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A convolutional neural network segments yeast
microscopy images with high accuracy
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The identification of cell borders (‘'segmentation’) in microscopy images constitutes a bot-
tleneck for large-scale experiments. For the model organism Saccharomyces cerevisiae, current
segmentation methods face challenges when cells bud, crowd, or exhibit irregular features.
We present a convolutional neural network (CNN) named YeaZ, the underlying training set
of high-quality segmented yeast images (>10 000 cells) including mutants, stressed cells,
and time courses, as well as a graphical user interface and a web application (www.
quantsysbio.com/data-and-software) to efficiently employ, test, and expand the system. A
key feature is a cell-cell boundary test which avoids the need for fluorescent markers. Our
CNN is highly accurate, including for buds, and outperforms existing methods on benchmark
images, indicating it transfers well to other conditions. To demonstrate how efficient large-
scale image processing uncovers new biology, we analyze the geometries of ~2200 wild-type
and cyclin mutant cells and find that morphogenesis control occurs unexpectedly early and
gradually.
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udding yeast is an important model organisms in genetics,

molecular biology, systems biology, and synthetic biology.

Almost all current segmentation methods for yeast ima-
ges!= rely on classical image processing techniques!® such as
thresholding, edge detection, contour fitting, and watershed.
However, for many experiments, the segmentations produced by
these tools require frequent user interventions. Common chal-
lenges for yeast image segmentation include cell crowding, irre-
gular shapes, transparent inclusions (e.g., vacuoles), unusual
visible features, budding events, and imperfect focus during
imaging (Fig. 1).

CNNs have established themselves in recent years as efficient
and powerful computational models for segmentation tasks!l.
CNN s replace sophisticated classical image processing algorithms
with neural-network based models which are trained on a suffi-
ciently large and diverse set of examples!2. A key advantage of
CNNs over non-learning based approaches is that in order to
improve the predictions for new cases or conditions, fundamen-
tally new ideas are not needed. In principle, new cells or condi-
tions that the system performs poorly on only need to be included
in sufficient numbers in the training set. We demonstrate this
advantage with clb1-6A mutants that create filamentous buds.

Despite the importance of S. cerevisiae as a model organism, to
the best of our knowledge, gold-standard image and segmentation
data sets for yeast or CNNs trained on such data sets do not exist.
Training data in the form of manual annotations of cell masks is
expensive and labor-intensive to generate, especially if it needs to
include mutants, which are important for many laboratories. To
segment accurately, human annotators need experience with yeast
cell images. Furthermore, it is not widely known which of the
many available artificial neural network architectures is suited
best, what the disadvantages of each are, and how they can be
mitigated.

Previous work demonstrated that a CNN can segment yeast
images better than competing methods under very low light
conditions!3. However, the training set was focused on the spe-
cific challenge of very low light levels. YeastSpotter, a CNN for
yeast image segmentation based on the Mask-RCNN architecture,
was not trained on yeast images but mostly on human cell
nuclei!4. Thus, it is not surprising that many images of yeast cells
cause it to make mistakes (see “Comparison to other methods and
benchmarking”). The bright-field images of diploid yeast cells
published by Zhang et al.!> contain in-focus and substantially
out-of-focus cells in the same field of view, with only the in-focus
cells segmented; it is unclear how well a neural network trained
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Fig. 1 Challenging cases for the segmentation of yeast images. The red
arrow points to a difficult-to-see new bud that appears in a timelapse
movie. Scale bar: 1um. Phase contrast images inverted for better
visualization.
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on this data set could detect out-of-focus buds or segment images
that are slightly out of focus as in Fig. 1. The web resource YIT1®
contains high-quality bright-field and phase contrast images of
wild-type yeast cells but only the cell centers are annotated, not
the borders.

Beyond yeast, the approach of DeepCelll7, which was applied
to bacterial and mammalian cells and which inspired ours, has
the drawback of requiring an additional fluorescent channel for
segmentation, which we seek to avoid. Experiments may need all
available fluorescent channels for measurements or may involve
optogenetic constructs.

