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Abstract

Several members of the chemokine family are involved in regulation of fibrosis. This review 

manuscript discusses the role of the chemokines in the pathogenesis of myocardial fibrosis. The 

CC chemokine CCL2 exerts fibrogenic actions through recruitment and activation of monocytes 

and macrophages expressing its receptor, CCR2. Other CC chemokines may also contribute to 

fibrotic remodeling by recruiting subsets of fibrogenic macrophages. CXC chemokines containing 

the ELR motif may exert pro-fibrotic actions, through recruitment of activated neutrophils and 

subsequent formation of neutrophil extracellular traps (NETs), or via activation of fibrogenic 

monocytes. CXCL12 has also been suggested to exert fibrogenic actions through effects on 

fibroblasts and immune cells. In contrast, the CXCR3 ligand CXCL10 was found to reduce cardiac 

fibrosis, inhibiting fibroblast migration. Chemokines are critical links between inflammation and 

fibrosis in myocardial disease and may be promising therapeutic targets for patients with heart 

failure accompanied by prominent inflammation and fibrosis.
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Introduction

Fibrotic remodeling is a common pathologic abnormality found in most myocardial 

diseases. The adult mammalian heart has negligible regenerative capacity; thus, following 

myocardial infarction the myocardium heals through formation of a collagen-based scar, 

resulting in reparative fibrosis. In many other pathophysiologic conditions, including 

pressure overload, metabolic disease and certain genetic cardiomyopathies, increased 

deposition of extracellular matrix proteins may occur in the absence of significant 

cardiomyocyte death, resulting in interstitial or perivascular fibrosis. Excessive deposition of 
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fibrous tissue in the cardiac interstitium may promote both systolic and diastolic 

dysfunction. Moreover, fibrotic changes may play an important role in the pathogenesis of 

arrhythmias and conduction defects. Although, activated fibroblasts and myofibroblasts are 

the main cellular effectors of fibrosis, producing large amounts of extracellular matrix 

proteins, other cell types, including immune cells, vascular cells and cardiomyocytes may 

contribute to the fibrotic response, by secreting fibrogenic growth factors and matricellular 

proteins[1]. In many myocardial conditions, fibroblast activation is triggered by an 

inflammatory response, involving recruitment of fibrogenic leukocytes in the remodeling 

myocardium[2].

Chemokines are a family of chemotactic cytokines with a critical role in leukocyte 

trafficking in homeostasis and disease. Based on their structure, chemokines can be 

classified into four subfamilies (CC, CXC, CX3C and XC), depending on the number of 

aminoacids between their first two highly-conserved cysteine residues. In CC chemokines, 

the first two cysteines are adjacent, whereas CXC and CX3C chemokines have one and three 

non-conserved aminoacids respectively between the two cysteines (hence the CXC and 

CX3C designations). XC chemokines have only one cysteine residue near the N-terminus. 

This structural classification has important functional implications, determining which 

leukocyte populations are recruited by each subfamily. CC chemokines predominantly 

recruit mononuclear cells. In contrast, a subgroup of CXC chemokines that contain the ELR 

sequence (glutamic acid-leucine-arginine) immediately preceding the CXC motif, serve 

primarily as neutrophil chemoattractants. In injured and inflamed tissues, chemokines bind 

to glycosaminoglycans on the endothelial surface, or in the extracellular matrix and signal 

by interacting with G-protein-coupled seven-transmembrane chemokine receptors[3].

The pro-inflammatory actions of chemokines have been implicated in the pathogenesis of 

tissue fibrosis in the heart[4] and in other organs[5]. Although actions on immune cells are 

likely responsible for most of the effects of the chemokines in fibrosis, evidence suggests 

that certain members of the chemokine family may also exert direct actions on fibroblasts 

(Figure 1). This review manuscript summarizes recent progress in understanding the role of 

chemokines in myocardial fibrosis.

Immune cells in cardiac fibrosis

The idea that chronic inflammation may promote fibrotic tissue remodeling is not new [6]. 

