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Abstract

Machine learning models for medical image analysis often suffer from poor performance on 

important subsets of a population that are not identified during training or testing. For example, 

overall performance of a cancer detection model may be high, but the model may still consistently 

miss a rare but aggressive cancer subtype. We refer to this problem as hidden stratification, and 

observe that it results from incompletely describing the meaningful variation in a dataset. While 

hidden stratification can substantially reduce the clinical efficacy of machine learning models, its 

effects remain difficult to measure. In this work, we assess the utility of several possible 

techniques for measuring hidden stratification effects, and characterize these effects both via 

synthetic experiments on the CIFAR-100 benchmark dataset and on multiple real-world medical 

imaging datasets. Using these measurement techniques, we find evidence that hidden stratification 

can occur in unidentified imaging subsets with low prevalence, low label quality, subtle 

distinguishing features, or spurious correlates, and that it can result in relative performance 

differences of over 20% on clinically important subsets. Finally, we discuss the clinical 

implications of our findings, and suggest that evaluation of hidden stratification should be a 

critical component of any machine learning deployment in medical imaging.
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1 INTRODUCTION

Deep learning systems have shown remarkable promise in medical image analysis, often 

claiming performance rivaling that of human experts [13]. However, performance results 

reported in the literature may overstate the clinical utility and safety of these models. 

Specifically, it is well known that machine learning models often make mistakes that humans 

never would, despite having aggregate error rates comparable to or better than those of 

human experts. An example of this “inhuman” lack of common sense might include a high 

performance system that calls any canine in the snow a wolf, and one on grass a dog, 

regardless of appearance [31]. This property of machine learning models is likely to be of 

critical importance in medical practice, where specific types of errors can have serious 

clinical impacts.

Of particular concern is the fact that most medical machine learning models are built and 

tested using an incomplete set of possible labels—or schema—and that the training labels 

therefore only coarsely describe the meaningful variation within the population. Medical 

images contain dense visual information, and imaging diagnoses are usually identified by 

recognizing the combination of several different visual features or patterns. This means that 

any given pathology or variant defined as a “class” for machine learning purposes is often 

comprised of several visually and clinically distinct subsets; a “lung cancer” label, for 

example, would contain both solid and subsolid tumors, as well as central and peripheral 

neoplasms. We call this phenomenon hidden stratification, meaning that the data contains 

unrecognized subsets of cases which may affect model training, measured model 

performance, and most importantly the clinical outcomes related to the use of a medical 

image analysis system.

Worryingly, when these subsets are not labelled, even performance measurements on a held-

out test set may be falsely reassuring. This is because the aggregate performance measures 

such as sensitivity (i.e. recall) or ROC-AUC can be dominated by larger subsets, obscuring 

the fact that there may be an unidentified subset of cases within which performance is poor. 

Given the rough medical truism that serious diseases are less common than mild diseases, it 

is even likely that underperformance in minority subsets could lead to disproportionate harm 

to patients.

In this article, we demonstrate that hidden stratification is a fundamental technical problem 

that has important implications for medical imaging analysis on multiple real-world datasets, 

and explore several possible techniques for measuring its effects. We first define three 

distinct approaches to measuring hidden stratification effects—schema completion, error 

auditing, and algorithmic measurement—and detail their relative strengths and weaknesses. 

We next apply schema completion to illustrate that hidden stratification is present in 

standard computer vision models trained on the CIFAR-100 benchmark dataset, and 

leverage this well-characterized dataset to empirically explore several possible causes of 

hidden stratification. We extend our analysis to medical imaging datasets by using a 

combination of schema completion, error auditing, and algorithmic measurement to show 

not only that hidden stratification can result in performance differences of up to 20% on 

clinically important subsets, but also that simple unsupervised learning approaches can help 
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to identify these effects. Using these measurement techniques, we find evidence across 

multiple datasets that hidden stratification occurs on subsets characterized by a combination 

of low prevalence, poor label quality, subtle discriminative features, and spurious correlates.