Here, we present a large, diverse data set for yeast segmentation
and an easy-to-train CNN, which we call YeaZ (pronounced: y-
easy). A Python-based graphical user interface (GUI) can be used
to apply the CNN to images in a user-friendly manner, to
visualize the images and the segmentation masks, to apply the
bipartite matching algorithm for tracking®, and to correct
potential mistakes. In order to avoid the need for fluorescent
nuclei marking the cell interiors as in the DeepCell method!”, we
seed cells based on peaks of the distance transform and perform a
“cell-cell boundary test” to remove erroneous borders!8-21. Using
the YeaZ CNN to measure the cell geometry of hundreds of wild-
type and cyclin mutant cells, we find differences in elongation
which indicate that the mitotic cyclin CLB2 controls cell mor-
phology unexpectedly early and gradually. To assess the suit-
ability of the YeaZ CNN without installing any software, images
can be submitted to a website for segmentation, accessible under
http://www.quantsysbio.com/data-and-software. Users are invited
to submit challenging images for inclusion in the training set,
which thus will expand with time and improve the CNN.

Results

Data set. We segmented >8500 budding yeast cells of strain
background W303, recorded by phase contrast microscopy, semi-
manually using a custom image processing pipeline (Fig. 2,
Supplementary Table 1). In total, this resulted in 384 images
(saved in multi-layer tif files) and corresponding manual anno-
tation masks, which were checked by 1-2 other people. The set
includes normally growing, pre-Start (clnA) arrested, filamentous
G1/S (clbl-6A) arrested, metaphase (cdc20A) arrested, and DNA
damaged cells, some of which are shown in Fig. 1. Cells were
often in large colonies, in which even by eye, cell borders can be
difficult to ascertain. Older and bigger cells contained large,
transparent inclusions, likely vacuoles, which many classical
image segmentation techniques fail to ignore because their edges
look like cell borders. Potentially sick cells with strange visible
features were included (Fig. 1). Cell sizes varied widely from

Phase contrast Bright field

Fig. 2 Overview of the YeaZ training data set. Shown are examples of raw
images acquired with phase contrast or bright-field microscopy (upper row)
and corresponding manual annotations (lower row). Phase contrast image
inverted for better visualization. Scale bar: 2 um.
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about 0.4 to 80 ym? (mean wild-type size = 16 um?). We anno-
tated barely visible buds. Some images were sufficiently out of
focus for cells to develop a second light ring around them, which
makes identification of the cell edge difficult for many methods
(Fig. 1).

Using the following trick, we segmented another >1700 cells
recorded by bright-field microscopy (Fig. 2, Supplementary
Table 2): We took images of the same scene of wild-type cycling
cells by bright-field and by phase contrast microscopy in rapid
succession. Then, we used the YeaZ CNN to segment the phase
contrast images efficiently and transferred the segmentation
masks to the bright-field images. However, for the rest of our
work, we did not use the bright-field segmentations but are
making the data available to the community.

Data augmentation artificially increased the size of the training
set even further by rotating, flipping, shearing, enlarging, or
shrinking, as well as dimming or brightening the images for
training the CNN (see “Methods”).

Convolutional neural network (CNN). We evaluated three well-
known convolutional neural network architectures: U-Net??,
Mask-RCNN!!, and Stardist?3. We chose U-Net and trained it to
distinguish pixels belonging to cell bodies (mapped to 1) from
background or cell-cell border pixels (mapped to 0). We did not
further distinguish between background and cell-cell border
pixels!” because the two were often difficult to discriminate
unambiguously during the annotation of the training set and
because even without this differentiation the resulting CNN was
highly accurate. We decided against Mask-RCNN because of
artefactual cut-offs of the identified cell regions, presumably due
to the method’s rectangular bounding boxes. Stardist alleviates
this problem by approximating cell borders with star-convex
polygons. Although such a representation is likely appropriate for
the typical round shapes of wild-type cells, it is ill-suited for
elongated and filamentous cell shapes such as of clb1-6A cells.

Segmentation steps. The CNN assigns to each pixel a score from
0 (border- or background-like) to 1 (cell-like). These continuous
scores are turned into a segmented image by the following steps
(Fig. 3):

1. Initial cell-versus-non-cell classification: A threshold of 0.5,
arbitrary but intuitive, is used to distinguish putative
cell pixels from the rest. This step already identified most
cell bodies as distinct from one another in our images.
However, some cells were connected by bridging putative
cell pixels, which is why the following steps were needed.