Although activated fibroblasts and myofibroblasts are the central effector cells in tissue 

fibrosis [7],[8], serving as the main source of extracellular matrix proteins, their activation 

involves in many cases recruitment of immune cells that synthesize large amounts of 

fibrogenic growth factors, such as Transforming Growth Factor (TGF)-β [9]. Macrophages 

are recruited and activated following injury and secrete fibrogenic cytokines, growth factors 

and matricellular proteins [10]. Lymphocytes also infiltrate injured tissues and may stimulate 

fibrogenic cascades [11]. Mast cells accumulate and degranulate in many fibrotic conditions 

and may contribute to fibroblast activation by releasing their fibrogenic granular contents, 

including growth factors, matrix metalloproteinases and the mast cell-specific proteases 

tryptase and chymase [12],[13]. It has been suggested that certain leukocyte subsets may 

exhibit characteristics of fibroblast progenitors and may be directly involved in the 
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pathogenesis of fibrosis by converting to activated myofibroblasts [14],[15]. Although, in the 

injured heart, the contribution of circulating cells to the fibroblast population is likely to be 

limited [16],[17], there is no doubt that immune cell populations can play a critical role in 

cardiac fibrosis by secreting fibroblast-activating mediators [2]. Recruitment and activation 

of fibrogenic immune cells in injured and remodeling tissues, including the myocardium, is 

dependent on induction of chemokines [4]

Induction of chemokines in fibrotic hearts

Based on their patterns of expression, chemokines can be divided into homeostatic and 

inflammatory groups. Homeostatic chemokines are constitutively expressed and are 

implicated in cell homing in lymphoid organs. Inflammatory chemokines, on the other hand, 

show low levels of expression in normal tissues, and are markedly upregulated following 

injury regulating recruitment of leukocytes. Some members of the chemokine family (such 

as CXCL12/Stromal cell-Derived factor (SDF)-1 have both homeostatic and inflammatory 

roles, showing both constitutive expression, and induction in inflamed tissues. Fibrotic 

conditions are associated with induction of several inflammatory chemokines.

Injury rapidly upregulates chemokine expression in the myocardium, inducing a wide range 

of inflammatory CC and CXC chemokines, in cardiac endothelial cells, macrophages, 

fibroblasts and cardiomyocytes (Table 1) [18]. Increased chemokine levels have been 

consistently documented in experimental models of cardiac fibrosis [1],[19], and in patients 

with fibrotic cardiomyopathic conditions [20]. Several mechanisms have been implicated in 

activation of the chemokine system in injured and remodeling hearts. First, in myocardial 

diseases associated with cardiomyocyte death, necrotic cells release damage-associated 

molecular patterns (DAMPs), stimulating Toll-like receptor (TLR) signaling responses, and 

promoting downstream activation of the Nuclear Factor (NF)-κB system and chemokine 

transcription [21]. Second, activation of the inflammasome results in release of active 

Interleukin (IL)-1β, stimulating chemokine expression [22]. Third, injury-associated release 

and activation of proteases generates extracellular matrix fragments that induce chemokine 

expression in many different cell types. Fourth, mechanical stress may activate 

neurohumoral signals (such as angiotensin II), thus stimulating pro-inflammatory signaling, 

resulting in induction of chemokines [23]. Neurohumoral activation of calcium (Ca2+) /

calmodulin (CaM)-dependent kinase IIδ has been suggested to promote induction of CCL2 

in pressure overload models [24],[25]. Fifth, oxidative stress has been extensively implicated 

in induction of the chemokine response following myocardial injury [26].

The role of the chemokines in cardiac fibrosis

CC chemokines

The CCL2/CCR2 axis—CCL2/monocyte chemoattractant protein (MCP)-1 is the best-

studied member of the CC chemokine family in myocardial disease. CCL2 is markedly 

upregulated in experimental models of ischemic and non-ischemic cardiac fibrosis [27],[28],

[29] and is overexpressed in myocardial samples from patients with heart failure [20]. 

Studies using genetic loss-of-function approaches or pharmacologic inhibition in mouse 

models support the notion that CCL2 and its main receptor CCR2 play a critical role in 
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myocardial fibrosis. In a mouse model of reperfused myocardial infarction, CCL2 disruption 

attenuated myofibroblast infiltration [30]. In a model of hypertensive fibrosis administration 

of an anti-CCL2 antibody reduced fibrotic remodeling [29]. In a model of ischemic non-

infarctive cardiomyopathy induced through brief repetitive ischemia/reperfusion, CCL2 loss 

attenuated interstitial fibrosis and improved dysfunction [27]. Moreover, in models of 

diabetic cardiomyopathy, genetic and pharmacologic inhibition of CCR2 arttenuated fibrosis 

[31].

