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Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is accountable for the cause of coronavirus disease

(COVID-19) that causes a major threat to humanity. As the spread of the virus is probably getting out of control on every day,

the epidemic is now crossing the most dreadful phase. Idiopathic pulmonary fibrosis (IPF) is a risk factor for COVID-19 as

patients with long-term lung injuries are more likely to suffer in the severity of the infection. Transcriptomic analyses of

SARS-CoV-2 infection and IPF patients in lung epithelium cell datasets were selected to identify the synergistic effect of

SARS-CoV-2 to IPF patients. Common genes were identified to find shared pathways and drug targets for IPF patients with

COVID-19 infections. Using several enterprising Bioinformatics tools, protein–protein interactions (PPIs) network was

designed. Hub genes and essential modules were detected based on the PPIs network. TF-genes and miRNA interaction with

common differentially expressed genes and the activity of TFs are also identified. Functional analysis was performed using

gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathway and found some shared associations that may

cause the increased mortality of IPF patients for the SARS-CoV-2 infections. Drug molecules for the IPF were also suggested

for the SARS-CoV-2 infections.

Key words: SARS-CoV-2; idiopathic pulmonary fibrosis; differentially expressed genes; gene ontology; protein–protein

interactions; hub gene; drug molecule

Introduction

The current world is going through a rough patch for the

outbreak of coronavirus disease (COVID-19). Severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus

responsible for COVID-19. SARS-CoV-2 is a virus belonging to the

Coronaviridae family [1]. Spike glycoproteins of coronavirus raise

the entry of the virus into cells and ACE2 of the virus binds with

human ACE2 [2]. Among the most serious risk factors of COVID-

19, idiopathic pulmonary fibrosis (IPF) is considered to be the

most vital one [3]. As viral infections can immensely enhance IPF

risks so patients recovering from COVID-19 can face numerous

complications because of having IPF [4, 5].

In late 2019, the COVID-19 case was first discovered in a

city named Wuhan which is situated in China and at the end

of 2019 World Health Organization (WHO) declared COVID-19

as a serious epidemic of 21st century [6]. The clustering result

of the affected people in the early days of the pandemic was

linked to the Wuhan seafood market and with the contact of

wild animals [7]. In 2020, COVID-19 spread all over the world.

As of 3 March 2020, the virus has already spread in most of

the provinces in China including 80 151 numbers of confirmed

cases and 10 566 numbers of confirmed cases in another 72

countries of the world [8]. Until 6 June 2020, the numbers of

confirmed cases all over the world were 6 663 304 including

392 802 death (https://covid19.who.int/).AccordingtoWorldome-

ter, United States, Brazil, Russia, Spain, UK are among the top

five countries where SARS-CoV-2 has spread the most. The first

confirmed case in the United States was in January 2020 and

the female patient visited China a few days before she had

pneumonia and hospitalized and finally got herself SARS-CoV-2

positive [9]. From January 2020 to June 2020 United States had to

witness a lethal face of COVID-19. Until 7 June 2020 according to

WHO (https://covid19.who.int/), 1 886 794 cases were confirmed

as COVID-19 positive including 109 038 deaths. A current study

shows that Brazil has the highest transmission rate among all

the countries of the world which makes Brazil a hotspot for

COVID-19 [10, 11]. The first patient of COVID-19was identified on

25 February 2020 who came back from Italy where the epidemic

was ever so serious than other countries [12].

IPF is a chronic lung disease that causes serious decay of

lung functionality [13]. Breathing complexity and dry cough are

the primary symptoms of IPF [13]. A pathological study on IPF

suggests that continuous lung injurymight be one of the reasons

of IPF [14]. IPF results in lung failure and respiratory complexities

and the survival time range is between 3 and 5 years starting

from diagnosis time [15]. The current study exhibits that SARS-

CoV-2 contains S protein that has higher interaction for ACE2

and IPF patients contain a significant level of ACE2 that proved

IPF as a risk factor for COVID-19 [16, 17]. These researches raise

concerns about a number of interconnection between IPF and

COVID-19.

In the field of biomedical research, high throughput method-

ologies are becoming significant and microarray data analysis

is one of the most prominent techniques of high throughput

methodologies that are used for analyzing gene expression in

large-scale [18]. Microarray study simultaneously assists genetic

researchers to study in terms of genetic expression [19]. Previous

research demonstrates high throughput sequencing analysis for

SARS-CoV which shows the prominent result in the assess-

ment of data quality and gene expression [20]. Microarray data

analysis for SARS-CoV-2 and risk factor IPF is not presented yet.

