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In this study, we aimed to examine spatial inequalities of COVID-19 mortality rate in relation to spatial inequal-
ities of socioeconomic and environmental factors across England. Specifically, wefirst explored spatial patterns of
COVID-19mortality rate in comparison to non-COVID-19mortality rate. Subsequently, we establishedmodels to
investigate contributions of socioeconomic and environmental factors to spatial variations of COVID-19mortality
rate across England (N = 317). Two newly developed specifications of spatial regression models were
established successfully to estimate COVID-19 mortality rate (R2 = 0.49 and R2 = 0.793). The level of spatial in-
equalities of COVID-19mortality is higher than that of non-COVID-19mortality in England. Although global spa-
tial association of COVID-19mortality and non-COVID-19mortality is positive, local spatial association of COVID-
19 mortality and non-COVID-19 mortality is negative in some areas. Expectedly, hospital accessibility is nega-
tively related to COVID-19 mortality rate. Percent of Asians, percent of Blacks, and unemployment rate are pos-
itively related to COVID-19 mortality rate. More importantly, relative humidity is negatively related to COVID-
19mortality rate.Moreover, among the spatialmodels estimated, the ‘randomeffects specification of eigenvector
spatial filteringmodel’ outperforms the ‘matrix exponential spatial specification of spatial autoregressivemodel’.
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1. Introduction

COVID-19 infection andmortality are gaining increasingly attentions
from both policymakers and researchers. Owing to privacy protection
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individual-level COVID-19 data are not publicly available, aggregate
COVID-19 data plays a key role in COVID-19 research. Recently,
aggregate-level geocoded or georeferenced COVID-19 mortality data
in some countries or regions have been released as well. Therefore,
geovisualisation and spatiotemporal analysis of COVID-19 mortality
rate are performable. As empirical evidence on the association of socio-
economic and environmental factors and a variety of health outcomes
have been found, we could speculate that spatial variations of COVID-
19 mortality rate might be associated with spatial variations of socio-
economic and environmental characteristics (e.g., Ji et al., 2020; Yao
et al., 2020; Coker et al., 2020) and this speculation could be empirically
validated by geographically aggregated COVID-19 death data.

In this study, we aimed to examine spatial inequalities of COVID-19
mortality rate in relation to spatial inequalities of socioeconomic and
environmental factors. Specifically, we first explored spatial patterns
of COVID-19 mortality rate in comparison to non-COVID-19 mortality
rate. Subsequently, wemodelled spatial variations of COVID-19mortal-
ity rate from local-scale socioeconomic and environmental characteris-
tics. Empirically, we used the England-wide COVID-19 mortality rate
data aggregately collected fromMarch to May of 2020. These 3 months
are experiencingmost fast-growing deaths duo to COVID-19 in England.
England is chosen as the empirical study area because 1) England is one
of the most serious countries in Europe according to either number of
COVID-19 cases or number of COVID-19 deaths; 2) local-scale COVID-
19 mortality data, socioeconomic data, and environmental data across
England are publicly available.

This study can offer more evidence on the associations of COVID-19
mortality rate, socioeconomic and environmental factors. An under-
standing of spatial inequalities of COVID-19 mortality rate in relation
to socioeconomic and environmental characteristics can inform
policymakers to prioritise areas with a lower socioeconomic status or
a lower environmental quality (e.g., air quality) in response to a second
wave of COVID-19 or alike crises. Compared to the previous studies, this
study is the first one taking account of both socioeconomic factors and
environmental factors simultaneously in explaining spatial variations
of COVID-19 mortality rate; and the first one focusing on spatial varia-
tions of COVID-19 mortality rate in relation to socioeconomic factors
and environmental factors across England.

As the regressionmodels are applied to geospatial data in this study,
spatial regressionmodels are highly recommended. Spatial autocorrela-
tion is likely to exist in the residuals of non-spatial regression models
(e.g., ordinary least squares models) applied to geospatial data. Pres-
ence of spatially autocorrelated residualsmeans individual observations
are not completely independent, thereby violating the assumption of
observation independence in regression models. In this case, we should
replace nonspatial models with spatial regression models since spatial
regression models, like spatial autoregressive models, are developed
to reduce the adverse impact of auto-correlation in regression residuals.
Therefore, in this study, we selected two typical spatial regression
models: spatial autoregressive model and eigenvector spatial filtering
model as the former is the most widely used one (e.g., Chi and Zhu,
2008; Lin, 2010) and the latter is likely to perform best (e.g., Chun,
2014; Helbich and Arsanjani, 2015). More specifically, the matrix expo-
nential spatial specification model and fast random effects eigenvector
spatial filtering model are selected to estimate models in this study.
The ‘matrix exponential spatial specification’ is one of the best specifica-
tions in spatial autoregressive models (LeSage and Pace, 2009); whilst
the ‘random effects specification’ is one of the new and effective speci-
fications in eigenvector spatial filtering models (Murakami and
Griffith, 2015). Compared with conventional specifications of spatial
autoregressive models, the ‘matrix exponential spatial specification’
has advantages on computational efficiency and interpretation
(e.g., generation of R2) (LeSage and Pace, 2007), and the ‘random effects
specification’ is likely to better explain the spatial variations with a
higher value of R2 or a lower value of Akaike information criterion
(Murakami and Griffith, 2015; Murakami and Griffith, 2019).
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Furthermore, we will compare the performance of the models esti-
mated and determine which models are more appropriate.

This study can offer more evidence on the associations of COVID-19
mortality rate, socioeconomic and environmental factors. Particularly,
this study empirically reveals that spatial variations of COVID-19 mor-
tality rate are mainly attributable to spatial variations of socioeconomic
and environmental characteristics across England. Healthcare resource
allocation should prioritise some areas around Sunderland, Liverpool,
and Birmingham since those areas are hotspots of COVID-19 mortality
rate and non-COVID-19 mortality rate but have a lower level of access
to hospital.