Which cellular mechanisms mediate the fibrogenic actions of CCL2/CCR2? CCL2-mediated 

cardiac fibrosis is predominantly attributed to recruitment and activation of CCR2+ 

monocytes and macrophages, resulting in release of fibrogenic mediators, such as TGF-β 
and osteopontin, capable of activating cardiac fibroblasts [27],[30],[32],[33]. The 

mammalian heart contains a resident macrophage population, derived predominantly from 

yolk sac and fetal monocyte progenitors [34]. In normal hearts, these macrophages have the 

capability to self-renew; however, following infarction, the cardiac macrophage population 

markedly expands through recruitment of abundant CCR2+ monocytes [35].[36]. Thus, 

myocardial injury enriches the heart with a wide range of macrophage phenotypes with 

distinct functional properties. Some of these cells have been suggested to exert 

cardioprotective actions [35]; others may contribute to phagocytosis of dead cells and repair 

of the infarcted heart[37], whereas some subsets may exert pro-inflammatory[38], 

fibrogenic, or angiogenic actions. Much like remodeling mouse hearts, human failing hearts 

also contain CCR2+ and CCR2-negative macrophage subsets with distinct functional 

properties [39]. Single cell transcriptomic analysis may contribute to identification of 

specific fibroblast-activating macrophages in remodeling hearts.

Whether in addition to its effects on monocytes and macrophages, CCL2 induces cardiac 

fibrosis through actions on other cell types remains poorly documented. Lymphocytes have 

been implicated in the pathogenesis of cardiac fibrosis [40]; however, the potential 

involvement of CCL2 in their recruitment remains unknown. Although some studies have 

suggested that CCL2 may directly stimulate fibroblast activation [41], in mouse cardiac 

fibroblasts, CCL2 stimulation had no significant effects on profibrotic gene expression 

profile and proliferative activity[27].

The potential role of other CC chemokines in cardiac fibrosis—Induction of 

several other members of the CC chemokine subfamily (including CCL3, CCL4, CCL5, 

CCL12 and CCL24) has been reported in experimental models of cardiac fibrosis [42],[43],

[44,45]. These chemokines may recruit distinct subpopulations of leukocytes, thus 

contributing to the pathogenesis of cardiac fibrosis. CCL5 and CCL3 may stimulate fibrosis 

through recruitment of monocytes and lymphocytes expressing the CCR5 receptor. In the 

ischemic myocardium, CCL5 was found to form heteromers with neutrophil-derived a-

defensin, that bind to CCR5 mediating monocyte recruitment [46]. CCL5 neutralization in a 

model of myocardial infarction attenuated collagen deposition; however the effects on 

fibrotic remodeling were indirect, related to attenuated infarct size due to reduced 

inflammatory injury [47]. Other studies have suggested that CC chemokine-induced 

leukocyte infiltration may also play a role in suppression of post-infarction inflammation 

through recruitment of anti-inflammatory monocyte and lymphocyte subsets. In a model of 
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myocardial infarction, CCR5 was implicated in recruitment of regulatory T cells in the 

infarcted myocardium, suppressing inflammation and attenuating adverse matrix remodeling 

[48],[49]. Evidence suggesting direct effects of CCR5 ligands in non-infarctive cardiac 

fibrosis is lacking. In a model of hypertension induced through administration of 

desoxycorticosterone acetate (DOCA) and angiotensin II, global loss of CCR5 did not affect 

myocardial fibrosis [50].

CCL24 has been implicated in activation of fibrogenic pathways in the lung and skin [51]; 

however, its potential role in cardiac fibrosis remains unknown. As a potent eosinophil 

chemoattractant, CCL24 may be involved in the pathogenesis of fibrosis in eosinophilic 

myocarditis [52]. The marked induction of CCL24 in regenerating neonatal hearts [53] adds 

an intriguing layer of complexity to the possible actions of this CC chemokine in myocardial 

disease.