This study attempts to find biological pathways and the

relationship between COVID-19 and IPF. Two datasets were

selected for analysis of the research. GSE147507 was selected for

SARS-CoV-2 infection in humans and GSE35145 was selected for

IPF gene expression analysis. Both the datasets were collected

from the Gene Expression Omnibus (GEO) database. The initial

work was to identify differentially expressed genes (DEGs)

for GSE147507 and GSE35145 and then find common DEGs

for COVID-19 and IPF. The common DEGs are the prime data for

the entire study. Based on the common genes, further analysis

was accomplished including gene set enrichment analysis

and pathway analysis to have an understanding of biological

processes of genome-based expression studies. Identification

of hub genes from common DEGs is the most essential work as

finding drugmoleculesmostly depends on hub genes.To achieve

this protein–protein interactions (PPIs) network is designed to

gather hub genes from the PPIs network. The workflow of the

present research is displayed in Figure 1.

https://covid19.who.int/
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Figure 1. Methodical workflow for the current investigation. Two type of samples (control cells, SARS-CoV-2 infected cells) were collected from SARS-CoV-2 infected

lung epithelial cells and both are included in the GSE147507 dataset. GSE147507 dataset contains a sample of SARS-CoV-2 infected lung epithelial cells and the GSE35145

dataset contains IPF affected lung samples. Common DEGs were identified from both the datasets using the R programming language. From the common DEGs, GO

identification, KEGG pathway, PPIs network, TF and miRNA analysis, hub gene identification and module analysis was designed and based on those analysis drug

molecule identification was performed.

Methodology

Collection of the dataset

Dataset (GSE147507) illustrates infections of SARS-CoV-2 in

transcriptional responses and dataset (GSE35145) represents

interchange of gene expression in IPF and both datasets were

compiled from GEO database [21]. GEO database was introduced

for gene expression analysis using high throughput methodol-

ogy under the National Center for Biotechnology Information

platform [22]. Illumina NextSeq 500 platform was used for

the GSE147507 dataset for extracted RNA sequence analysis

and the GPL10558 (Illumina HumanHT-12 V4.0 expression bead

chip) platform is used for GSE35145 dataset. GSE147507 dataset

was contributed by Blanco-Melo D et al. [23]. Dataset for IPF

(GSE35145) was presented by Yan Y Sanders et al. [24]. COVID-

19 dataset (GSE147507) provides samples including SARS-CoV-2

infection in lung epithelium and lung alveolar cells of humans.

The IPF dataset (GSE35145) contains eight samples including

genetic expression alteration in IPF cells and normal tissue of

the lung which is more suitable datasets for this study. GSE35145

dataset is a subset of the GSE35147 dataset and it indicates DNA

methylation profile. For our analysis we have selected GSE35145

dataset because of microarray-based analysis for IPF samples.

Identification of DEGs and common gene identification
between COVID-19 and IPF

Identification of DEGs for GSE147507 and GSE35145 datasets is

the primary task of the research. To identify DEGs for GSE147507,

the limma package of R programming language is implemented.

Data that are produced from microarray analysis is retrieved

through DESeq2 [25] and limma package [26]. Cut-off criteria

was obtained for GSE147507 using adjusted P-value<0.05 and

log2-fold change (absolute)>1.0. DEGs for the GSE35145 dataset

were analyzed through GEO2R (https://www.ncbi.nlm.nih.gov/

geo/geo2r/) web tool which also uses limma package for identify-

ing DEGs. Benjamini-Hochberg was applied for both the datasets

for controlling of false discovery rate (FDR) [27]. The common

gene identification between DEGs of GSE147507 and GSE35145

datasets was obtained using the R programming language.

Gene ontology and pathway finding in terms of Gene
set enrichment analysis

Gene set enrichment analysis undertakes gene sets that have

general biological functions and chromosomal locations [28]. For

gene product annotation gene ontology (GO) term is used which

is organized in three categories including biological process,

molecular function and cellular component [29]. The principal

reason for identifying GO terms is because of the understanding

of molecular activity, cellular role and the location in a cell

where the genes execute their functions. Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway is usually used in the

understanding of metabolic pathways and contains significant

use over gene annotation [30]. In the purpose of significant

pathway analysis WikiPathways [31], Reactome [32] and Bio-

Carta databases were also used alongside the KEGG pathway.

GO terms and all the pathways were obtained through web-

based platform Enrichr (https://amp.pharm.mssm.edu/Enrichr/)

for the common genes that were identified in the previous step.

For experimented genome-wide genes Enrichr provides gene set

enrichment analysis in web platforms [33].