2. Literature review

Health inequalities exist among different socioeconomic groups
since socioeconomic status (SES) reportedly influences health outcomes
(e.g., Nobles et al., 2013; Präg et al., 2016; Kosidou et al., 2011). A num-
ber of studies had offered empirical evidence on the association of socio-
economic factors and human health, including physical health
(e.g., Nobles et al., 2013; Präg et al., 2016) and mental health
(e.g., Nobles et al., 2013; Präg et al., 2016; Kosidou et al., 2011). Adverse
socioeconomic factors such as poverty, unemployment, and occupa-
tional risks are likely to cause negative health consequences. Socioeco-
nomically disadvantaged people are likely to live a less healthy life,
including lower access to healthcare, healthy food, or recreational facil-
ities, a lower level of physical activity, a higher level of exposure to alco-
hol and/or tobacco, less knowledge of health maintenance, or a lower
level of self-discipline. In general, people with a lower socioeconomic
position are more likely to suffer from health problems than those
with a higher socioeconomic position. Apart from socioeconomic fac-
tors, environmental factors are found to influence health outcomes
(e.g., Hoek et al., 2013; Beelen et al., 2014; Wheeler et al., 2015;
Lelieveld et al., 2015; Di et al., 2017). For instance, increased mortality
due to different causes is reportedly associated with air pollution expo-
sure (Hoek et al., 2013; Beelen et al., 2014; Lelieveld et al., 2015; Di et al.,
2017), road traffic noise exposure (Halonen et al., 2015; Héritier et al.,
2017), temperature (Gasparrini et al., 2015; Guo et al., 2014), and hu-
midity (Barreca and Shimshack, 2012; Ou et al., 2014).

Some recent studies had performed interesting research using
georeferenced COVID-19 case data though those data had been aggre-
gated to a variety of geographic units (e.g., state/province, county/
town/city, etc.) before being released. To search for COVID-19 incidence
hotspots, some researchers detected spatiotemporal clusters of COVID-
19 cases across United States (Hohl et al., 2020; Desjardins et al., 2020).
To understand socioeconomic and environmental effects, some scholars
modelled spatial variations of COVID-19 incidence rate from socioeco-
nomic and environmental factors in China (e.g., Huang et al., 2020;
Guliyev, 2020), United States (e.g., Mollalo et al., 2020), and Africa
(e.g., Adekunle et al., 2020). Besides, some city-wide researches had
been conducted as well (e.g., Cordes and Castro, 2020). Moreover,
some scholars modelled the dynamic spread of COVID-19 through
travel patterns of people (Zheng et al., 2020; Gatto et al., 2020;
Velásquez and Lara, 2020; Danon et al., 2020; Pujari and Shekatkar,
2020).

Although not being discussed as much as COVID-19 infection or
spread, COVID-19 mortality and its associations with socioeconomic
and environmental characteristics have been discussed in a few studies.
On the one hand, socio-economically advantaged communities are
likely to have a higher risk of COVID-19 mortality. A recent study of pri-
mary COVID-19 data in England uncovers that Black, Asian andminority
ethnic groups in England are at increased risk of death from COVID-19
(Aldridge et al., 2020). Similarly, another recent study reveals that sub-
stantial racial/ethnic disparities are observed in COVID-19 case fatality
and mortality with Blacks/African Americans disproportionately af-
fected across the United States (Holmes et al., 2020). In the United
States, black people are being admitted to hospital and dying in
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disproportionate numbers from the covid-19 pandemic (Dyer, 2020). A
systematic review of recent literature concludes that Black, Asian, and
Minority Ethnic (BAME) individuals are at an increased risk of worse
clinical outcomes from COVID-19 (Pan et al., 2020). Moreover, unem-
ployment and poverty are reported to be an important factor in deter-
mining COVID-19 mortality rates in France (Goutte et al., 2020). More
specifically, focusing on a densely populated region of France, Goutte
et al. (2020) documented evidence that higher economic “precarious-
ness indicators” such as unemployment and poverty rates, lack of for-
mal education and housing are important factors in determining
COVID-19 mortality rates. Besides, access to healthcare is likely to play
a key role in affecting COVID-19 mortality rate. Spatial variations in
healthcare resource availability and accessibility might partly explain
spatial disparities variations in COVID-19 mortality rate across
China (Ji et al., 2020). On the other hand, environmental characteris-
tics (e.g., air quality, temperature range, and humidity) are likely to
affect COVID-19 mortality. For instance, a recent study found posi-
tive associations between particulate matter pollution (PM2.5 and
PM10) and COVID-19 case fatality rate (CFR) in Chinese cities (Yao
et al., 2020). Another study on other Asian cities suggests that
there exists a positive correlation between the level of air pollution
of a region and the lethality related to COVID-19, indicating air pollu-
tion to be an elemental and concealed factor in aggravating the
global burden of deaths related to COVID-19 (Gupta et al., 2020).
Similarly, a positive association of ambient PM2.5 concentration on
excess mortality related to the COVID-19 epidemic was found in
Northern Italy (Coker et al., 2020). Effects of temperature variation
and humidity on COVID-19 mortality rate were reported as well
(Ma et al., 2020). More specifically, Ma et al. (2020) explored the ef-
fects of meteorological factors on COVID-19 mortality inWuhan, and
found that diurnal temperature range is positively associated with
daily death counts of COVID-19 whilst absolute humidity is nega-
tively associated with daily death counts of COVID-19.
a) COVID-19 mortality rate

Fig. 1. 3-month COVID-19 mortality rate and non-COVID-19 mortality rate across E
(Data source: ONS)
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3. Materials and methods

3.1. Research data

The mortality data is available for March, April and May in 2020
(https://www.ons.gov.uk/peoplepopulationandcommunity/
birthsdeathsandmarriages/deaths/datasets/
deathsinvolvingcovid19bylocalareaanddeprivation). The data offer the
number of deaths and age-standardised rates by local authority districts
(LADs) according to deaths occurring between March and May. Fig. 1
maps three-month COVID-19mortality rate and non-COVID-19mortal-
ity rate across England at the local authority district (LAD) level. Besides,
there are 317 LADs constituting England. In Fig. 1, grey areasmean areas
with no data.