CXC chemokines in cardiac fibrosis

ELR+ CXC chemokines

ELR+ CXC chemokines act predominantly as neutrophil chemoattractants, signaling 

through the CXCR1 and CXCR2 receptors. CXCL8/Interleukin-8 is the prototypical ELR+ 

CXC chemokine in humans and acts as a potent neutrophil chemoattractant, binding CXCR1 

with high affinity. In contrast, rodents lack a CXCL8 homologue, but have several ELR+ 

CXC chemokines with similar functional properties. In addition to their role in neutrophil 

recruitment, ELR+ CXC chemokines have also been suggested to play a role in angiogenesis 

[54] and fibrosis. Several recent investigations have demonstrated that disruption of CXCR2 

signaling may attenuate cardiac fibrosis, presumably through attenuation of leukocyte 

infiltration. CXCL1 and CXCL2 are upregulated in spontaneously hypertensive rat hearts, 

and CXCR2 inhibition attenuates cardiac fibrosis, hypertrophy and dysfunction [55]. 

However, the fibrogenic and pro-hypertrophic actions of CXCR2 may be indirect, involving 

effects on blood pressure regulation. CXCL1, one of the CXCR2 ligands has been reported 

to contribute to the development of angiotensin-induced cardiac fibrosis [23]. The fibrogenic 

effects of CXCR2 ligands have been attributed to recruitment of fibrogenic monocyte 

subpopulations [23],[56]. Neutrophils, may also contribute to the fibrogenic actions of ELR+ 

CXC chemokines through secretion of proteases that generate fibrogenic matrix fragments, 

or through release of fibrogenic growth factors and cytokines. Neutrophils can also release 

their decondensed chromatin and form large extracellular DNA networks, called neutrophil 

extracellular traps (NETs). NETosis has been implicated in fibrogenic activation in the heart 

and other organs [57],[58],[59]. However, considering the short life span of neutrophils in 

the injured myocardium, their relative role as cellular effectors of fibrosis is unclear.

CXCR3 ligands: the role of CXCL10

The CXCR3 ligands (CXCL9, CXCL10 and CXCL11) are the best characterized group of 

ELR-negative CXC chemokines. These chemokines do not stimulate neutrophil chemotaxis, 

but have been implicated in recruitment of lymphocyte subsets. Moreover, CXCL10 has 

been suggested to exert direct actions on fibroblasts and endothelial cells that may have 

important implications in the regulation of cardiac fibrosis. Evidence in both large animal 
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models and rodents suggests that CXCL10/interferon-γ-inducible protein (IP)-10 is 

consistently induced following cardiac injury [60],[61]. Global loss-of-function studies in 

mice suggested that CXCL10 may exert anti-fibrotic actions. CXCL10-mediated inhibition 

of fibrosis may involve recruitment of anti-fibrotic leukocyte subpopulations, or direct de-

activating effects on cardiac fibroblasts [60],[61]. In vitro experiments in cardiac fibroblasts 

showed that CXCL10 inhibits growth-factor-mediated fibroblast migration [61], through 

interactions with proteoglycans that were independent of CXCR3 [62].

CXCL4/platelet factor (PF)-4 has also been implicated in cardiac remodeling [63] through 

effects that may involve, at least in part, interactions with CXCR3 [64]. Exogenous infusion 

of CXCL4 perturbed repair of the infarcted heart, inhibiting macrophage phagocytosis and 

increasing MMP levels [63]. Unfortunately, very limited information is available on the role 

of endogenous CXCL4 in fibrotic remodeling of the heart. Pharmacologic inhibition 

experiments supported the notion that heterophilic interactions between CXCL4 and CCL5 

may contribute to NET formation, accentuating ischemic inflammatory injury [65].

CXCL12/SDF-1

CXCL12/SDF-1 is a multifunctional ELR-negative chemokine with a critical role in 

cardiovascular development [66] and in angiogenesis [67,68]. CXCL12 is induced following 

myocardial injury, and has been suggested to play an important role in regulation of 

cardiomyocyte survival, inflammation and neovessel formation in healing infarcts [69],[70]. 