Analysis of PPIs network

The activity of PPIs is considered to be the prime target of cellular

biology study and works as a precondition for system biology

[34]. Proteins perform their operation inside a cell with the

interaction of another protein and information that is produced

from a PPIs network raises perception about the function of

https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
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the protein [35]. Common DEGs are inserted in Search Tool for

the Retrieval of Interacting Genes (STRING) (https://string-db.

org/) for generating PPI network. STRING delivers experimental

and predicted interaction-based information and the interaction

produced through the web tool is defined with 3D structures,

accessory information and confidence score [36]. The confidence

score was also used for the current PPIs network with a medium

confidence score of 0.400.The confidence scorewas set using the

STRING platform that is considered to be a medium confidence

score. For a superior visual representation of the network and the

purpose of identifying hub genes, the obtained PPIs are analyzed

through Cytoscape (https://cytoscape.org/). Cytoscape software

acts as the most powerful one when it comes to integration

with larger databases of genetic interactions, protein–protein

and protein-DNA interactions [37].

Identification of hub genes and module analysis

PPIs network contains a number of nodes and edges and rep-

resents their interactions and among the nodes that have the

most interaction is considered to be a hub gene. PPIs network

analysis for the current research is attained through Cytoscape.

Hub genes for the corresponding PPIs network are pointed out

by using cytoHubba (http://apps.cytoscape.org/apps/cytohubba)

which is also a plugin of Cytoscape software. The interface of

cytoHubba is user-friendly which makes it the most prominent

among all the hub detection plugins of Cytoscape and it contains

11 methods for topological analysis [38]. The hub genes for the

current research are revealed by using the degree topological

algorithm. The reason behind choosing degree algorithm rather

than any other algorithm is that degree algorithm indicates the

number of interactions for each gene in the PPIs network and

it also assists the research by suggesting mostly dense modules

in the PPIs network. Hub genes create concentrated areas that

can be detected as an essential module from the PPIs network.

Molecular Complex Detection (MCODE) (http://apps.cytoscape.

org/apps/mcode) plugin of Cytoscape software is used to detect

the most profoundmodules from the PPIs network. Highly inter-

connected portions are identified through MCODE clustering

that assists the research in effective drug designing. For repre-

sentingmolecular complexes in the PPIs networkMCODE is used

by detecting the densely connected areas [39].

TF-gene interactions

TF-gene gene interaction with the identified common DEGs

evaluates the outcome of TF on functional pathways and expres-

sion levels of the genes [40]. NetworkAnalyst (https://www.

networkanalyst.ca/) platform is used to identify TF-gene

interaction with identified common genes. NetworkAna-

lyst is a comprehensive web platform for performing gene

expression for numerous species and also enables them to

perform meta-analysis [41]. The network produced for the

TF-gene interaction network is obtained from the ENCODE

(https://www.encodeproject.org/) database which is included

in the NetworkAnalyst platform.

TF-miRNA coregulatory network

Interactions for TF-miRNA coregulatory were collected from

the RegNetwork repository [42] which assists to detect miRNAs

and regulatory TFs that regulate DEGs of interest at the post-

transcriptional and transcriptional level. TF-miRNA coregulatory

network was visualized using NetworkAnalyst. NetworkAnalyst

Figure 2. Common differentially expressed genes representation through a Venn

diagram. Eleven geneswere found common from the 108 differentially expressed

genes of SARS-CoV-2 infection and 359 differentially expressed genes of IPF

patients. The common differentially expressed genes were 2.4% among total 467

differentially expressed genes.

assists researchers in the easiest way to navigate complex

datasets to identify biological features and functions which

leads to effective biological hypothesis [43].

Identification of candidate drugs

Drug molecule identification is the key component of the

ongoing research. Based on the common DEGs for COVID-19 and

IPF diseases drugmolecule is designed using theDrug Signatures

database (DSigDB),which consists of 22 527 gene sets. The access

of the DSigDB database is acquired through Enrichr (https://amp.

pharm.mssm.edu/Enrichr/) platform. Enrichr is mostly used

as an enrichment analysis platform that represents numerous

visualization details on collective functions for the genes that

are provided as input [44].

Results

Identification of DEGs and common gene identification
between COVID-19 and IPF

GSE147507 dataset is used for the identification purpose of

DEGs for COVID-19. One hundred and eight DEGs were obtained

including 93 upregulated and 15 downregulated genes. For IPF

dataset GSE35145 is used and a total of 359 DEGs were identified

and among them 159 genes were upregulated and 200 genes

were downregulated. Collected 108 genes for COVID-19 and 359

genes for IPF were compared using R programming language

and identified 11 (SAA2, MMP9, SAA1, S100A8, ICAM1, PI3, SOD2,

C8orf4, SERPINA3,S100A12, S100A9) commonDEGs.The compar-

ing of commonDEGs between two datasets is visualized through

a Venn diagram in Figure 2. The results of the Venn diagram

exhibit that the common DEGs are 2.4% among total 467 DEGs.