Our results also suggest that more research is necessary on methods for mitigating hidden 

stratification. Though we show that approaches that require manual application of human 

expertise—such as schema completion and error auditing—have potential in practice, 

widespread use of such techniques is likely to be limited by cost. Algorithmic measurement 

approaches, on the other hand, require more limited human intervention, but are of variable 

performance and cannot yet guarantee the detection of important subsets. We examine the 

clinical implications of these findings, and argue that despite the associated challenges, 

measurement and reporting of hidden stratification effects should become a critical 

component of machine learning deployments in medicine.

Our paper is organized as follows: Section 2 contextualizes the hidden stratification problem 

with respect to related work, Section 3 defines three possible methods by which hidden 

stratification can be measured, Section 4 presents the results of experiments that apply these 

measurement techniques to multiple relevant datasets, and Section 5 discusses both the 

clinical implications of our findings and the limitations of our study.

2 RELATED WORK

Problems similar to hidden stratification have been observed or postulated in many domains, 

including traditional computer vision [30], fine-grained image recognition [39], genomics 

[7], and epidemiology (often termed “spectrum effects”) [23]. The difficulty of the hidden 

stratification problem fundamentally relates to the challenge of obtaining labelled training 

data. Were fine-grained labels available for every important variant that could be 

distinguished via a given data modality, discriminative model performance on important 

subsets could be improved by training and evaluating models using this information. Thus, 

typical approaches to observed stratification and dataset imbalance in medical machine 

learning often center on gathering more data on underperforming subsets, either via 

additional labelling, selective data augmentation, or oversampling [22]. However, the cost of 

manual labelling is often prohibitive, appropriate augmentation transforms can be difficult to 

define, and oversampling an underperforming subset can cause degradation on others [4, 14, 

29, 41]. As a result, medical imagery analysts have commonly begun either to use semi-

automated labelling techniques [10, 14, 18, 35] or to apply human expertise to produce a 

narrow or incomplete set of visual labels [26] rather than exhaustively labelling all possible 

findings and variations. Both of these approaches can yield reduced accuracy on important 

subsets [24]. Techniques that reliably increase performance on critical imaging subsets 

without degrading performance on others have yet to be demonstrated.

Methods that directly address hidden stratification, where the subclasses are obscure, have 

not been commonly explored in medical imaging analysis. However, it is clear from the 

recent literature that this issue has been widely (but not universally) recognized. The most 

common approach for measuring hidden stratification is by evaluating model performance 

on specific subsets. Gulshan et al. [16], for instance, present variations in retinopathy 
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detection performance on subsets with images obtained in different locations, with differing 

levels of disease severity, and with different degrees of pupil dilation. In several cases, their 

models perform differently on these subsets in a manner that could be clinically impactful. 

Chilamkurthy et al. [9] present a subset analysis for different diagnostic categories of 

intracranial hemorrhage (e.g. subdural vs. subarachnoid) when designing a deep learning 

model for abnormality detection on head CT, but do not analyze differences in performance 

related to bleed size, location, or the acuity of the bleed. Their work does, however, evaluate 

the performance of models on cases with multiple findings, and observe substantial variation 

in model performance within different strata; for instance, subarachnoid bleed detection 

performance appears to degrade substantially in the presence of an epidural hemorrhage. 

Wang et al. [34] perform an excellent subset analysis of a colonoscopy polyp detector, with 

comparative performance analysis presented by polyp size, location, shape, and underlying 

pathology (e.g. adenoma versus hyperplastic). Similarly, Dunnmon et al. [11] report the 

performance of their chest radiograph triage system by pathology subtype, finding that 

models trained on binary triage labels achieved substantially lower performance on fracture 

than on other diseases. Non-causal confounding features such as healthcare process 

quantities can also contribute substantially to high model performance on data subsets 

heavily associated with these confounding variables [1, 2, 36, 41].

Instead of analyzing subsets defined a priori, Mahajan et al. [21] describe algorithmic audits, 

where detailed examinations of model errors can lead to model improvements. Several 

recent studies perform error audits, where specific failure modes such as small volume 

cancers, disease mimics, and treatment-related features are observed [6, 34]; such analyses 

may be helpful in identifying error modes via human review, but do not characterize the full 

space of subset performance [33]. There has been particular interest in formalizing 

algorithmic audit methods recently [25], although these initiatives have yet to be tailored to 

the medical setting.