2. Find a point inside each cell: For each putative cell pixel, the
distance transform (the shortest Euclidean distance to a
border/background pixel) is computed. Pixels at which the
distance transform has a maximum within a radius of
5 pixels (=0.5 ym) identify putative interior points of cells.
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This step successfully identified one or more points in each
cell in our images. (To detect very small buds, we lowered
this threshold, see “Comparison to other methods and
benchmarking”.)

3. Assign a putative cell to each interior point: each peak of
the distance transform is used as a seed for the watershed
method, which assigns regions of pixels to each peak. These
regions are the putative cells.

4. Remove erroneous cell boundaries: since the distance
transform may yield more than one point inside each cell,
e.g., for a dumb-bell shaped cell, a real cell may be erro-
neously subdivided into multiple regions by the watershed
procedure. This is a well-recognized problem in image
segmentation!218-21 and could be circumvented, for exam-
ple, by a fluorescent nuclear marker specifying a unique
interior point. To avoid the requirement for an additional
channel, we devised the following cell-cell boundary test: For
all pairs of putative cells, we evaluate whether the pixels on
the boundary are too cell-like; if the average CNN score for
the top 3/4 of boundary pixels (bottom 1/4 is ignored
because an erroneous boundaries will touch real boundaries
at their two ends) is above 0.99, ie., very cell-like, this
boundary is likely erroneously subdividing a real cell. In that
case, the two regions separated by the erroneous boundary
are merged. This strategy fixed all cases of split cells that we
encountered, which, for example, occurred for 10% of cells
in Fig. 4 (top). We did not observe that any cells were joined
erroneously.

We introduced a small number of parameters in the above
steps without fine-tuning because the results did not require it
(0.5 CNN-score threshold, five pixel distance-transform thresh-
old, 0.99 average CNN-score threshold on 3/4 of boundary
pixels), as demonstrated in “Comparison to other methods and
benchmarking”.

Tracking. The tracking algorithm is similar to the one in Cell-
Star8. Cells are matched between two consecutive frames. For
each time point ¢ and each cell 4, the center of mass and the area
are calculated (x;(t), yi(t), A;(f)). The mean over all cells at time ¢
is subtracted and the resulting triplets are rescaled to normalize
the variances to (3, 3, 1). (We observed that weighting in favor of
the position makes the algorithm work better.) The actual
tracking step is performed by bipartite graph matching, finding
pairings that minimize the summed Euclidean distances between
the normalized triplets. This can be done efficiently by the
Hungarian algorithm?42>,

We assessed the quality of this tracking method with a 75-frame
timelapse recording from our training set that starts with 11 cells
and ends with 49 cells. Of the 1903 frame-to-frame correspon-
dences that had to be found, four were erroneous. All of these
mistakes occurred between two time points when two cells floated

Step 3: Step 4:
watershed remove interior
borders
>y -4
Y.
A » A »

Fig. 3 Steps to segmentation: (1) threshold the CNN output, (2) find the peaks of the distance transform (=seeds), (3) watershed, (4) remove
erroneous interior borders using a cell-cell boundary test. Phase contrast image inverted for better visualization. Image from ref. 16, scale bar unknown.
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Fig. 4 Comparison of YeaZ with YeastSpotter and Wood et al.%. a Image recorded by us but not included in the training set. b Image from ref. 1 showing
cycling cells. ¢ Image from ref. 1 showing pheromone-arrested cells. The error values represent the fraction of missed cells/of bad contours/and of
spurious cells. Phase contrast images are inverted for better visualization. Scale bar in row a: 5 um. Images in rows (b, €) from ref. 1, scale bar unknown.

away and two new buds appeared (Supplementary Fig. 1). Thus,
the tracking method appears to be highly reliable but we did not
evaluate it further since tracking is not the focus of this work.