Population by gender and LAD is available for 2019 (https://www.
ons.gov.uk/peoplepopulationandcommunity/populationandmigration/
populationestimates/datasets/populationestimatesforukenglandandwa
lesscotlandandnorthernireland), and population by ethnicity and LAD is
available for 2017 (https://www.ons.gov.uk/peoplepopulationand
community/populationandmigration/populationestimates/adhocs/
008781populationdenominatorsbybroadethnicgroupandforwhite
britishlocalauthoritiesinenglandandwales2011to2017). Unemploy-
ment rate by LAD is available for 2019 (https://www.ons.gov.uk/
employmentandlabourmarket/peoplenotinwork/unemployment/
datasets/modelledunemploymentforlocalandunitaryauthoritiesm01/
current), and percent of households in poverty by LAD is available for
2014 (https://www.ons.gov.uk/peoplepopulationandcommunity/
personalandhouseholdfinances/incomeandwealth/datasets/household
sinpovertyestimatesformiddlelayersuperoutputareasinenglandand
wales). A household is thought to be in poverty if its income is below
60% of the median income before housing costs. Locations of hospitals
are available from UK National Health Service (NHS) (https://www.
nhs.uk/about-us/nhs-website-datasets/).
b) Non-COVID-19 mortality rate

ngland at the local authority district (LAD) level (March, April, and May 2020).
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Fig. 3. Annual mean PM2.5 (unit: ug/m−3) across England at the local authority district
(LAD) level in 2019.
(Data source: Defra)
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Since high-resolution PM2.5 data and climatic data are not available
for 2020, high-resolution PM2.5 data and climatic data for 2019 were
used. Specifically, Met Office offers 1 × 1 km gridded monthly relative
humidity and air temperature (maximum and minimum) for 2019
(Met Office et al., 2020); whilst Defra offers 1 × 1 km gridded annual
mean PM2.5 data for 2019 (https://uk-air.defra.gov.uk/data/pcm-data).
Air pollution maps at 1 × 1 km resolution are modelled each year
under Defra's Modelling of Ambient Air Quality (MAAQ) contract.
These maps are used to provide policy support for Defra and to fulfil
the UK's reporting obligations to Europe. The models have been cali-
brated using monitoring data from the national network sites. Profes-
sional monitoring stations installed in monitoring sites are used to
observe air quality, humidity, and temperature (see https://uk-air.
defra.gov.uk/networks/network-info?view=aurn and https://www.
metoffice.gov.uk/public/weather/observation/map). We used the aver-
age climatic measures of three months (i.e., March, April and May) in
2019 to represent the climatic measures (i.e., relative humidity and
range of air temperature) used in this study. Although monthly high-
resolution PM2.5 is not available, population-weighted LAD-level annual
mean PM2.5 is available, and thereby is used to represent the annual
mean PM2.5 level used in this study. Technically, monthly relative hu-
midity and monthly air temperature were aggregated from grids to
LADs. Fig. 2 maps population and density of hospital across England at
the local authority district (LAD) level in 2019. And, Fig. 3 maps annual
mean PM2.5 across England at the local authority district (LAD) level in
2019.

3.2. Exploring spatial patterns of COVID-19 mortality rate

In this study, we first explored spatial patterns of COVID-19 mortal-
ity rate in comparison with non-COVID-19 mortality.

3.2.1. Assessing spatial inequalities of COVID-19 mortality and non-COVID-
19 mortality

In this study, we assessed spatial inequalities of COVID-19 mortality
rate and non-COVID-19mortality rate by computing the Gini coefficient
(the most commonly used measure of inequality).
a) Population (unit: 1,000 persons) 

Fig. 2. Population and density of hospital across Englan
(Data source: ONS and NHS)
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3.2.2. Exploring spatial association of COVID-19 mortality and non-COVID-
19 mortality

In this study, we explored spatial association of COVID-19 mortality
rate and non-COVID-19 mortality rate by using bivariate Moran's I test.
Specifically, bivariate Moran's I test includes global and local ones. The
b) Density of hospital (unit: number of 

hospitals per 1,000,000 persons) 

d at the local authority district (LAD) level in 2019.

https://uk-air.defra.gov.uk/data/pcm-data
https://uk-air.defra.gov.uk/networks/network-info?view=aurn
https://uk-air.defra.gov.uk/networks/network-info?view=aurn
https://www.metoffice.gov.uk/public/weather/observation/map
https://www.metoffice.gov.uk/public/weather/observation/map


Table 1
Summary of variables and data sources in this study.

Variable Full name Mean SD Year Source

CMR 3-month COVID-19 mortality rate (unit:
deaths per 100,000 persons)

79.4 36.89 2020 ONS

P_F Percent of females 50.65 0.83 2019 ONS
P_A Percent of Asians 6.11 8.11 2017
P_B Percent of Blacks 2.52 4.65 2017
P_HIP Percent of households in poverty 15.84 3.36 2014
UE_R Unemployment rate (%) 3.66 1.21 2019
D_P Density of population (unit: 1000

persons per km2)
1.8 2.64 2019

D_H Density of hospital (number of hospitals
per 1000,000 persons)

23.33 27.96 2019 NHS

AM_PM Annual mean PM2.5 (ug/m−3) 9.38 1.59 2019 Defra
R_H 3-month mean relative humidity (%) 76.28 1.9 2019 Met

OfficeR_AT 3-month mean range of air temperature
(°C)

8.97 0.84 2019
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global one is also called “global indicators of spatial association (GISA)”,
and the local one is also called “local indicators of spatial association
(LISA)”. The global and local ones are used to quantify the global and
local spatial association between two variables respectively. Specifically,
a positive association (a positive Moran's I value) means high (low)
values of one variable is surrounded by high (low) values of the other
variable; whilst a negative association (a negative Moran's I value)
means high (low) values of one variable is surrounded by low (high)
values of the other variable.