GO and pathway finding in terms of gene set
enrichment analysis

Enrichr web tool was used for the analysis of gene set enrich-

ment analysis. The current study analyzes GO terms and KEGG

pathway for 11(SAA2, MMP9, SAA1, S100A8, ICAM1, PI3, SOD2,

C8orf4, SERPINA3, S100A12, S100A9) common DEGs. The three

most eminent GO terms include biological process, molecular

https://string-db.org/
https://cytoscape.org/
http://apps.cytoscape.org/apps/cytohubba
http://apps.cytoscape.org/apps/mcode
https://amp.pharm.mssm.edu/Enrichr/
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Table 1. GO terms, GO pathways and their corresponding P-values and genes for common differentially expressed genes

Category GO ID GO pathways P-values Genes

GO biological process GO:0070486 Leukocyte aggregation 0.000005766 S100A9, S100A8

GO:0050832 Defense response to fungus 8.380e-8 S100A12, S100A9, S100A8

GO:0030593 Neutrophil chemotaxis 1.430e-8 SAA1, S100A12, S100A9,

S100A8

GO:0071621 Granulocyte chemotaxis 1.792e-8 SAA1, S100A12, S100A9,

S100A8

GO:1990266 Neutrophil migration 2.069e-8 SAA1, S100A12, S100A9,

S100A8

GO:1900122 Positive regulation of receptor

binding

0.003296 MMP9

GO:0002693 Positive regulation of cellular

extravasation

0.003296 ICAM1

GO:0032364 Oxygen homeostasis 0.003296 SOD2

GO:0003085 Negative regulation of systemic

arterial blood pressure

0.003296 SOD2

GO:0051549 Positive regulation of keratinocyte

migration

0.003296 MMP9

GO Molecular Function GO:0050786 RAGE receptor binding 1.038e-8 S100A12, S100A9, S100A8

GO:0035325 Toll-like receptor binding 0.000009879 S100A9, S100A8

GO:0046914 Transition metal ion binding 0.000001290 S100A12, SOD2, MMP9,

S100A9, S100A8

GO:0008270 Zinc ion binding 0.00001547 S100A12, MMP9, S100A9,

S100A8

GO:0004866 Endopeptidase inhibitor activity 0.001625 SERPINA3, PI3

GO:0030145 Manganese ion binding 0.01909 SOD2

GO:0030414 Peptidase inhibitor activity 0.01963 PI3

GO:0061135 Endopeptidase regulator activity 0.01963 PI3

GO:0005507 Copper ion binding 0.02233 S100A12

GO:0046872 Metal ion binding 0.00006865 S100A12, SOD2, S100A9,

S100A8

GO Cellular Component GO:0060205 Cytoplasmic vesicle lumen 4.624e-9 SERPINA3, SAA1, S100A12,

S100A9, S100A8

GO:0071682 Endocytic vesicle lumen 0.009858 SAA1

GO:0034774 Secretory granule lumen 0.00001872 SERPINA3, S100A12,

S100A9, S100A8

GO:0005881 Cytoplasmic microtubule 0.02071 SAA1

GO:1904724 Tertiary granule lumen 0.02984 MMP9

GO:0031093 Platelet alpha granule lumen 0.03625 SERPINA3

GO:0045111 Intermediate filament

cytoskeleton

0.03837 S100A8

GO:0005856 Cytoskeleton 0.002467 S100A12, S100A9, S100A8

GO:0031091 Platelet alpha granule 0.04841 SERPINA3

GO:0035578 Azurophil granule lumen 0.04841 SERPINA3

functions and cellular component. The ongoing study illustrates

the top 10 GO terms for each of the subsections (biological

process, molecular functions and cellular component), which

is presented in Table 1. The data in Table 1 justify that the

common DEGs are highly enhanced in neutrophil chemotaxis

and granulocyte chemotaxis for the biological process subsec-

tion. Molecular function subsection data indicate a transition

metal ion binding factor splendidly involved in the common

DEGs. Cellular component study exhibits significant involve-

ment of cytoplasmic vesicle lumen factors in common DEGs.

KEGG, WikiPathways, Reactome and BioCarta pathway analysis

is produced in Table 2. The information attained from Table 2

shows the IL-17 signaling pathway and TNF signaling pathway

interaction with the most number of genes according to the

KEGG pathway database. A collection of GO terms and pathways

according to the combined score is depicted in Figure 3(A and B).

A combined score is performed by the Enrichr web tool, which

depends on the log of the P-value and z-score. Figures 3(A and B)

represents GO terms and pathway analysis results from various

pathway databases, respectively.