A growing body of evidence suggests that CXCL12 may be implicated in the pathogenesis 

of fibrosis in several different organs. Several studies have suggested that CXCL12 may 

exert fibrogenic actions through activation of its main receptor, CXCR4. CXCR4 inhibition 

attenuated cardiac fibrosis in a genetic model of murine cardiomyopathy due to cardiac-

specific overexpression of the stress kinase MSt1 [71], and in models of diabetic fibrotic 

cardiomyopathy [72] and cardiorenal syndrome [73]. The cellular basis for the fibrogenic 

actions of CXCL12 remains poorly understood. CXCL12-induced fibrosis has been 

attributed to direct effects on fibroblast migration, to recruitment of fibroblast progenitors 

[74], or to activation of fibrogenic macrophages [75]. In vitro studies suggest direct 

activating effects of CXCL12 on fibroblasts. CXCL12 stimulation promotes proliferation 

and induces collagen synthesis in cardiac fibroblasts [76]. It has been suggested that 

CXCR4-mediated activation of a migratory phenotype in cardiac fibroblasts may not 

necessarily require CXCL12, but may also involve chemokine-independent interactions of 

the receptor with high-mobility group box-1 (HMGB1) [77], a DAMP released in the injured 

myocardium. On the other hand, some CXCL12 actions may be CXCR4-independent, 

involving the CXCR7 receptor. In a model of cardiac fibrosis induced through isoproterenol 

infusion, administration of a CXCR7 inhibitor attenuated cardiac fibrosis [78].

CX3CL1/Fractalkine

The CX3C chemokine CX3CL1/fractalkine is rapidly released following myocardial injury 

[79], and chemoattracts monocytes/macrophages expressing the CX3CR1 receptor. 

Considering the involvement of macrophages in tissue fibrosis, an important role for 

CX3CL1 in fibrotic remodeling has been suggested. However, in vivo studies investigating 
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the role of the CX3CL1/CX3CR1 axis in fibrosis have produced conflicting results. In a 

model of hepatic fibrosis CX3CL1/CX3CR1 signaling was found to inhibit macrophage-

driven fibrogenesis [80]. In contrast, studies in models of renal fibrosis suggested pro-

fibrotic actions of the CX3CL1/CX3CR1 axis [81],. Although CX3CR1+ macrophages are 

abundant in the infarcted and remodeling myocardium [82], the role of CX3CL1/CX3CL1 in 

cardiac fibrosis has not been systematically studied. In a model of viral myocarditis, global 

loss of CX3CR1 accentuated inflammation and increased fibrosis [83]; however, the cellular 

basis for these effects is unclear. In experimental models of heart failure induce through 

myocardial infarction or left ventricular pressure overload, CX3CL1 was found to promote 

dysfunction. These detrimental actions were attributed to effects on cardiomyocyte function 

and fibroblast phenotype [84]. Moreover, in a complex model of unilateral nephrectomy 

followed by angiotensin II infusion, loss of CX3CR1 did not affect myocardial fibrosis [85].

Chemokines as therapeutic targets in cardiac fibrosis

Considering their role in tissue inflammation and fibrosis, several members of the 

chemokine family are attractive therapeutic targets in human fibrotic conditions. Early phase 

clinical trials using therapeutic approaches neutralizing the CCL2/CCR2 axis, or dual 

CCR2/CCR5 inhibition have suggested beneficial effects in patients with fibrosis-associated 

conditions, such as diabetic nephropathy [86],[87], HIV-associated fibrogenic activation [88] 

and non-alcoholic steatohepatitis [89],[90] (Table 2). In contrast, a phase 2 trial using an 

anti-CCL2 neutralizing antibody in patients with idiopathic pulmonary fibrosis did not show 

protective effects. Clinical studies examining the effects of chemokine inhibition in patients 

with cardiac fibrotic conditions have not been performed. A large amount of experimental 

evidence suggests that some members of the chemokine family may be attractive therapeutic 

targets for patients with heart failure associated with prominent inflammatory and fibrotic 

changes. CCL2/CCR2, the best studied chemokine/chemokine receptor pair in myocardial 

disease, has been implicated in the pathogenesis of both ischemic and non-ischemic 

cardiomyopathy, and may be a promising target for therapeutic intervention. However, a lot 

of additional information is needed to support the case for chemokine-based therapeutics in 

heart failure. Although emerging evidence supports the notion that inflammation may play 

an important role in heart failure with preserved ejection fraction (HFpEF) [91],[92] and 

experimental studies suggest that macrophages may contribute to diastolic dysfunction [93], 

whether CCL2 or other CC chemokines are involved in disease progression remains 

unknown. The pathophysiologic heterogeneity of human HFpEF that cannot be recapitulated 

by any animal model is a major challenge for successful clinical translation. Therapeutic 

implementation of chemokine targeting approaches will require identification of heart failure 

patients with prominent chemokine responses that may be causally involved in progression 

of adverse remodeling.