Of course, there also exist multiple studies that do not directly address the effects of hidden 

stratification [3, 17]. Esteva et al. [12] is particularly notable, as this dataset is labelled for 

more than 2,000 diagnostic subclasses but the results presented only consider “top-level” 

diagnostic categories. Analysis of these effects would improve the community’s ability to 

assess the real-world clinical utility of these models.

3 METHODS FOR MEASURING HIDDEN STRATIFICATION

We explicitly define and evaluate three possible approaches to measure the clinical risk of 

hidden stratification: (1) exhaustive prospective human labeling of the data, called schema 
completion, (2) retrospective human analysis of model predictions, called error auditing, and 

(3) automated algorithmic measurement methods to detect hidden strata. Each of these 

methods is applied to the test dataset, allowing for analysis and reporting (e.g., for regulatory 

processes) of subclass (i.e. subset) performance.

Schema Completion:

In schema completion, the schema author prospectively prescribes a more complete set of 

subclasses that need to be labeled, and provides these labels on test data. Schema completion 
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has many advantages, such as the ability to prospectively arrive at consensus on subclass 

definitions (e.g. a professional body could produce standards describing reporting 

expectations) to both enable accurate reporting and guide model development. However, 

schema completion is fundamentally limited by the understanding of the schema author; if 

important subclasses are omitted, schema completion does not protect against important 

clinical failures. Further, it can be time consuming (or practically impossible!) to 

exhaustively label all possible subclasses, which in a clinical setting might include subsets of 

varying diagnostic, demographic, clinical, and descriptive characteristics. Finally, a variety 

of factors including the visual artifacts of new treatments and previously unseen pathologies 

can render existing schema obsolete at any time.

Error Auditing:

In error auditing, the auditor examines model outputs for unexpected regularities, for 

example a difference in the distribution of a recognizable subclass in the correct and 

incorrect model prediction groups. Advantages of error auditing include that it is not limited 

by predefined expectations of schema authors, and that the space of subclasses considered is 

informed by model function. Rather than having to enumerate every possible subset, only 

subsets observed to be concerning are measured. While more labor-efficient than schema 

completion, error auditing is critically dependent on the ability of the auditor to visually 

recognize differences in the distribution of model outputs. It is therefore more likely that the 

non-exhaustive nature of audit could limit certainty that all important strata were analyzed. 

Of particular concern is the ability of error auditing to identify low-prevalence, high 

discordance subsets that may rarely occur but are clinically salient.

Algorithmic Measurement:

In algorithmic measurement approaches, the algorithm developer designs a method to search 

for subclasses automatically. In most cases, such algorithms will be unsupervised methods 

such as clustering. If any identified group (e.g. a cluster) underperforms compared to the 

overall superclass, then this may indicate the presence of a clinically relevant subclass. 

Clearly, the use of algorithmic approaches still requires human review in a manner that is 

similar to error auditing, but is less dependent on the specific human auditor to initially 

identify the stratification. While algorithmic approaches to measurement can reduce burden 

on human analysts and take advantage of learned encodings to identify subsets, their efficacy 

is limited by the separability of important subsets in the feature space analyzed.

4 EXPERIMENTS

In our experiments, we empirically measure the effect of hidden stratification using each of 

these approaches, and evaluate the characteristics of subsets on which these effects are 

important. Drawing from the existing machine learning literature, we hypothesize that there 

are several subset characteristics that contribute to degraded model performance in medical 

imaging applications: (1) low subset prevalence, (2) reduced label accuracy within the 

subset, (3) subtle discriminative features, and (4) spurious correlations [33]. These factors 

can be understood quite simply: if the subset has few examples or the training signal is 

noisy, then the expected performance will be reduced. Similarly, if one subset is 

Oakden-Rayner et al. Page 5

Proc ACM Conf Health Inference Learn (2020). Author manuscript; available in PMC 2020 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



characterized by features that are harder to learn, usual training procedures result in models 

that perform well on the “easy” subset. Finally, if one subset contains a feature that is 

correlated with the true label, but not causal, models often perform poorly on the subset 

without the spurious correlate.