PPIs network to identify hub genes and module
analysis

The common DEGs were provided as an input in STRING and the

file produced from the analysis is reintroduced into Cytoscape

software for visual representation. The PPIs network is created

for further analysis of this study including hub gene detection

for identifying drug molecules for COVID-19 and IPF. Eventually

the results of the PPIs network connect for suggesting drug

compounds that establish the PPIs analysis as a center point of

this research. The PPIs network contains 60 nodes and 403 edges,

which is picturized in Figure 4.
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Table 2. Top pathways from KEGG, WikiPathways, Reactome and BioCarta databases and their corresponding P-values and genes for common
differentially expressed genes

Databases Pathways P-value Genes

KEGG IL-17 signaling pathway 0.00001563 MMP9, S100A9, S100A8

TNF signaling pathway 0.001596 MMP9, ICAM1

Leukocyte transendothelial migration 0.001654 MMP9, ICAM1

African trypanosomiasis 0.02017 ICAM1

Bladder cancer 0.02233 MMP9

Fluid shear stress and atherosclerosis 0.002531 MMP9, ICAM1

Malaria 0.02663 ICAM1

Viral myocarditis 0.03198 ICAM1

Staphylococcus aureus infection 0.03678 ICAM1

Peroxisome 0.04473 SOD2

WikiPathways Vitamin B12 Metabolism WP1533 3.630e-11 SERPINA3, SAA1, SAA2, SOD2, ICAM1

IL1 and megakaryocytes in obesity WP2865 2.489e-7 MMP9, S100A9, ICAM1

Folate Metabolism WP176 1.525e-10 SERPINA3, SAA1, SAA2, SOD2, ICAM1

Selenium Micronutrient Network WP15 5.914e-10 SERPINA3, SAA1, SAA2, SOD2, ICAM1

Mammary gland development pathway - Involution (Stage

4 of 4) WP2815

0.005488 MMP9

Photodynamic therapy-induced NF-kB survival signaling

WP3617

0.0001620 MMP9, ICAM1

Osteopontin Signaling WP1434 0.007129 MMP9

Platelet-mediated interactions with vascular and

circulating cells WP4462

0.009313 ICAM1

Cells and Molecules involved in local acute inflammatory

response WP4493

0.009313 ICAM1

Extracellular vesicles in the crosstalk of cardiac cells

WP4300

0.01040 MMP9

Reactome DEx/H-box helicases activate type I IFN and inflammatory

cytokines production Homo sapiens R-HSA-3134963

0.00002138 SAA1, S100A12

Advanced glycosylation endproduct receptor signaling

Homo sapiens R-HSA-879415

0.00002138 SAA1, S100A12

Scavenging by Class B Receptors Homo sapiens

R-HSA-3000471

0.002747 SAA1

RIP-mediated NFkB activation via ZBP1 Homo sapiens

R-HSA-1810476

0.00005742 SAA1, S100A12

TRAF6 mediated NF-kB activation Homo sapiens

R-HSA-933542

0.00007540 SAA1, S100A12

ZBP1(DAI) mediated induction of type I IFNs Homo sapiens

R-HSA-1606322

0.00008873 SAA1, S100A12

TAK1 activates NFkB by phosphorylation and activation of

IKKs complex Homo sapiens R-HSA-445989

0.00008873 SAA1, S100A12

Formyl peptide receptors bind formyl peptides and many

other ligands Homo sapiens R-HSA-444473

0.004392 SAA1

Cytosolic sensors of pathogen-associated DNA Homo

sapiens R-HSA-1834949

0.0005787 SAA1, S100A12

TRAF6 Mediated Induction of proinflammatory cytokines

Homo sapiens R-HSA-168180

0.0006883 SAA1, S100A12

BioCarta Inhibition of Matrix Metalloproteinases Homo sapiens h

reckPathway

0.004392 MMP9

Cardiac Protection Against ROS Homo sapiens h

flumazenilPathway

0.006035 SOD2

Erythropoietin mediated neuroprotection through NF-kB

Homo sapiens h eponfkbPathway

0.007129 SOD2

The IGF-1 Receptor and Longevity Homo sapiens h

longevity pathway

0.008767 SOD2

Identification of hub genes and module analysis
for suggesting therapeutic solutions

To trace the hub genes from the PPIs network which is

highlighted in Figure 3, cytohubba is used which is a plugin of

Cytoscape software. The hub genes were sorted by their degree

value, which indicates the number of interactions of the genes

in the PPIs network. Top five identified hub genes are VEGFA,

AKT1, MMP9, ICAM1 and CD44. Hub protein interactions with

other protein in the PPIs network are demonstrated in Figure 5.