3.3. Modelling spatial variations of COVID-19 mortality rate

3.3.1. Model variables
Table 1 lists the variables considered in this study. The response is

three-month COVID-19 mortality rate (unit: deaths per 100,000
persons). The explanatory variables include socioeconomic characteris-
tics (i.e., gender, ethnical, income, and employment characteristics),
hospital accessibility, and physical environment characteristics (i.e., air
pollution, humidity, and temperature measures). The range of air
temperature equals the difference of maximum air temperature and
minimum air temperature. Particularly, a population-based measure is
used to quantify the level of hospital accessibility rather than an area-
based one as the response is a population-based one as well. Table 1
also shows the statistical description for all the variables in this study.

There might be still potential bias because all the explanatory vari-
ables are measured in 2019 or earlier whilst the response (COVID-19
mortality rate) is measured in 2020. We made an assumption that spa-
tial variations of socioeconomic and environment characteristics across
a country should be consistent between continuous years. For instance,
Table 2
Correlations of LAD-level explanatory variables and their counterparts in the previous year or

Pearson's correlation coefficient P_F
2018

P_A
2016

P_B
2016

P_F
2019

0.993

P_A
2017

0.999

P_B
2017

0.999

UE_R
2019
D_P
2019
AM_PM
2019
R_H
2019
R_AT
2019
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spatial variations of socioeconomic and environment characteristics
across England in 2020 should be proportional to those in 2019; like-
wise, spatial variations of socioeconomic and environment characteris-
tics in 2019 should be proportional to those in 2018 aswell. Table 2 lists
the correlations of LAD-level explanatory variables and their counter-
parts in the previous years (Note that P_HIP is not included due to the
absence of data in other years). As Table 2 shows, high values of
Pearson's correlation coefficients (R > 0.9) indicate that spatial varia-
tions of socioeconomic and environment characteristics in 2019 is
highly proportional to those in 2018. Based on the assumption, spatial
variations of socioeconomic and environment characteristics in 2020
is likely to be highly proportional to those in 2019 as well. Therefore,
we can use spatial variations of socioeconomic and environment char-
acteristics in 2019 or earlier to approximately represent spatial varia-
tions of them in 2020.

3.3.2. Model selection and estimation
To select and estimate appropriate models, we will first estimate

spatial regression models as well as non-spatial regression models,
and subsequently check whether spatial regression models can reduce
residual spatial autocorrelation in comparison with non-spatial regres-
sion models.

Moran's I: Testing for spatial dependence:

To testwhether there is significant spatial autocorrelation present in
regression residuals, we will use theMoran's I testingmethod proposed
byMoran (1950).Moran's I iswidely used tomeasure the level of spatial
autocorrelation between adjacent locations (Moran, 1950; Getis and
Ord, 1992).

Variable selection: the Lasso technique

Lasso (Tibshirani, 1996) performs automatic variable selection and is
most likely the preferred method (Friedman et al., 2010; Engebretsen
and Bohlin, 2019). In this study,we used Lasso to select explanatory var-
iables and further estimate models to improve model estimation.

Spatial regression models:

If significant spatial autocorrelation is found to exist in the residuals
of non-spatial regression models estimated conventionally, we should
consider spatial regression models. In this study, we will select two
specifications from two types of spatial regression models (i.e., spatial
autoregressive and eigenvector spatial filtering) since the former is
the most widely used one and the latter is thought to be most high-
performance one. Specifically, we will use the matrix exponential spa-
tial specification (MESS) and randomeffects specification (RES) as spec-
ifications in the spatial autoregressive (SAR) models and in eigenvector
spatial filtering (ESF) models respectively.
earlier (N = 317).

UE_R
2018

D_P
2018

AM_PM
2018

R_H
2018

R_AT
2018

0.995

0.999

0.935

0.9

0.933
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Spatial autoregressive model (MESS-SAR):
Among different types of spatial regression models, spatial

autoregressive model is the most popular one. A variety of spatial
autoregressive (SAR) models have been proposed to remedy residual
spatial autocorrelation. Specifically, we choose the matrix exponential
spatial specification (MESS) as the specific SAR model in this study
since the MESS model has analytical, computational, and interpretive
advantages over other SAR models (LeSage and Pace, 2007). Addition-
ally, theMESS-SARmodel produces R2 valueswhich are directmeasures
of the explanation capacity of themodel; whilst conventional spatial re-
gression models do not. The coefficients estimated in the MESS-SAR
model are usually similar to those in OLS models, but residual spatial
correlation is much lower (LeSage and Pace, 2007; LeSage and Pace,
2009). The MESS model can be described as follow (LeSage and Pace,
2007; LeSage and Pace, 2009):

“A spatial regression mode can be expressed as

Sy ¼ Xβ þ ɛ ð1Þ

where the vector y contains n observations on the dependent variable,
each associated with one region or point in space. The matrix X repre-
sents an n × k full column rank matrix of constants which correspond
to observations on k independent variables for each region. The n-
element vector ɛ is distributed as N (0, σ2 In). The k element vector β
is a vector of corresponding parameters, and S denotes an n × n non-
singular matrix of constants that may depend on an unknown real, sca-
lar parameter.

TheMESS specification replaces the conventional geometric decay of
influence from higher-order neighbouring relationships implied by the
spatial autoregressive process with an exponential pattern of decay in
influence from higher-order neighbouring relationships. Specifically,
the MESS model transforms S to model spatial dependence among the
elements of the vector y:

S ¼ e∝W ¼
X∞

i¼0

∝iWi

i!
ð2Þ

whereW is ann×n non-negativematrixwith zeros on the diagonal and
α represents a scalar real parameter.W represents a spatial weight ma-
trix, and Wij > 0 indicates that observation j is a neighbour of observa-
tion i. The matrix exponential S, along with matrix W, imposes a decay
of influence for higher-order neighbouring relationships.”