Comparison to other methods and benchmarking. The con-
volutional neural network approach has at least two inherent
advantages over non-machine learning approaches: While diverse
and potentially difficult to analyze, budding yeast cells may only
have a range of shapes and visible features. Our large, diverse data
set is well suited to cover this range and enables the neural net-
work to interpolate between shapes it has already been trained
with in order to segment new images. Furthermore, should a
particular condition or cell type not yield satisfactory segmenta-
tion results, the addition of a number of new examples in prin-
ciple suffices to expand the capabilities of the neural network, as
we demonstrate for clbl-6A cells.

Ideally, to compare YeaZ to other methods, we would use a
gold-standard segmentation benchmark. However, we could not
find such a data set, which is in part why we believe our data set
of segmented images will be useful to the community. Instead, we
proceed as in a comprehensive comparison of segmentation
methods performed previously!®. We begin by focusing on three
images: one image of moderate complexity from our timelapse
recordings that was not included in the training set (a) and two
images of budding yeast cells included in the prior comparison!®
containing cycling (b) or pheromone-arrested (c) wild-type cells,
respectively. Images (b) and (c) represent the last time points in
two timelapse recordings (data sets 9 and 10 in ref. 1) and thus
are the most complex images of the series, containing the largest
number of cells. Together, the three images cover three important

situations: a crowded scene (a), a relatively sparse scene (b), and
new shapes (c) not included in our training set.

We chose for our comparison the newest segmentation
method we found published, by Wood et al.%, and the only
other available neural network for yeast segmentation Yeast-
Spotter!4, which was, however, not trained on yeast cell images.
Wood et al’s method has at least 16 parameters; we varied
min_cell_size, max_cell_size, min_colony, clean_BW, and
size_strel_bg 2 away from the default values to improve the
results. Since the method by Wood et al.” compares favorably
with other published methods!® and given the stark differences
in the segmentation qualities we observed, we confined ourselves
to these two comparisons.

The results of the YeaZ segmentation are perfectly accurate for
all three images (Fig. 4). No tweaking of our parameters was
necessary except to adjust roughly the pixel equivalent of the 0.5
pm threshold for the distance transform to the larger pixel sizes in
(b) and (c). Close inspection of the results revealed no missed
cells, no missed buds, no errors in the boundary assignments, and
no false cells. Given the many differences between our strains and
conditions and those of the images from ref. 16, this exemplifies
the transferability of the YeaZ CNN.

In order to compare the results in a way that is useful for the
typical user, we scored the output of the other methods by
counting the number of cells that were missed by the segmentation,
that were segmented clearly badly, or that were likely acceptable for
most purposes (Fig. 4). The other methods’ boundaries were not
required to be perfect; we scored their output rather leniently. Our
detailed scoring is presented in Supplementary Figs. 1-7.

The scene with widely varying cell sizes caused both YeastSpotter
and Wood et al.’s method to make many mistakes (Fig. 4 top row).
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Fig. 5 Detailed computational comparison of all methods. The evaluations were carried out on 17 test images of 1894 cycling wild-type cells not included
in the YeaZ training set. a Each row shows an example test image, its ground-truth annotation (GT), and the result of Wood et al.?, YeastSpotter'4, and
YeaZ, respectively. b Quantification of segmentation performance of all methods. As is common in the computer vision literature, we call a predicted cell a
true positive (TP), if its intersection over union (IoU) with the corresponding ground-truth (GT) cell is larger than or equal to 50%. Similarly, false positives
(FPs) and false negatives (FNs) are defined as predictions that have no GT match and vice versa. As segmentation metric, we show the average accuracy

P
(o
to 1.5 IQR. Scale bar: 5 um.

Generally, Wood et al’s method tended to oversegment, i.e.,
subdivide cells erroneously. YeastSpotter tended to miss cells.

To find out how low the error rate of the YeaZ CNN may be,
we analyzed the entire data sets 9 and 10 from ref. 1°. The
resulting segmentations were flawless for data set 9 for all 1596
cells except for four buds; tiny buds of a few pixels were detected
early except for four (Supplementary Fig. 8), which were detected
at the next time point when they were slightly bigger. The error
rate is thus 0.25%. For data set 10, all 484 cells were segmented
accurately (error rate: 0%); however, we remark that the images in
data set 10 are very similar to each other.

Thus, on images from us and others that are challenging for
other methods, YeaZ produced ground-truth level segmentations.