The network consists of 53 nodes and 378 edges. Highly dense

modules are designed from the PPIs network using MCODE

which is also a plugin of Cytoscape software. MMP9 and ICAM1
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Figure 3. (A) Biological process, molecular function and cellular component related GO terms identification result according to combined score. The higher the

enrichment score, the higher number of genes are involved in a certain ontology. (B) Pathway analysis result identification through KEGG, WikiPathways, Reactome

and BioCarta. The results of the pathway terms were identified through the combined score.

are the two genes which are highlighted in the module network

as these two genes are also the common DEGs between the

two datasets. Module analysis is shown in Figure 6. The module

analysis network contains 16 nodes and 106 edges. Topological

analysis for the hub genes (VEGFA, AKT1, MMP9, ICAM1 and

CD44) is identified using cytohubba. The topological analysis

result is presented in Table 3.

TF-gene interactions

TF-gene interactions were collected using NetworkAnalyst. For

the common DEGs (SAA2, MMP9, SAA1, S100A8, ICAM1, PI3,

SOD2, C8orf4, SERPINA3, S100A12, S100A9) the TF-genes were

identified. TF regulators’ interaction with the common DEGs is

visualized in Figure 7. The network contains 142 nodes and 180
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Figure 4. Protein–protein interactions (PPIs) network for identified common differentially expressed genes that are shared by two diseases (COVID-19 and IPF). Nodes

in orange color indicate common differentially expressed genes and edges specify the interconnection in the middle of two genes. The analyzed network holds 60

nodes and 403 edges.

Table 3. Topological result exploration for top five hub genes where the network density is 0.274, network diameter 3 and network radius 2

Hub gene Degree Stress Closeness

centrality

Betweenness

centrality

Distance Eccentricity Edge

betweenness

Transitivity

VEGFA 38 2248 48.1667 362.6209 1.269230 2 0.121695 0.34424

AKT1 38 2502 48.1667 396.249 1.269230 2 0.133888 0.35277

MMP9 34 2126 46.5 343.5242 1.346153 2 0.095339 0.38324

ICAM1 29 1594 44 242.5716 1.442307 2 0.064545 0.42365

CD44 27 1060 42.3333 189.3317 1.480769 2 0.064571 0.4359

edges. The network contains a total of 132 TF-genes. MMP9 is

regulated by 22 TF-genes and ICAM1 is regulated by 69 TF-genes.

These 132 TF-genes regulate more than one common DEGs of

the network, which indicates high interaction of the TF-genes

with common DEGs. Figure 7 represents the TF-gene interaction

network.

TF-miRNA coregulatory network

TF-miRNA coregulatory network is generated using NetworkAn-

alyst. The analysis of the TF-miRNA coregulatory network deliv-

ers miRNAs and TFs interaction with the common DEGs. This

interaction can be the reason for regulating the expression of the

DEGs. The network created for TF-miRNA coregulatory network

comprises 101 nodes and 131 edges. Thirty-nine miRNAs and

53 TF-genes have interacted with the common DEGs. Figure 8

dispenses TF-miRNA coregulatory network.

Identification of candidate drugs

Enrichr platform is used to identify drug molecules for 11 com-

mon DEGs. The data were collected from the DSigDB database.

According to P-value and adjusted P-value, the results from

the candidate drugs were generated. The analysis depicts that

parthenolide CTD 00000087 and MIGLITOL CTD 00002031 are the

two drug molecules that most genes are interacted with. As

these signature drugswere detected for the commonDEGs, these

drugs represent common drugs for COVID-19 and IPF. Table 4

points out the candidate drugs from the DSigDB database for

common DEGs.

Discussion

IPF is regarded as a risk factor for COVID-19. When the lung

tissue of a person gets damaged and that is the time when
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Figure 5. Detection of hub genes from the PPIs network of common differentially expressed genes. The highlighted five genes are VEGFA, AKT1, MMP9, ICAM1 and

CD44. These five genes are considered as hub genes according to their degree value. The network has 53 nodes and 378 edges. According to topological analysis, the

degree value of VEGFA and AKT1 was 38. The degree value of MMP9, ICAM1 and CD44 were 34, 29 and 27, respectively.