Eigenvector spatial filtering model (RES-ESF):
Compared to spatial autoregressive models estimated based on

parametric estimation methods (e.g., maximum likelihood estimation
or Bayesian estimation), eigenvector spatial filtering is computer inten-
sive since it is a nonparametric statistical method which is distribution
free without sacrificing too much information in a sample (Tiefelsdorf
and Griffith, 2007). Although eigenvector spatial filtering (ESF) models
are computationally demanding, they are likely to outperform spatial
autoregressivemodels in the applications of urban and regional studies,
ecological studies, and so on (Murakami and Griffith, 2019). Further-
more, a random effects specification of ESF (RES-ESF) had been devel-
oped because of its usefulness for spatial dependence analysis
considering spatial confounding (Murakami and Griffith, 2015). RES-
ESF model is found to outperform conventional ESF model (Murakami
and Griffith, 2015; Murakami and Griffith, 2019). Besides, the RES-ESF
model can produce R2 values as well.

The eigenvector spatial filtering (ESF) is also called Moran's
eigenvector-based spatial regression approach in regional science
(Griffith, 2003), and ESF with a small number of eigenvectors
(i.e., small L) can greatly reduce model misspecification errors and
increases model accuracy (Murakami and Griffith, 2019). The ESF
model is presented as follows (Chun et al., 2016):
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“ESF utilizes the spectral decomposition of a transformed spatial
weights matrix, C. The spectral decomposition of matrix MCM (where
M = (I − 11T)/n and 1 is a vector of ones) produces a set of n eigen-
values and their corresponding eigenvectors:

MCM ¼ EΛE−1 ¼ EΛET ð3Þ

where Λ is a diagonal matrix whose diagonal elements are the n eigen-
valuesλ=(λ1,λ2,…,λ n) ordered from the largest value to the smallest
value, and E= (e1, e2,…, en) represents the n corresponding eigenvec-
tors. As an output of the spectral decomposition, the eigenvectors are
mutually orthogonal and uncorrelated and (n − 1) have a zero mean,
whilst one is proportional to the vector 1. Each of these eigenvectors
represents a distinct nature and degree of spatial autocorrelation. ESF
introduces a subset of the eigenvectors as control variables in a regres-
sion model specification in order to capture its spatial stochastic
component.

In linear regression, an ESF model specification can be expressed as.

Y ¼ Xβþ Ek βE þ ε ð4Þ

where Y denotes the dependent variable, X denotes a matrix of inde-
pendent variables, Ek denotes a selected set of k eigenvectors selected
from then eigenvectorsE, (β,βE) denote parameters, and ε denotes ran-
dom noise that is distributed N(0, Iσ 2). In this specification, Ek βE cap-
tures the spatial stochastic component in the dependent variable Y.
Hence, the regression model does not suffer from complications attrib-
utable to spatial autocorrelation, which is likely to be observed in its re-
siduals if the spatial stochastic component is not explicitly addressed.

The identification of Ek can be achieved through a stepwise proce-
dure. Specifically, eigenvectors that minimize the level of spatial auto-
correlation at each step can be selected. Intuitively, although this
minimizing residual spatial autocorrelation criterion adheres to the no-
tion of isolating spatial autocorrelation, it becomes computationally de-
manding as n increases. That is, in order to evaluate whether the
addition of an eigenvector reduces spatial autocorrelation in residuals,
the expected value and variance of Moran's I for the residuals needs to
be recalculated repeatedly, which involves the inversion of large
matrices.

This identification procedure can be assisted further by excluding ir-
relevant eigenvectors. The stepwise procedure can be conducted from a
noticeably smaller set (i.e., a candidate set) instead of the entire set of
eigenvectors, E. A candidate set can be demarcated based upon several
criteria. First, eigenvectors that do not explain much spatial variation
can be excluded. Second, eigenvectors that represent negative spatial
autocorrelation can be excluded when variable Y displays positive spa-
tial autocorrelation, and vice versa. This exclusion procedure can be
assisted by the eigenvalues λ, because λ i is proportional to Moran's I
value of a map that is a portrayal of Ei on the spatial tessellation from
which C is created; Moran's I = λ i n/1TC1. Hence, a candidate set is
often constructed with a threshold minimum Moran's I value of 0.25,
which is related to approximately 5% of the variation in a response var-
iable being attributable to spatial autocorrelation.”
3.3.3. Model validation
To further evaluate the model performance, the dataset was further

split into training and test datasets. After being estimated based on the
training dataset, and all the models were applied to the test dataset.
Apart from the three types of regression models, a Bayesian model
(i.e., the Bayesian linear regression model) and a popular machine
learning model (i.e., the Random Forest regression model) were used
to predict the test dataset for a broader comparison.
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3.4. Implementation of analysis

In this study, themodel selection, estimation, and validationwere all
implementable in R. Specifically, OLS model estimation, Moran's I test-
ing, Lasso variable selection, MESS-SAR model estimation, and RES-ESF
model estimation are supported by three R packages, named “stats”,
“spdep”, “glmnet”, “spatialreg”, and “spmoran” respectively. And, pre-
diction using Bayesian regression andRandomForest regressionmodels
were implemented via two R packages, named “bayesreg” and
“randomForest” respectively. Besides, the bivariate Moran's I testing
was implemented in GeoDa (http://geodacenter.github.io/index.html).
4. Results

In this section, spatial patterns of COVID-19 mortality rate are firstly
explored, and lately, results of model selection and estimation are pre-
sented and discussed.
4.1. Spatial patterns of COVID-19 mortality rate