To complement this analysis with a mathematical comparison,
we also scored all three methods, YeaZ, YeastSpotter, and Wood
et al, computationally. We took 17 semi-manually segmented
phase contrast images containing 1894 wild-type cycling cells,
which were not included in the training set for the YeaZ CNN,
and computed standard segmentation metrics such as accuracy
and mean intersection-over-union (IoU)23 (Fig. 5). The YeaZ
CNN performed very well (mean accuracy: 94%) with most of the
missed cells being small buds that the CNN delimited differently
than the human annotators. Given that many of these buds
spanned only a few pixels (see Supplementary Fig. 8 for examples
of small buds), it was easy for two slightly different segmentations
to differ by the 50% threshold for the accuracy metric—without
the bud actually having been missed or clearly incorrectly
segmented. By both metrics, YeastSpotter showed a substantially
higher error rate than the other methods. Wood et al’s method
performed better than YeastSpotter on this set of images (mean
accuracy: 79%). (Similarly, among the three test images in Fig. 4,
Wood et al. had performed reasonably well for wild-type cycling
cells (middle row).)

Expanding the capabilities of the CNN. In order to gauge the
adaptability of the CNN to new cell shapes, we trained it with and
without approximately 50 filamentous clbl-6A cells growing in
different colonies. We then tested the CNN on another image from
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Fig. 6 Adaptability of the CNN. clb1-6A mutants were either excluded
(left) or included (right) in the training set for the CNN, which was then
tested on an image of clb1-6A cells from a later time point with even longer
filaments, shown here. Note that the color of each cell is dependent on the
internal numbering and therefore arbitrary. However, there are no
fragmented filamentous cells on the right (green check marks) although
there are segmentation errors when the strangely shaped cells are crowded
(red arrow). Phase contrast image inverted for better visualization. Scale
bar: 2 um.

a later time point of one of the scenes, when the filamentous cells
had grown substantially longer (Fig. 6). Importantly, these longer
cells were not broken up by the CNN trained on the expanded data
set. Note that these colonies can be very difficult to segment by eye
in the places where cells are crowded; thus, the mistakes that are
made when strangely shaped mutant cells surround and partially
overlap each other as in the bulk in Fig. 6 may be expected, given
the number of clbl-6A mutants in the training set.

One solution to minimize the manual labor required to expand
the training set is to proceed iteratively: segment a few images
under a new condition, retrain the neural network with these
images, and repeat with an improved neural network until the
performance is acceptable.

Graphical user interface (GUI). To apply the CNN and the
tracking algorithm and correct their mistakes, we designed a
Python-based GUI (Fig. 7). New cells can be drawn, modified
after segmenting with the CNN, and cells can be relabeled. We
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were inspired by Microsoft Paint to include image manipulation
tools such as brushes and erasers to manipulate the segmentation
masks. The user can leaf through timelapse images with the
current, the previous, and the next time point shown simulta-
neously, which can be helpful for verifying small buds. Fields of
view and imaging channels can be changed. The GUI can read in
multi-layer image files, folders of multiple image files, and Nikon
ND2 files. We are continuously improving the capabilities of the
GUI since we are using it ourselves. The latest version can be
found through our website http://www.quantsysbio.com/data-
and-software.

Cell shapes reveal the timing and strength of morphogenesis
control. New yeast daughter cells grow as buds from the tip until

ft & > 4 Q

mitotic cyclins, mainly Clb2, change the direction of growth from
apical to isotropic (Fig. 8a); overexpressing the cell cycle Start
initiator CLN2 or deleting CLB2 leads to more elongated
cells?®27, Since CIb2 turns on as part of a positive feedback loop
some time after cell cycle Start?8, one may expect growth depo-
larization to occur suddenly at a specific time after budding. To
investigate when this switch occurs, we analyzed the geometries
of hundreds of wild-type and mutant cells using YeaZ (Fig. 8b, c).
We quantified each cell’s elongation (=major axis/minor axis) by
equating its second moments of the area with those of an ellipse.
Based on images taken at single time points only, we used the
cells’ areas as stand-ins for the time after budding because cells
grow in size continuously.

