Covariate Shift Adaptation
CSP Common Spatial Pattern
DA Domain Adaptation
DD Drowsiness Detection
ELM Extreme Learning Machine
ED Epileptic Detection
ER Emotion Recognition
ERP Event-Related Potential

ErrPs
Electroencephalography -measured error-related
potentials

FTL Feature Transfer Learning
ITL Instance Transfer Learning
JSR Jensen Shannon Ratio
KL Kullback–Leibler
KNN K-Nearest Neighbor
LDA Linear Discriminate Analysis
LR Logistic Regression
LSTM Long Short-Term Memory
MDRM Minimum Distance to Riemannian Mean classifiers
MI Motor Imagery
MMD Maximum mean discrepancy
MK Means Kappa value
MTL Model Transfer Learning
MWA Mental-Workload Assessment
MRP Movement Related Potentials
RNN Recurrent Neural Network
RR Ridge Regression
RBM Restricted Boltzmann Machine
SMR Sensory Motor Rhythm
SVM Support Vector Machine
SSVEP Steady State Visual Evoked Potential
SELM Sigmoid Extreme Learning Machine
SPD Symmetric Positive Definite
TL Transfer Learning
TRCA Task-Related Component Analysis
VEP Visual Evoked Potential
VGG Visual Geometry Group
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