To demonstrate the technical concept of hidden stratification in a well-characterized setting, 

we first use schema completion to demonstrate substantial hidden stratification effects in the 

CIFAR-100 benchmark dataset, and confirm that low subset prevalence and reduced subset 

label accuracy can reduce model performance on subsets of interest. We then use this same 

schema completion technique to evaluate clinically important hidden stratification effects in 

radiograph datasets describing hip fracture (which contains subsets with low prevalence and 

subtle discriminative features) and musculoskeletal extremity abnormalities (which contains 

subsets with poor label quality and subtle discriminative features). Each of these datasets has 

been annotated a priori with labels for important subclasses, and is thus amenable to schema 

completion. We then demonstrate how error auditing can be used to identify hidden 

stratification in a large public chest radiograph dataset that contains a spurious correlate. 

Finally, we show that a simple unsupervised clustering algorithm can provide value by 

separating the well-performing and poorly-performing subsets identified by our previous 

analysis.

Code describing these experiments is available at www.github.com/HazyResearch/hidden-

stratification-mi.

4.1 Schema Completion

We first use schema completion to measure the effects of hidden stratification on 

CIFAR-100 [19], Adelaide Hip Fracture [15], and MURA [26] datasets. When feasible, even 

partial schema completion can be useful for assessing hidden stratification.

CIFAR-100: The benchmark CIFAR-100 dataset from computer vision represents an 

excellent testbed on which to demonstrate the effect of hidden stratification in a well-

characterized environment [19]. The CIFAR-100 dataset consists of 60,000 images binned 

into 20 “superclasses,” which each contain five distinct “subclasses.” Each subclass is 

represented in the dataset with equal frequency. We hypothesize that by training models only 

on superclass labels, and assessing superclass performance within each subclass, we will 

commonly observe subclasses on which performance is substantially inferior to that of the 

overall superclass. We further expect that subclass performance will degrade if that subclass 

is subsampled or if noise is added to superclass labels for that subclass, simulating 

stratification with low subclass prevalence or reduced label accuracy. For the purposes of 

this experiment, we assume that the CIFAR-100 subclasses represent a reasonable attempt at 

schema completion, and measure superclass accuracy within each subclass.

Figure 1(a) presents the performance of a ResNeXt-29, 8x64d Convolutional Neural 

Network (CNN) trained on the 20 CIFAR-100 superclasses using the training schedule 

reported in [37] and the implementation provided by [38]. In each superclass, the five 

constituent subclasses exhibit substantial performance variation, and the worst-performing 

subclass can underperform the aggregate superclass by over 30 accuracy points. This same 
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phenomenon in medical imaging would lead to massively different outcomes for different 

subsets of the population, be these demographically or pathologically determined. To 

confirm that these large differences in subclass performance do not result from random 

variation within each superclass, we randomly permute the subclass labels within each 

superclass and evaluate our model on these random subclasses. If random variation was the 

cause of the stratification observed in Fig. 1(a), we would expect the inter-subclass 

performance variance to remain unchanged in this experiment. Instead, we find that inter-

subclass performance variance is reduced by an average of 66% across all superclasses when 

the subclasses are randomly rather than semantically assigned, indicating that the 

performance stratification observed in Fig. 1(a) cannot be attributed to random variation.

Table 1 (middle) shows classification results on randomly selected subclasses (“dolphin” and 

“mountain”) when 75% of the examples in a subclass are dropped from the training set, 

simulating a subclass with reduced prevalence. While the overall marine mammals 

superclass performance drops by only 4 accuracy points when the dolphin subclass is 

subsampled, performance on the dolphin subclass drops by 14 points from 0.78 to 0.64. 

Similar trends are observed for the mountain subclass, where overall superclass performance 

drops by 5 accuracy points when the mountain subclass is subsampled, but performance on 

the mountain subclass itself drops by 19 points. Clearly, unmeasured subclass 

underrepresentation can lead to substantially worse performance on that subclass, even when 

superclass performance is only modestly affected.

We show a similar trend in Table 1 (right) when random noise is added to the labels of a 

given subclass by replacing the 25% of the true superclass labels with a random incorrect 

label, simulating a subclass with reduced label accuracy. Performance on both dolphin and 

mountain subclasses drops substantially when label accuracy decreases; while overall 

superclass performance in each case drops by less than 5 points, subclass performance 

decreases by up to 17 points. Such stratification of label quality by pathology is highly likely 

to occur in medical datasets, where certain pathologies are easier to identify than others.