Moreover, chemokine targeting in heart failure patients may carry significant risks, related to 

the need for prolonged inhibition of pathways involved in responses to injury and repair. 

Some members of the chemokine family, including CCL2, have also been implicated in 

arteriogenesis and may play a role in formation of collateral vessels in patients with chronic 

ischemic heart disease [94]. Other chemokines, such as CXCL12 have been suggested to 

exert pro-survival actions on cardiomyocytes [95], while recruiting angiogenic progenitors 
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and promoting angiogenesis [96]. Thus, in some cases the benefits of any anti-fibrotic 

effects of chemokine inhibition may be outweighed by the abrogation of important 

protective and reparative actions.

Design of therapeutic strategies targeting the chemokine system should also carefully 

consider and exploit the temporal and spatial patterns of chemokine induction and activity 

following myocardial injury (Figure 2). Following myocardial infarction, the rapid and 

intense upregulation of pro-inflammatory CC and CXC chemokines in the infarct plays an 

important role in reparative fibrosis by recruiting activated monocytes, activating phagocytic 

macrophages and promoting growth factors expression and release. As professional 

phagocytes clear the infarct from dead cells and matrix debris, the inflammatory response in 

the infarct zone is suppressed; this is a crucial event for cardiac repair. However, in large 

infarcts, extensive loss of contractile cardiomyocytes results in profound hemodynamic 

perturbations, chronic activation of neurohumoral pathways and a low-grade chemokine-

driven inflammatory reaction in the non-infarcted remodeling myocardium [97],[98]. These 

inflammatory changes may play a major role in the pathogenesis of chronic post-infarction 

heart failure.

Conclusions:

Our understanding of the role of the chemokines in fibrotic remodeling of the heart remains 

limited. Future studies need to focus on identification of specific chemokine/chemokine 

receptor pairs that regulate recruitment of fibrogenic leukocytes in the injured myocardium, 

on dissection of leukocyte-derived mediators responsible for chemokine-driven fibrosis, and 

on the potential role of direct actions of chemokine family members on fibroblasts. 

Moreover, we need to expand our knowledge on the patterns of expression and potential role 

of chemokines in human cardiac fibrosis. Targeting fibrogenic immune cells may hold 

promise as a therapeutic strategy in subpopulations of heart failure patients exhibiting 

prominent fibrotic responses.
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Figure 1: Chemokine actions in cardiac fibrosis.
Both CC (CCL) and CXC (CXCL) chemokines have been implicated in the pathogenesis of 

cardiac fibrosis. CC chemokines, such as CCL2, may promote fibrosis through recruitment 

of fibrogenic monocytes and activation of macrophages that produce growth factors and 

cytokines. CXC chemokines containing the ELR motif may promote fibrosis by recruiting 

neutrophils. Activated neutrophils may stimulate fibroblasts by generating neutrophil 

extracellular traps (NETs) or by secreting proteases and growth factors. Effects of ELR+ 

CXC chemokines on recruitment of fibrogenic mononuclear cells have also been suggested. 

Both CC and CXC chemokines may be involved in chemoattraction of lymphocytes with 

pro-fibrotic properties. Although the effects of chemokines in regulation of fibrosis are 

generally attributed to leukocyte recruitment, direct actions of some members of the family 

on fibroblasts cannot be excluded. The CXCR3 ligand CXCL10 exerts anti-fibrotic actions, 

inhibiting fibroblast migration through CXCR3-independent effects that may involve 

proteoglycans (Neut, neutrophil; Mo, monocyte; Ma, macrophage; L, lymphocyte; EC, 

endothelial cells).
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Figure 2: The spatiotemporal dynamics of chemokine actions in cardiac repair and post-
infarction heart failure.
A. Following myocardial infarction, release of damage-associated molecular patterns 