Wild-type cells (blue) initially became more elongated with
size, and depolarization kicked in when cells reached around
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Fig. 7 GUI for applying the YeaZ CNN, tracking cells, and correcting segmentations.
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Fig. 8 CIb2 promotes a more circular cell shape beginning early in the cell cycle. a Schematic of cell shape during growth. b Mean and SEM of elongation
versus area for different cyclin mutants. **: p = 0.004, single-tail t-test. ¢ Mean and STD for two of the populations from panel b illustrating the variability
in the data. b, ¢ Abscissa scaled so that 1is the mean area of wild-type cells, corresponding to 16.3 um2. n=525 (WT), 500 (clnA"), 597 (clb2A), 543
(cInA"clb5,6A). The largest 2.5% of the overall population was discarded. The remaining range was binned into 8 equal intervals. There were no WT or

cnA” cells in the largest bin, therefore, no values are shown.
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1-1.5 of the mean wild-type area, making cells more circular
again (Fig. 8b).

cIn1-3AMET3pr-CLN2 (abbreviated: clnA") cells (green) which
expressed the Start cyclin CLN2 continuously in medium lacking
methionine started as buds that were similarly shaped as wild
type but became substantially more elongated (Fig. 8b). Subse-
quently, however, they depolarized and grew sufficiently to end
up about as circular as wild-type cells when they were large.

Interestingly, cIb2A cells (magenta), were already substantially
more elongated when they were very small (first bin: 0-33% of
mean wild-type area), even though Clb2 seemed to depolarize
wild-type cells much later at around 1-1.5 mean wild-type area
(compare wild-type and cIb2A in Fig. 8b). Thus, CIb2 influenced
cell morphology already very early in the cell cycle, potentially
because of i) early, weak activation of CLB2, ii) basal expression of
CLB2, iii) left-over CIb2 from the previous cycle, or iv) a CLB2-
dependent remnant from the previous cell cycle. Furthermore,
clb2A cells could not be detected to depolarize at all, and became
even more rod-like with size.

To test whether CIb2 is initiated at low levels earlier than
previously thought, we analyzed clnA™clb5,6A (yellow) cells
(Fig. 8b). CLB5 and CLB6 are key activators of CLB2%8. We
combined their deletions with the clnA™ mutations and constructs,
which produce Cln2 continuously in minus methionine medium.
This was done to maximize polarized growth, which Cln2
promotes, and compensate for the loss of Clb5, which might also
promote polarized growth as it can substitute for cell cycle Start
initiators. Nevertheless, cells started similarly shaped as wild-type
or clnA" cells, inconsistent with explanation i). Explanations ii)
and iii) would be surprising because Clb2 is known to interfere
with origin of replication licensing in G1 phase??, before cell
cycle Start; however, ii) or iii) would be consistent with the
requirements for origin of replication licensing if licensing is less
sensitive to Clb2 than morphogenesis control.

In summary, our data refine our understanding of the timing
and strength of morphogenesis control, to be earlier than
commonly thought and to be gradually strengthening with time,
not simply switching on-off. Both results are surprising consider-
ing the known timing and manner of activation of CIb2. Since we
focused primarily on the geometry of the smallest cells, any
potential minor differences in growth rates between the mutants
should not affect our conclusions.

This application exemplifies why an efficient segmentation
method is needed and how it can provide new insights. Because
variability is high (see standard deviation in Fig. 8c), large
numbers of cells are needed for statistically significant results (see
standard error of the mean in Fig. 8c).

Discussion

We present a freely available, large, diverse, and high-quality set
of segmented yeast images as well as a CNN trained on this data
set. The CNN segments new images recorded by us and others
very accurately. We introduced a simple cell-cell boundary test to
alleviate the oversegmentation problem that arises in the absence
of an established unique interior point, which a fluorescent
nuclear marker provides in other methods!”. Our approach does
not require extra fluorescent markers.