We first explored spatial patterns of COVID-19 mortality rate in
comparison with non-COVID-19 mortality.
Fig. 4. Clusters and outliers of COVID-19 mortality rate and non-COVID
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4.1.1. Spatial inequalities of COVID-19 mortality and non-COVID-19
mortality

The Gini coefficient for COVID-19 mortality rate and non-COVID-19
mortality rate across England is 0.257 and 0.079 respectively. COVID-
19 mortality rate has a much higher (about 3 times of) Gini coefficient
than non-COVID-19mortality rate. This indicates that the level of spatial
inequalities of COVID-19mortality is higher than that of non-COVID-19
mortality in England.
4.1.2. Spatial association of COVID-19 mortality and non-COVID-19
mortality

We performed the bivariate Moran's I tests of COVID-19 mortality
rate and non-COVID-19 mortality rate. The global bivariate Moran's I
value is 0.102 and the p-value is 0.001. The global spatial association
of COVID-19 mortality rate and non-COVID-19 mortality rate is statisti-
cally significant and positive. The local bivariate Moran's I testing result
is shown in Fig. 4. Fig. 4maps the clusters and outliers of COVID-19mor-
tality rate and non-COVID-19 mortality rate across England. In Fig. 4, all
the clusters and outliers are statistically significant at the 0.05 level.
Clusters and outliers indicate the existence of positive and negative
local spatial association respectively. Specifically, ‘High - High’ and
‘Low - Low’ represent two types of clusters; whilst ‘Low - High’ and
‘High - Low’ represent two types of outliers. In Fig. 4, ‘High - High’
means an area (LAD) with a high value of ‘COVID-19 mortality rate’ is
-19 mortality rate across England (March, April, and May 2020).

http://geodacenter.github.io/index.html


Table 4
Estimation results for the non-spatial and spatial regression models (N = 317).

Coefficient OLS MESS-SAR RE-ESF

Intercept 506.644*** 199.041** 390.149***
P_A 0.876*** 0.708*** 0.807***
P_B 2.155*** 1.625*** 2.522***
UE_R 6.756*** 5.605*** 4.971***
D_H −0.124* −0.129** −0.122***
R_H −6.029*** −2.366** −4.423***
Adjusted R2 0.61 0.49 0.793
AIC 2859.7 2769.561 2784.813
Moran's I test for residuals 0.405*** 0.046. −0.028

Note: ‘.’, ‘*’, ‘**’, and ‘***’mean the p-values are below0.1, 0.05, 0.01, and 0.001respectively.
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surrounded by areas (LADs)with a high value of ‘non-COVID-19mortal-
ity rate’; ‘Low - Low’means an area (LAD)with a low value of ‘COVID-19
mortality rate’ is surrounded by areas (LADs) with a low value of ‘non-
COVID-19 mortality rate’; ‘Low - High’means an area (LAD) with a low
value of ‘COVID-19mortality rate’ is surrounded by areas (LADs) with a
high value of ‘non-COVID-19mortality rate’; and ‘High - Low’means an
area (LAD)with a high value of ‘COVID-19mortality rate’ is surrounded
by areas (LADs) with a low value of ‘non-COVID-19 mortality rate’. For
the COVID-19 prevention, areas deserving more attentions are ‘High -
High’ and ‘High - Low’ areas. Specifically, ‘High - High’ areas are located
around Sunderland, Liverpool, and Birmingham. ‘High - Low’ areas are
located around London and Reading. Besides, ‘Low - Low’ areas are lo-
cated in the southern England. Although global spatial association of
COVID-19 mortality and non-COVID-19 mortality is positive, local spa-
tial association of COVID-19 mortality and non-COVID-19 mortality is
negative in some areas (e.g., ‘Low - High’ and ‘High - Low’ areas).

4.2. Model selection (spatial or non-spatial regression models)

4.2.1. Estimates of non-spatial regression model (OLS model)
First of all, non-spatial regression models (OLS models) were esti-

mated based on 317 observations (317 LADs).

4.2.2. Estimates of spatial regression models (MESS and RES-ESF models)
Owing to the presence of significant spatial autocorrelation in the re-

siduals of the OLS models estimated conventionally, we should select
spatial models (e.g., MESS and RES-ESF models) instead of non-spatial
models (OLS models). Likewise, spatial models were estimated based
on 317 observations (317 LADs). Besides, in the estimation of ESF
models, the eigenvectors were selected by a stepwise method (see
Subsection 3.3.2). As aforementioned, threshold for the eigenvalues is
set to 0.25 (see Subsection 2.3.2). As a result, 73 of 313 eigen-pairs
were extracted.

Table 3 lists the estimation results for the non-spatial and spatial
models estimated, including OLS, MESS-SAR, and RES-ESF models
(N = 317). The RES-ESF model outperforms the OLS and MESS models
owing to the highest R-squared value and the lowest Akaike informa-
tion criterion (AIC) value (R2 = 0.797). Moreover, Moran's I test was
used to test whether spatial autocorrelation is present in the residuals
of regression models estimated. As Table 3 shows, statistically signifi-
cant spatial autocorrelation is present in the OLS model but is not in
the MESS-SAR and RES-ESF models. This indicates that the replacing
non-spatial regression models (i.e., the OLS model) with spatial regres-
sion models (i.e., the MESS-SAR and RES-ESF models) can reduce the
potential bias owing to residual spatial autocorrelation.

Table 3 also shows the contributions of explanatory variables to spa-
tial variations of COVID-19 mortality rate. We discussed the contribu-
tions of explanatory variables according to the estimation result of RE-
Table 3
Estimation results for the non-spatial and spatial regression models (N = 317).