(DAMPs) by dying cardiomyocytes and degraded extracellular matrix rapidly stimulates 

marked upregulation of pro-inflammatory CC and CXC chemokines in the infarct zone. As 

macrophages (Ma) clear the infarct from dead cells and matrix debris, the chemokine 

response is suppressed. However, in large infarcts, the profound hemodynamic perturbations 

caused by massive loss of contractile cardiomyocytes causes a low-grade chronic 

upregulation of pro-inflammatory chemokines in the non-infarcted myocardium. B. In the 

infarct, early induction of chemokines recruits pro-inflammatory leukocytes, resulting in 

expansion of phagocytic macrophages and fibroblast activation. The early chemokine 

response is important for reparative fibrosis. C. In the chronic remodeling phase, high 

intraventricular pressures increase wall stress and trigger neurohumoral activation, 

promoting low-level chemokine induction, followed by recruitment and activation of 
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fibrogenic monocytes and macrophages that may cause interstitial fibrosis, contributing to 

the pathogenesis of adverse remodeling and post-infarction heart failure. EC, endothelial 

cell; Ly, lymphocyte.
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Table 1:

Chemokines in cardiac fibrosis

Chemokine Chemokine 
receptors

Cellular source in models of 
cardiac fibrosis

Cellular targets and effects References

CCL2 CCR2, CCR4 Macrophages, endothelial cells 
and fibroblasts have been 
reported as major sources of 
CCL2 in remodeling hearts. 
CCL2 upregulation in stressed 
and injured cardiomyocytes has 
also been demonstrated.

The fibrogenic actions of CCL2 likely involve 
recruitment of proinflammatory and fibrogenic 
CCR2+ monocytes and macrophages. May directly 
activate fibroblasts; however, the in vivo significance 
of such effects is unclear. Has been suggested to 
recruit fibroblast progenitors. May also promote 
arteriogenesis.

[27],[30],[32],
[33],[24],[25]

CCL3 CCR1, 
CCR4, CCR5

In a model of myocarditis, 
macrophages and dendritic cells 
were the main source of CCL3.

May stimulate recruitment of pro-inflammatory 
leukocytes that may promote fibrosis. In 
myocarditis, CCL3 was found to play a critical role 
in virus-induced inflammation.

[99],[100],
[101]

CCL4 CCR5, CCR8 CCL4 is upregulated in infarcted 
and remodeling hearts; however 
its cellular localization has not 
been systematically studied. 
Macrophages, endothelial cells 
and fibroblasts are likely cellular 
sources.

Although CCL4 is upregulated in injured and fibrotic 
hearts, its role in myocardial biology remains 
unknown.

[48]

CCL5 CCR5, 
CCR3, CCR1

Although many cell types 
(including macrophages, 
platelets, endothelial cells and 
fibroblasts) are known to 
produce CCL5, its cellular 
localization in fibrotic hearts has 
not been studied.

In a model of infarction, CCL5 was found to 
promote fibrosis, likely by accentuating 
inflammatory injury. May form heteromers with α-
defensin, stimulating leukocyte recruitment. CCR5-
mediated recruitment of anti-inflammatory leukocyte 
subsets has been suggested to restrain inflammation 
following infarction.

[47],[46],[48]

CCL24 CCR3 In myocarditis, macrophages 
were the main cellular source of 
CCL24. CCL24 levels were 
markedly increased in 
regenerating neonatal mouse 
hearts. However, its cellular 
localization has not been 
studied.

Although CCL24 has been implicated in fibrosis in 
other organs, whether it is involved in myocardial 
fibrosis is unknown. In eosinophilic myocarditis. 
CCL24 may promote fibrosis by recruiting 
eosinophils.

[53],[52]

CXCL8 CXCR1, 
CXCR2

Leukocytes, endothelial cells 
were found to be major sources 
of CXCL8 in infarcted and 
remodeling hearts. Fibroblasts 
and lymphocytes are also 
capable of secreting CXCL8.

May promote fibrosis by recruiting and activating 
neutrophils. Fibrogenic actions of CXCL8-activated 
neutrophils may involve formation of neutrophil 
extracellular traps (NETs). CXCL8 may also exert 
angiogenic actions.

[102],[103]

CXCL1 and 
other 
CXCR2 
ligands

CXCR2 Macrophages, vascular cells, 
fibroblasts and mast cells can 
produce CXCR2 ligands.