Table 4. Suggested top drug compounds for the IPF-2 infections

Name of drugs P-value Adjusted P-value Genes

MIGLITOL CTD 00002031 0.00001810 0.004285 S100A12, S100A9

CHEMBL55802 CTD 00003118 0.00002876 0.005514 MMP9, ICAM1

Hesperidin CTD 00006087 0.00004187 0.007024 MMP9, ICAM1

Cytochalasin D CTD 00007076 0.00005197 0.007472 MMP9, ICAM1

Prolinedithiocarbamate CTD 00002658 0.00007540 0.008928 MMP9, ICAM1

Parthenolide CTD 00000087 0.000002540 0.001705 SAA1, MMP9, ICAM1

FEXOFENADINE HYDROCHLORIDE CTD 00003191 0.00008193 0.009163 MMP9, ICAM1

Hydroxytyrosol CTD 00000267 0.00008193 0.008915 MMP9, ICAM1

Antimycin A CTD 00005427 0.00008873 0.009401 SOD2, ICAM1

Anacardic acid C15:3 CTD 00003117 0.00008873 0.009160 MMP9, ICAM1
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Figure 6. Module analysis network obtained from Figure 4 PPIs network. ICAM1

and MMP9 are highlighted in red color as these two hub nodes are common

between GSE147507 and GSE35145. The network represents highly intercon-

nected regions of the PPIs network. The network holds 16 nodes and 106 edges.

the functionality of the lung cannot adjust properly to its

task. People with lung disease are at higher risk of COVID-19.

The study assists to narrate Bioinformatics lessons for mean-

ingful analysis of SARS-CoV-2 affected lung epithelium and

lung alveolar samples and IPF affected lung tissue of humans.

Methodologies related to Bioinformatics are used for the study to

identify 108 and 359 DEGs from GSE147507 and GSE35145,

respectively. For establishing relationships and for detecting

candidate drugs according to COVID-19 and IPF, common DEGs

between GSE147507 and GSE35145 datasets were identified.

After identification 11 (SAA2, MMP9, SAA1, S100A8, ICAM1, PI3,

SOD2, C8orf4, SERPINA3, S100A12 and S100A9) common DEGs

were found. The rest of the research study is continued with

the analysis of GO, KEGG pathway analysis, PPIs, TF-gene inter-

actions, TF-miRNA coregulatory network and candidate drug

detection.

Identified 11 common DEGs were used for detecting GO

terms. GO terms were selected according to the P-values. For

biological process leukocyte aggregation, defense response to

fungus, neutrophil chemotaxis, granulocyte chemotaxis and

neutrophil migration are among the top GO term. In vitro,

leukocyte aggregation may cause pseudoleukopenia which is

a rare phenomenon [45]. In the cell environment, chemotaxis

is basically a reaction that determines neutrophil locomotion

direction [46]. GO terms in term of molecular function transition

metal ion binding, zinc ion binding, RAGE receptor binding and

metal ion binding are considered to be among the top of the list.

Zn, which is a transition metal ion binding factor can enhance

immunity against viral infections and can stop the replication of

SARS-CoV-2 in the human cells [47]. Top GO terms according to

the cellular component are cytoplasmic vesicle lumen, secretory

granule lumen and cytoskeleton.

The determination of the KEGG pathway is identified for 11

common DEGs. The analysis was achieved form the common

DEGs because to find a similar pathway for both COVID-19 and

IPF. Top 10 KEGG pathway includes IL-17 signaling pathway,

TNF signaling pathway, Leukocyte transendothelial migration,

African trypanosomiasis, bladder cancer, fluid shear stress and

atherosclerosis, malaria, viral myocarditis, Staphylococcus aureus

infection and peroxisome. IL-17 signaling pathway contributes

cytokine storm basically in SARS-CoV-2 and also in pulmonary

based viral infections [48]. Meanwhile results from WikiPath-

ways show the most interacted gene pathways are Vitamin B12

Metabolism WP1533, Folate Metabolism WP176 and Selenium

Micronutrient Network WP15. Results from the Reactome path-

way produce DEx/H-box helicases activate type I IFN and inflam-

matory cytokines production Homo sapiens R-HSA-3134963

pathway.

PPIs network analysis is the most prominent section of the

study as hub gene detection, analysis of modules and drug iden-

tification thoroughly depends on the PPIs network. Analysis for

PPIs was also generated for SAA2, MMP9, SAA1, S100A8, ICAM1,

PI3, SOD2,C8orf4, SERPINA3, S100A12 and S100A9 genes, as these

genes are common DEGs. According to the PPIs network VEGFA,

AKT1,MMP9, ICAM1 and CD44 genes were declared as hub genes

because of their high interaction rate or degree value. ICAM1

serumof themedian levelwas higher in IPF patient’s serumsam-

ples compared to healthy samples [49]. To focus on the essential

regions of the PPIs network, module analyses of the hub genes

were achieved. The reason of focusing on highly concentrated

area is a more effective drug compound suggestion.

TF-gene interaction was obtained with the common DEGs.