Adelaide Hip Fracture—Schema completion also shows hidden stratification on a large, 

high quality pelvic x-ray dataset from the Royal Adelaide Hospital [15]. A DenseNet model 

previously trained on this dataset to identify hip fractures achieved extremely high 

performance (AUC = 0.994) [15]. We hypothesize that reduced subclass performance will 

occur even in models with high overall superclass performance, particularly in subclasses 

characterized by subtle visual features or low subclass prevalence. The distribution of the 

location and description subclasses is shown in Table 2, with subclass labels produced by a 

board-certified radiologist (LOR). We indeed find that sensitivity on both subtle fractures 

and low-prevalence cervical fractures is significantly lower (p<0.01) than that on the overall 

task. ROC curves for each of these subclasses and the overall superclass shown in Fig. 2(a) 

demonstrate that these differences in sensitivity would be expected across a variety of 

potential operating points. These results support the hypothesis that both subtle 

discriminative features and low prevalence can contribute to clinically relevant stratification.

MURA: We next use schema completion to demonstrate the effect of hidden stratification on 

the MURA musculoskeletal x-ray dataset developed by Rajpurkar et al. [26], which provides 
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labels for a single class, identifying cases that are “normal” and “abnormal.” These labels 

were produced by radiologists in the course of their normal work, and include visually 

distinct abnormalities such as fractures, implanted metal, bone tumors, and degenerative 

joint disease. These binary labels have been previously investigated and relabelled with 

subclass identifiers by a board certified radiologist [24], showing substantial differences in 

both the prevalence and sensitivity of the labels within each subclass (see Table 3). While 

this schema remains incomplete, even partial schema completion demonstrates substantial 

hidden stratification in this dataset.

We hypothesize that the low label quality and subtle image features that characterize the 

degenerative joint disease subclass will result in reduced performance, and that the visually 

obvious metalwork subclass will have high performance (despite low prevalence). We train a 

DenseNet-169 on the normal/abnormal labels, with 13,942 cases used for training and 714 

cases held-out for testing [26]. In Fig. 2(b), we present ROC curves and AUC values for 

each subclass and in aggregate. We observe that AUC for the easy-to-detect hardware 

subclass (0.98) is higher than aggregate AUC (0.91), despite the low subclass prevalence. As 

expected, we also find degraded AUC for degenerative disease (0.76), which has low-

sensitivity superclass labels and subtle visual features (Table 3).

4.2 Error Auditing

We next use error auditing to show that the clinical utility of a common model for 

classifying the CXR-14 dataset is substantially reduced by existing hidden stratification 

effects in the pneumothorax class that result from the presence of a spurious correlate.

CXR-14: The CXR-14 dataset is a large-scale dataset for pathology detection in chest 

radiographs [35]. This dataset was released in 2017 and updated later the same year, 

containing 112,120 frontal chest films from 30,805 unique patients. Each image was labeled 

for one of 14 different thoracic pathologies. In our analysis, we leverage a pretrained 

DenseNet-121 model provided by Zech [40] which reproduces the procedure and results of 

Rajpurkar et al. [27] on this dataset.

During error auditing, where examples of false positive and false negative predictions from 

the pretrained model were visually reviewed by a board certified radiologist [24], it was 

observed that pneumothorax cases without chest drains were highly prevalent (i.e., enriched) 

in the false negative class. A chest drain is a noncausal image feature in the setting of 

pneumothorax, as this device is the common form of treatment for the condition. As such, 

not only does this reflect a spurious correlate, but the correlation is in fact highly clinically 

relevant; untreated pneumothoraces are life-threatening while treated pneumothoraces are 

benign. To explore this audit-detected stratification, pneumothorax subclass labels for “chest 

drain” and “no chest drain” were provided by a board-certified radiologist (LOR) for each 

element of the test set. Due to higher prevalence of scans with chest drains in the dataset, 

clear discriminative features of a chest drain, and high label quality for the scans with chest 

drains, we hypothesize that a model trained on the CXR-14 dataset will attain higher 

performance on the pneumothorax subclass with chest drains than that without chest drains.
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We present ROC curves for each pneumothorax subclass in Fig. 2(c). While overall 

pneumothorax ROC-AUC closely matches that reported in Rajpurkar et al. [28] at 0.87, 

pneumothorax ROC-AUC was 0.94 on the subclass with chest drains, but only 0.77 on the 

subclass without chest drains. We find that 80% of pneumothoraces in the test set contained 

a chest drain, and that positive predictive value on this subset was 30% higher (0.90) than on 

those with no chest drain (0.60). These results suggest that clearly identifiable spurious 

correlates can also cause clinically important hidden stratification.