Coefficient OLS MESS-SAR RE-ESF

Intercept 587.326*** 248.922* 245.319.
P_F 2.448 1.002 2.809.
P_A 1.012*** 0.782*** 0.892***
P_B 2.758*** 2.002*** 2.58***
P_HIP 0.831. 0.504 0.602
UE_R 5.943*** 5.378*** 4.807***
D_P −1.612 −0.612 0.321
D_H −0.099. −0.107* −0.08*
AM_PM −1.88 −1.984. −1.598
R_H −8.521*** −3.715** −4.793***
R_AT −0.795 1.512 3.852.
Adjusted R2 0.618 0.496 0.797
AIC 2858.418 2773.595 2776.084
Moran's I test for residuals 0.373*** 0.032 −0.036

Note: ‘.’, ‘*’, ‘**’, and ‘***’mean the p-values are below 0.1, 0.05, 0.01, and 0.001respectively.
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ESF model (see Table 3). Expectedly, D_H (density of hospital) makes
a statistically significant contribution, and it is negatively related to
COVID-19mortality rate. Therefore, areaswith a low level of hospital ac-
cessibility are likely to suffer a high COVID-19 mortality rate. It is noted
that some socioeconomic factors make statistically significant contribu-
tions to spatial variations of COVID-19mortality rate (see Table 3). Spe-
cifically, P_A (percent of Asians), P_B (percent of Blacks), and UE_R
(unemployment rate) are positively related to COVID-19 mortality
rate. This indicates that areas with a high percent of Asians, a high per-
cent of Blacks, or a high unemployment rate are likely to suffer a high
COVID-19 mortality rate. More importantly, R_H (relative humidity) is
statistically significantly and negatively related to COVID-19 mortality
rate; whilst R_AT (range of air temperature) is not statistically signifi-
cantly related to COVID-19 mortality rate.

4.2.3. Estimates of models after variable selection
Furthermore, to improve the model estimation, the Lasso technique

is used to select the influential explanatory variables. The optimal selec-
tion of explanatory variables are: P_A, P_B, UE_R, D_H, and R_H. Table 4
lists the estimation results for the three models after the explanatory
variable selection (N = 317). Expectedly, all the explanatory variables
are statistically significantly associated with the response in the three
models. The RES-ESF model consistently outperforms the OLS and
MESS models owing to the highest R-squared value and the lowest
Akaike information criterion (AIC) value (R2 = 0.793). Likewise, statis-
tically significant spatial autocorrelation is present in the OLSmodel but
is not in the MESS-SAR and RES-ESF models (see Table 4). Consistently,
this indicates that the replacing non-spatial regressionmodelswith spa-
tial regression models can reduce the bias owing to residual spatial au-
tocorrelation. Moreover, Table 5 shows correlations of residuals and
explanatory variables in the models estimated. In Table 5, all the
Pearson's correlation coefficients are extremely lowly valued, indicating
no significant endogeneity of regressors exists. Besides, variance infla-
tion factor (VIF) was used to detect multicollinearity in all the models
estimated. In all the models estimated, the VIF values for all the inde-
pendent variables (predictors) are below 5, indicating no serious
multicollinearity exists in all these models estimated. This means all
the all the independent variables (predictors) are not highly correlated
to each other. Table 4 also shows the coefficients of the RE-ESF model is
closer to the OLS model than the MESS-SAR model.
Table 5
Correlations of residuals and explanatory variables in the models estimated.

Pearson's correlation
coefficient

Residuals

OLS SAR-MESS RE-ESF

P_A −6.729 × 10−17 5.826 × 10−18 −2.270 × 10−13

P_B −7.968 × 10−17 −3.181 × 10−17 −1.580 × 10−13

UE_R −4.519 × 10−17 −7.588 × 10−17 −7.004 × 10−14

D_H −5.759 × 10−17 −7.905 × 10−17 1.139 × 10−13

R_H −9.482 × 10−16 −5.200 × 10−16 1.164 × 10−12



Table 6
Prediction accuracies of the regression models estimated.

Model OLS SAR-MESS RE-ESF BL RF

NMAE 0.267, 808 0.368, 653 0.267, 177 0.267, 18 0.284, 087
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4.2.4. Validation of models estimated
In this study, the dataset used was further split into the training and

test datasets. Specifically, 20% of the cases are randomly selected as the
test cases; whilst the remaining cases are selected as the training cases.
Apart fromOLS,MESS-SAR and RE-ESFmodels, Random Forest (RF) and
Bayesian linear (BL) regression models were estimated based on the
training dataset, and subsequently they are applied to the test data for
a broader comparison. In this study, the Normalized Mean Absolute
Error (NMAE) was used to measure the difference of prediction and
real values after adjusting for scales. NMAE is the average of mean
error normalized over the average of all the actual values. Table 6
shows the NMAE values for the predictions of COVID-19 mortality rate
by different models. The RE-ESF model achieves the highest prediction
accuracies with the lowest NMAE value. The prediction results indicate
the RE-ESF model consistently outperforms the OLS and SAR-MESS
models.

4.3. Discussion

The RE-ESFmodel is likely to be themost propermodel because 1) it
outperforms the other two models in explaining spatial variations of
COVID-19mortality rate due to a higher R2; 2) its coefficients are closer
to the OLS model than the SAR-MESS model; 3) it substantially reduces
the residual autocorrelation in comparison with the OLS model; and
4) it consistently outperforms the other models in predicting spatial
variations of COVID-19 mortality rate due to a lower NMAE.