There is a body of work on correcting oversegmentation!8-21.
Interestingly, an idea similar to ours, namely, that a boundary is
artefactual if the average of the boundary pixels’ CNN scores is
close 1, which means that those boundary pixels are actually cell-
like, was considered but not pursued further!®. The reason was
that erroneous boundaries may include real boundary pixels (with
CNN scores = 0) at their two ends which make the averaged CNN

score ambiguous. We circumvent this problem by simply ignoring
the bottom 1/4 of lowest-scoring pixels and averaging over the top
3/4, thereby, ignoring the two ends of any artefactual borders. This
straightforward fix may work well for microscopy images of many
microbes because the image resolution is generally sufficiently
high compared to the geometric features in the interiors of cells;
enough evidence can be gathered about whether a border is fake or
real since artefactual borders will be made up of many pixels. For
small cells, where this would not be the case, we suppress over-
segmentation by forbidding too many close-by seeds. Thus, ima-
ges of many microbes may allow simpler approaches than
macroscopic objects!8.

Our CNN-based analysis suggests that basal CLB2 expression,
left-over CIb2, or Clb2-dependent signals from the previous cell
cycle influence cell shape early in a new cycle, not just when cells
depolarize markedly. The influence of CIb2 early in the cell cycle
is surprising and, to our knowledge, has not been observed
previously.

While we designed our data set to be sufficiently diverse for
most applications, there may arise conditions under which it is
not. Should the CNN perform poorly for certain new cell shapes
or conditions, in principle, adding challenging semi-automatically
segmented training examples to the current set ought to improve
the performance, as we demonstrated for clb1-6A cells, or perfect
it. Repeated cycles of segmenting with an incrementally
improving CNN, correcting mistakes, and retraining may be a
particularly labor-efficient way to expand the capabilities of
the CNN.

As a proof of principle for how the existing CNN can be
leveraged to improve it further, we applied a simple trick to expand
the training set beyond phase contrast images: We recorded the
same scene with both phase contrast and bright-field microscopy
and used the CNN to segment the phase contrast images. This gave
us a training set for bright-field images with little effort. We make
the bright-field segmentations available although we did not train
the CNN with it.

Methods

Images and imaging conditions. Recordings were made with a 60x objective and a
Hamamatsu Orca-Flash4.0 camera. Cells were grown in CellASIC microfluidic
chips in standard synthetic complete (SC) medium supplemented with different
sugars, glucose, galactose, or raffinose, depending on the experiment. Images have
16 bit depth. The diascopic light was generated by Nikon Ti2-E LEDs. Exposure
times were 100 ms. We varied light intensities such that in the training set, median
pixel intensities ranged from 169 to 1329 (bottom to top 2% of images) and the
contrast in each image (bottom to top 2% of pixels divided by median) ranged from
1.4 to 3.7 (bottom to top 2% of images).

Pre-processing. The training set consists of (i) microscopy images and (ii) mask
images from the semi-manual annotation (see ‘Data set’) which are of the same size
as the microscopy images and whose pixels denote the ID numbers of the cells in
the corresponding microscopy images. Background pixels correspond to 0 in the
masks. Before setting all cell numbers to 1 for training the neural network, we
found the borders between different cells by dilating each cell and identifying
intersecting pixels. These border pixels were then also set to 0 in the mask images.
The training set was cut into 256 x 256 images, which overlapped by at least half in
width or height, for the training. (The GUI applies the CNN to whole images
without cropping.)

Training. We downloaded the U-net implementation from https://github.com/
zhixuhao/unet and adapted it. Batch sizes were set to 25 and training was carried
out for 100 epochs. Augmentation was performed with rotation range 90°, shear
range 45°, zoom range 0.5-2, horizontal and vertical flipping, and brightness range
0.5-1.5.

Evaluation of tracking. We corrected cell ID numbers manually for one of the
timelapse recordings (a_reexportl_crop_1) and used it to evaluate the tracking
method.
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Data analysis. Data analysis was performed in Matlab R2018b.

Strains. All strains were W303 based. All except AS18 have been characterized
previously3?:31. See strain list in Supplementary Table 3.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All segmentation data sets can be downloaded through our website: http://www.
quantsysbio.com/data-and-software.

Code availability

The latest version of the YeaZ GUI can be downloaded through our website, where the
CNN can also be tested online: http://www.quantsysbio.com/data-and-software. The
YeaZ GUI is directly available at: github.com/lIpbsscientist/YeaZ-GUI
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