4.3 Algorithmic Approaches: Unsupervised Clustering

While schema completion and error auditing have allowed us to identify hidden stratification 

problems in multiple medical machine learning datasets, each requires substantial effort 

from clinicians. Further, in auditing there is no guarantee that an auditor will recognize 

underlying patterns in the model error profile. In this context, unsupervised learning 

techniques can be valuable tools in automatically identifying hidden stratification. We show 

that even simple k-means clustering can detect several of the hidden subsets identified above 

via time-consuming human review or annotation.

For each superclass, we apply k-means clustering to the presoftmax feature vector of all test 

set examples within that superclass using k ∈ {2, 3, 4, 5}. For each value of k, we select the 

two clusters with greater than 100 constituent points that have the largest difference in error 

rates (to select a “high error cluster” and “low error cluster” for each k). Finally, we return 

the pair of high and low error clusters that have the largest Euclidean distance between their 

centroids. Ideally, examining these high and low error clusters would help human analysts 

identify salient stratifications in the data. Note that our clustering hyperparameters were 

coarsely tuned, and could likely be improved in practice.

To demonstrate the potential utility of this approach, we apply it to several datasets analyzed 

above, and report results in Table 4. We find that while this simple k-means clustering 

approach does not always yield meaningful separation (e.g. on MURA), it does produce 

clusters with a high proportion of drains on CXR-14 and a high proportion of various high-

error classes (bear, forest, lamp) on CIFAR-100. In practice, such an approach could be used 

both to assist human auditors in identifying salient stratifications in the data and to confirm 

that schema completion has been successful.

5 DISCUSSION

We find that hidden stratification can lead to markedly different superclass and subclass 

performance when labels for the subclasses have different levels of accuracy, when the 

subclasses are imbalanced, when discriminative visual features are subtle, or when spurious 

correlates such as chest drains are present. We observe these trends on both a controlled 

CIFAR-100 environment and multiple clinical datasets.

The clinical implications of hidden stratification will vary by task. Our MURA results, for 

instance, are unlikely to be clinically relevant, because degenerative disease is rarely a 

significant or unexpected finding, nor are rapid complications likely. We hypothesize that 

labels derived from clinical practice are likely to demonstrate this phenomenon; that 
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irrelevant or unimportant findings are often elided by radiologists, leading to reduced label 

quality for less significant findings.

The findings in the CXR14 task are far more concerning. The majority of x-rays in the 

pneumothorax class contain chest drains, the presence of which is a healthcare process 

variable that is not causally linked to pneumothorax diagnosis. Importantly, the presence of a 

chest drain means these pneumothorax cases are already treated and are therefore at almost 

no risk of pneumothorax-related harm. In this experiment, we see that the performance in the 

clinically important subclass of cases without chest drains is far worse than the primary task 

results would suggest. We could easily imagine a situation where a model is justified for 

clinical use or regulatory approval with the results from the primary task alone, as the 

images used for testing simply reflect the clinical set of patients with pneumothoraces.

While this example is quite extreme, this does correspond with the medical truism that 

serious disease is typically less common than non-serious disease. These results suggest that 

image analysis systems that appear to perform well on a given task may fail to identify the 

most clinically important cases. This behavior is particularly concerning when comparing 

these systems to human experts, who focus a great deal of effort on specifically learning to 

identify rare, dangerous, and subtle disease variants.