In the empirical study, some empirical findings were uncovered.
Firstly, we uncovered that relative humidity is negatively related to
COVID-19 mortality rate whilst PM2.5 and air temperature measures
are not significantly related. This finding is partly consistent with a pre-
vious study (e.g., Ma et al., 2020). In Wuhan, a positive association with
COVID-19 daily death counts was observed for diurnal temperature
range, but negative association for relative humidity (Ma et al., 2020).
However, the negative association for relative humidity is consistent
with our finding whilst the positive association for diurnal temperature
range is not.More empirical studies are needed to examine the effects of
temperature on COVID-19 daily death. Besides, a recent study found
positive associations between particulate matter pollution (PM2.5 and
PM10) and COVID-19 case fatality rate (CFR) in Chinese cities (Yao
et al., 2020); whilst this study found no significant association between
PM2.5 and COVID-19 mortality rate. Secondly, we uncovered that per-
cent of Asians and percent of Blacks is positively related to COVID-19
mortality rate. This is consistent with some previous findings on ethni-
cal disparity in COVID-19 mortality (e.g., Aldridge et al., 2020; Holmes
et al., 2020; Dyer, 2020; Pan et al., 2020). Thirdly, we uncovered that:
unemployment rate is positively related to COVID-19 mortality rate;
whilst density of hospital is negatively related to COVID-19 mortality
rate. Consistent findings have been found to exist in France and China
as discussed in the literature review section (Goutte et al., 2020; Ji
et al., 2020). Particularly, combining Figs 4 and 2b, we examined
whether the hotspots of COVID-19 mortality rate and non-COVID-19
mortality rate are the areas with a lower level of access to hospital. As
Fig. 4 shows, high levels of COVID-19 mortality rate and high levels of
non-COVID-19 mortality rate co-occur around Sunderland, Liverpool,
and Birmingham. Those areas are likely to have a lower level of density
of hospital as well (see Fig. 2b). Healthcare resource allocation should
prioritise those areas around Sunderland, Liverpool, and Birmingham.

Furthermore, the model estimation results reveal that spatial varia-
tions of COVID-19 mortality rate across England is mainly attributable
to spatial variations of socioeconomical and environmental factors.
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This suggests that the reduction of socioeconomic disadvantage could
potentially contribute to decrease in COVID-19mortality risk across En-
gland. Socioeconomically disadvantaged areas aremore likely to suffer a
high risk of COVID-19 mortality. Governments and policy makers
should consider how to reduce spatial disparities in COVID-19mortality
risk through decreasing socioeconomically disadvantaged population.
Extremely disadvantaged areas should be given priority in policy mak-
ing. Furthermore, we compared the non-spatial regression models
(OLS models) and the spatial regression models (MESS-SAR and RES-
ESF models) estimated in this study. The R2 value of RES-ESF model es-
timated are higher than those of OLS and MESS-SAR models. Therefore,
RES-ESF model is empirically found to outperform OLS and MESS-SAR
models in this study. Applications of spatial regressionmodels are likely
to better model spatial variations of COVID-19mortality rate across En-
gland. Moreover, RES-ESF model is highly recommended to be applied
to a variety of applications in urban or regional studies.

In this study, PM2.5 is not reported to be significantly associatedwith
COVID-19 mortality whilst the significant association is reported in
studies on some other regions (e.g., Yao et al., 2020; Gupta et al.,
2020; Coker et al., 2020). One possible reason is: compared to the cities
or areas in the previous studies (Yao et al., 2020; Gupta et al., 2020;
Coker et al., 2020), England has a lower level of PM2.5, thereby spatial
variations of PM2.5 between English LADs is likely to be smaller than
those between the cities or areas in the previous studies. Additionally,
we have taken account of other air pollutants (e.g., NO2 and SO2) as
other potential environmental factors in more model estimations like
Tables 3 and 4. Defra also offers 1 × 1 km gridded annual mean NO2

and SO2 data for 2019 (https://uk-air.defra.gov.uk/data/pcm-data).
Like PM2.5, NO2 and SO2 are not statistically significantly related to
COVID-19 mortality rate after adjusting for the other socioeconomic
and environmental factors.

5. Conclusion

In this study, we examined the spatial patterns of COVID-19 mortal-
ity rate in relation to socioeconomic and environmental factors across
England. Two newly developed specifications of spatial regression
models were established successfully to estimate COVID-19 mortality
rate. The level of spatial inequalities of COVID-19 mortality is higher
than that of non-COVID-19mortality in England. Although global spatial
association of COVID-19 mortality and non-COVID-19 mortality is posi-
tive, local spatial association of COVID-19 mortality and non-COVID-19
mortality is negative in some areas. The model estimated indicate that
1) relative humidity is negatively related to COVID-19 mortality rate;
2) hospital accessibility is negatively related to COVID-19 mortality
rate; and 3) percent of Asians, percent of Blacks, and unemployment
rate are positively related to COVID-19 mortality rate. Moreover, the
RES-ESF model estimated outperforms the MESS-SAR model in model-
ling spatial variations of COVID-19 mortality rate across England.

However, there are some limitations in this study. Firstly, in this
study, we take no account of behavioural factors, such as alcohol con-
sumption and sugar drinks intake, due to the lack of data. Human health
is found to be affected by behavioural factors (e.g., dietary patterns, diet
quality, sugary drinks intake, fruits and vegetable intake, alcohol and to-
bacco consumption, sleep duration, sleep quality, etc.) (Richter et al.,
2012; Patel et al., 2013). Secondly, as the poverty data used is for
2014, the time gap between poverty data and other data is relatively
large. The existence of this time gap might have a potential influence
on themodel estimation in this study. Besides, the poverty data is avail-
able for 2014, whether the spatial variations of poverty are proportional
to those in continuous years needs to be empirically validated. Thirdly,
the data used reflect the registered deaths caused by COVID-19, but
they might completely reflect the actual deaths caused by COVID-19.
On the one hand, the presence of false positives is likely to over-
estimate the number of deaths owing to COVID-19. On the other hand,
some deaths caused by COVID-19 are likely to be recognised as non-

https://uk-air.defra.gov.uk/data/pcm-data
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COVID-19 deaths especially in the earlier stage of pandemic when test-
ing capacity is low.

In the future, we will improve this study by addressing those limita-
tions. Firstly, we will attempt to acquire data on behavioural character-
istics from questionnaire-based surveys in collaboration with National
Health Service (NHS) England. The acquired data will be used to mea-
sure behavioural factors. Secondly, the study needs to be repeated
once some research data (e.g., poverty data) is updated in the future.
The results would be compared with the those in this paper to discuss
the influence of time gap in some data on the model estimation results.
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