TF-genes work as regulators according to genetic expressions

which may result in creating cancer cells. From the network,

ICAM1 shows a high interaction rate with other TF-genes.

The degree value of ICAM1 in the TF-gene interactions

network is 69. Among the regulators, STAT3 and KLF16 have

significant interaction. The degree value of STAT3 and KLF16

are 5 and 4, respectively in the TF-gene interactions network.

The upregulated STAT3 gene is found in lung carcinomas of

human and can be a contributing factor for regulation in lung

diseases [50].

Regulatory biomolecules act as potential biomarkers in

numerous complex diseases. Keeping this part in memory, the

activities of miRNAs and TF-genes that are analyzed for the

regulation of common DEGs are visualized in the TF-miRNA

coregulatory network. Thirty-nine miRNAs and 53 TF-genes are

found in the study. Among the most interacted TFs, AR has the

higher degree value of 4. Drugs based on androgen modulation

can be contributed as treatment factor for SARS-CoV-2 [51]. Proof

of changing the miRNA expression in IPF samples is established

in various research and family members of miR-200 plays a

vital role in the regulation of IPF samples [52]. TF-genes are

reactors for the regulation of gene expression and the regulation

is completed through binding with targeted genes and miRNAs

on the other hand, able to regulate gene expression through

mRNA degradation [53].

According to DSigDB database drug molecules were sug-

gested from 11 common DEGs. Among all the candidate drugs,

the current study highlights the top 10 significant drugs.

MIGLITOL CTD 00002031, CHEMBL55802 CTD 00003118, hes-

peridin CTD 00006087, cytochalasin D CTD 00007076, pro-

linedithiocarbamate CTD 00002658, parthenolide CTD 00000087,

FEXOFENADINE HYDROCHLORIDE CTD 00003191, hydroxyty-

rosol CTD 00000267, antimycin A CTD 00005427, anacardic

acid C15:3 CTD 00003117 are the peak drug candidates for

COVID-19 and IPF. Parthenolide demonstrates role of anti-

inflammatory activities against IPF [54] that proves the effi-

ciency of the proposed drugs. The current study uses a number

of Bioinformatics methodologies in GSE147507, which indicates
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Figure 7. Network for TF-gene interaction with common differentially expressed genes. The highlighted blue color node represents the common genes and other nodes

represent TF-genes. The network consists of 142 nodes and 180 edges.

SARS-CoV-2 infection in human lung epithelium cell and

GSE35145 compare sample between affected and normal IPF

tissue of humans. This study hopefully integrates COVID-19 and

risk factor IPF treatment. These drugs can be considered for

further verification by chemical experiments. As SARS-CoV-2 is

a new virus, less research has been done so far. This is the reason

for collecting less number of samples for analyzing the results.

In future, if more samples are available, the current study would

be more effective in the context of the SARS-CoV-2 pandemic.

Conclusions

In the context of transcriptomic analysis, no other research has

been done so far on SARS-CoV-2 and IPF. We have accomplished

DEGs analysis between two datasets and filtered the materials

through common gene identification and attempted to find

infection responses between SARS-CoV-2 and IPF affected lung

cells. Analyses regarding SARS-CoV-2 and IPF predict the way of

detecting infections for various diseases. The drug targets are

suggested logically as they are derived through the identification

of hub genes and it possibly plays an active preface for already

sanctioned drugs. As SARS-CoV-2 is a recent discovery, there has

been little research on its risk factors and infections. Unique

research on SARS-CoV-2 will become more and more important

with the availability of exceeding datasets.

Key Points

• Protein–protein interactions network-based analysis

assists to find out only the definite genes related to

both SARS-CoV-2 and IPF and the preconditioning step

of Systems biology is fulfilled through protein–protein

interactions analysis.
• Gene set enrichment based analysis predicts Gene

ontology terms for both SARS-CoV-2 and IPF affected

lung cells and hub gene identification makes the

prediction of drug compounds even more effective.
• Computer-aided drug suggestion significantly brings

out drugs like parthenolide that produces numerous

actions including anti-inflammatory based actions.

And various pathway-based analyses highlight the

usefulness of the biological system for both SARS-

CoV-2 and IPF in the context of molecular-based infor-

mation.
• Module analysis focuses on concentrated regions of

the protein–protein interactions network that justifies

the high involvement of hub nodes and eventually

establishes the drug prediction even more logical and

efficient.
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Figure 8. The network presents the TF-miRNA coregulatory network. The network consists of 101 nodes and 131 edges including 53 TF-genes, 39 miRNA and nine

differentially expressed genes. The nodes in pink color are the differentially expressed genes, a yellow node represents miRNA and other nodes indicate TF-genes.
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