The performance of medical image analysis systems is unlikely to be fully explained by the 

prevalence and accuracy of the labels, or even the dataset size. In the MURA experiment 

(see Figure 2), the detection of metalwork is vastly more accurate than the detection of 

fractures or degenerative change, despite this subclass being both smaller and less accurately 

labelled than fractures. We hypothesize that the nature of the visual features is important as 

well; metalwork is highly visible and discrete, as metal is significantly more dense (with 

higher pixel values) than any other material on x-ray. While our understanding of what types 

of visual features are more learnable than others is limited, it is not unreasonable to assume 

that detecting metal in an x-ray is far easier for a deep learning model than identifying a 

subtle fracture (and particularly on down-sampled images). Similarly, chest drains are highly 

recognizable in pneumothorax imaging, and small untreated pneumothoraces are subtle 

enough to be commonly missed by radiologists. It is possible that this effect exaggerates the 

discrepancy in performance on the pneumothorax detection task, beyond the effect of 

subclass imbalance alone. Finally, it is worth noting that there will likely be stratifications 

within a dataset that are not distinguishable by imaging, meaning that the testing for hidden 

stratification is likely a necessary, but not sufficient condition for models that perform in a 

clinically optimal manner.

We show that a simple unsupervised approach to identify unrecognized subclasses often 

produces clusters containing different proportions of cases from the hidden subclasses our 

analysis had previously identified. While these results support other findings that 

demonstrate the utility of hidden-state clustering in model development [20], the relatively 

simple technique presented here should be considered only a first attempt at unsupervised 

identification of hidden stratification [5, 32]. Indeed, it remains to be seen if these 

automatically produced clusters can be useful in practice, either for finding clinically 

important subclasses or for use in retraining image analysis models for improved subclass 
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performance, particularly given the failure of this method in the detection of clinically 

relevant subclasses in the MURA task. More advanced semi-supervised methods such as 

those of [8] may ultimately be required to tackle this problem, or it may be the case that both 

unsupervised and semi-supervised approaches are unable to contribute substantially, leaving 

us reliant on time-consuming methodical human review. Importantly, our experiments are 

limited in that they do not explore the full range of medical image analysis tasks, so the 

results will have variable applicability to any given scenario. The findings presented here are 

intended specifically to highlight the largely underappreciated problem of hidden 

stratification in clinical imaging datasets, and to suggest that awareness of hidden 

stratification is important and should be considered (even if to be dismissed) when planning, 

building, evaluating, and regulating clinical image analysis systems.

6 CONCLUSION

Hidden stratification in medical image datasets appears to be a significant and 

underappreciated problem. Not only can the unrecognized presence of hidden subclasses 

lead to impaired subclass performance, but this may even result in unexpected negative 

clinical outcomes in situations where image analysis models silently fail to identify serious 

but rare, noisy, or visually subtle subclasses. Acknowledging the presence of visual variation 

within class labels is likely to be important when building and evaluating the next generation 

of medical image analysis systems. Indeed, our results suggest that models should not be 

certified for deployment by regulators unless careful testing for hidden stratification has 

been performed. While this will require substantial effort from the community, bodies such 

as professional organizations, academic institutions, and national standards boards can help 

ensure that we can leverage the enormous potential of machine learning in medical imaging 

without causing patients harm as a result of hidden stratification effects in our models.
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Figure 1: 
Performance of a ResNeXt-29, 8x64d on CIFAR-100 superclasses by (a) true (semantic) 

CIFAR-100 subclass and (b) random CIFAR-100 subclasses. Random subclasses were 

assigned by randomly permuting the subclass label assignments within each superclass. 

Most superclasses contain true subclasses where performance is far lower than that on the 

aggregate superclass. Intra-subclass performance variance on random subclasses is on 

average 66% lower than on the true (semantic) subclasses, indicating that the stratification 

observed in practice is substantially higher than would be expected from randomness alone.
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Figure 2: 
ROC curves for subclasses of the (a) abnormal Adelaide Hip Fracture superclass (b) 

abnormal MURA superclass and (c) pneumothorax CXR14 superclass. All subclass AUCs 

are significantly different than the overall task (DeLong p<0.05) for MURA and CXR14. 