CXCR2 ligands may promote fibrosis through 
recruitment of fibrogenic leukocyte subsets. 
CXCR2-mediated inflammation may indirectly 
promote fibrosis by increasing systemic blood 
pressure.

[23],[56],[55]

CXCL4 CXCR3 Platelets, macrophages Although the involvement of CXCL4 in cardiac 
fibrosis has not been systematically studes, 
exogenous CXCL4 was found to increase MMP 
activity and to inhibit macrophage phagocytosis. 
CXCL4 may also be involved in lymphocyte 
recruitment.

[63], [65]

CXCL10 CXCR3, PG Endothelial cells, leukocytes CXCL10 exerts anti-fibrotic actions, inhibiting 
fibroblast migration and has also been suggested to 
have angiostatic properties. May also be involved in 
recruitment of lymphocytes.

[60],[61],[62]

CXCL12 CXCR4, 
CXCR7

Vascular cells, leukocytes, 
fibroblasts and cardiomyocytes

CXCL12 exerts a wide range of actions on all cell 
types involved in cardiac remodeling. Effects on 
inflammatory leukocyte recruitment, angiogenesis 
(through recruitment of progenitors), and 
cardiomyocyte survival have been reported. 
Fibrogenic actions may involve direct effects on 

[71],[72],[73],
[74],[75],[76],
[77],[78],[104]
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Chemokine Chemokine 
receptors

Cellular source in models of 
cardiac fibrosis

Cellular targets and effects References

fibroblast migration, or activation of fibrogenic 
macrophages.

CX3CL1 CX3CR1 Endothelial cells, macrophages In a model of viral myocarditis, CX3CR1 was found 
to inhibit fibrosis; however, the cellular basis for 
these effects is unclear. In other tissues both 
fibrogenic and anti-fibrotic actions of CX3CL1 have 
been reported. Although macrophages are the most 
likely cellular targets of CX3CL1 in fibrotic and 
remodeling hearts, some experimental studies have 
suggested actions on many different cell types, 
including cardiomyocytes, fibroblasts and 
endothelial cells.

[83], [84]
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Table 2:

Targeting the chemokines in human fibrosis-associated conditions

Condition Anti-chemokine approach Findings Reference

Lupus nephritis Inhibition of CCL2 (and other CC 
chemokines) through 
administration of bindarit

In a randomized double-blind clinical trial, treatment of acute 
lupus nephritis patients with bindarit reduced proteinuria. 
Fibrosis-related endpoints were not assessed.

[105]

Diabetic nephropathy 
(albuminuria)

Treatment with a CCR2 inhibitor 
(CCX140-B)

In a randomized double-blind placebo-controlled trial, CCR2 
inhibition reduced proteinuria in patients with type 2 diabetes. 
Fibrosis-related endpoints were not assessed.

[86]

Diabetic nephropathy 
(albuminuria)

Treatment with emapticap pegol 
(NOX-E36), an L-aptamer that 
binds and inhibits CCL2.

In a phase IIa study, CCL2 inhibition was safe and well-
tolerated and reduced the albumin to creatinine ratio. Fibrosis-
related endpoints were not assessed.

[87]

Idiopathic pulmonary 
fibrosis (IPF)

Monoclonal anti-CCL2 
neutralizing antibody (carlumab)

In a phase 2 trial, CCL2 inhibition did not affect forced vital 
capacity and the change in diffusing capacity in IPF patients.

[106]

HIV-infected patients Oral CCR2/CCR5 antagonist 
(cenicriviroc)

In HIV-infected patients on stable antiretroviral therapy, 
cenicriviroc reduced plasma biomarkers of fibrosis

[88]

Hepatic fibrosis 
associated with HIV 
infection

Oral CCR2/CCR5 antagonist 
(cenicriviroc)

Cenicriviroc decreased the enhanced liver fibrosis index in 
HIV-infected patients.

[107]

Non-alcoholic 
steatohepatitis 
accompanied by liver 
fibrosis

Oral CCR2/CCR5 antagonist 
(cenicriviroc)

In a phase 2b randomized-controlled trial (CENTAUR) 
cenicriviroc was well tolerated and reduced fibrosis 
progression.

[89],[90]
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