For hip fracture, the AUCs themselves are not statistically different via a two-sided test 

(DeLong p>0.05), but the sensitivities are statistically different (p<0.01) at the relevant 

operating point [15]—see Table 2 for details. For MURA, sensitivities at 0.50 specificity are 

0.93 (All), 1.00 (Hardware), 0.89 (Fracture), 0.80 (Degenerative). For CXR14, sensitivities 

at 0.50 specificity are 0.94 (All), 0.99 (Drain), and 0.85 (No Drain). For hip fracture, 

sensitivities at 0.50 specificity are 1.00 (All), 1.00 (Cervical), and 0.95 (Subtle)

Oakden-Rayner et al. Page 16

Proc ACM Conf Health Inference Learn (2020). Author manuscript; available in PMC 2020 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Oakden-Rayner et al. Page 17

Ta
b

le
 1

:

A
cc

ur
ac

y 
of

 a
 R

es
N

eX
t-

29
, 8

x6
4d

 tr
ai

ne
d 

us
in

g 
th

e 
fu

ll 
C

IF
A

R
-1

00
 d

at
as

et
 (

“B
as

el
in

e”
) 

an
d 

tw
o 

sy
nt

he
tic

 e
xp

er
im

en
ts

 w
ith

 a
lte

re
d 

da
ta

se
ts

. 

(“
Su

bs
am

pl
e”

) 
dr

op
s 

75
%

 o
f 

th
e 

do
lp

hi
n 

an
d 

m
ou

nt
ai

n 
su

bc
la

ss
es

 f
ro

m
 th

e 
tr

ai
ni

ng
 d

at
as

et
, a

nd
 (

“R
an

do
m

 N
oi

se
”)

 a
ss

ig
ns

 2
5%

 o
f 

ex
am

pl
es

 f
ro

m
 th

es
e 

su
bc

la
ss

es
 a

 r
an

do
m

 s
up

er
cl

as
s 

la
be

l. 
R

es
ul

ts
 r

ep
or

te
d 

ar
e 

on
 s

up
er

cl
as

s 
la

be
ls

 f
or

 th
e 

va
lid

at
io

n 
se

t. 
N

um
be

rs
 in

 p
ar

en
th

es
es

 a
re

 r
ed

uc
tio

ns
 in

 

pe
rf

or
m

an
ce

 w
ith

 r
es

pe
ct

 to
 th

e 
ba

se
lin

e 
m

od
el

 f
or

 e
ac

h 
ex

pe
ri

m
en

ta
l c

on
di

tio
n.

Su
bc

la
ss

B
as

el
in

e 
Su

pe
rc

la
ss

B
as

el
in

e 
Su

bc
la

ss
Su

bs
am

pl
e 

Su
pe

rc
la

ss
Su

bs
am

pl
e 

Su
bc

la
ss

R
an

do
m

 N
oi

se
 S

up
er

cl
as

s
R

an
do

m
 N

oi
se

 S
ub

cl
as

s

D
ol

ph
in

0.
69

0.
78

0.
65

 (
−

4)
0.

64
 (

−
14

)
0.

67
 (

−
2)

0.
73

 (
−

5)

M
ou

nt
ai

n
0.

87
0.

90
0.

82
 (

−
5)

0.
71

 (
−

19
)

0.
82

 (
−

5)
0.

73
 (

−
17

)

Proc ACM Conf Health Inference Learn (2020). Author manuscript; available in PMC 2020 November 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Oakden-Rayner et al. Page 18

Table 2:

Superclass and subclass performance for hip fracture detection from frontal pelvic x-rays. Bolded subclasses 

show significantly worse performance (p<0.01) than that on the overall task.

Subclass Prevalence (Count) Sensitivity

Overall 1.00 (643) 0.981

Subcapital 0.26 (169) 0.987

Cervical 0.13 (81) 0.911

Pertrochanteric 0.50 (319) 0.997

Subtrochanteric 0.05 (29) 0.957

Subtle 0.06 (38) 0.900

Mildly Displaced 0.29 (185) 0.983

Moderately Displaced 0.30 (192) 1.000

Severely Displaced 0.36 (228) 0.996

Comminuted 0.26 (169) 1.000
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Table 3:

MURA “abnormal” label prevalence and sensitivity for the subclasses of “fracture,” “metalwork,” and 

“degenerative joint disease (DJD).” The degenerative joint disease subclass labels have the highest prevalence 

but the lowest sensitivity with respect to review by a board-certified radiologist.

Subclass Subclass Prevalence Superclass Label Sensitivity

Fracture 0.30 0.92

Metalwork 0.11 0.85

DJD 0.43 0.60
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