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Abstract

Shortage of fully annotated datasets has been a limiting factor in developing deep learning based 

image segmentation algorithms and the problem becomes more pronounced in multi-organ 

segmentation. In this paper, we propose a unified training strategy that enables a novel multi-scale 

deep neural network to be trained on multiple partially labeled datasets for multi-organ 

segmentation. In addition, a new network architecture for multi-scale feature abstraction is 

proposed to integrate pyramid input and feature analysis into a U-shape pyramid structure. To 

bridge the semantic gap caused by directly merging features from different scales, an equal 

convolutional depth mechanism is introduced. Furthermore, we employ a deep supervision 

mechanism to refine the outputs in different scales. To fully leverage the segmentation features 

from all the scales, we design an adaptive weighting layer to fuse the outputs in an automatic 

fashion. All these mechanisms together are integrated into a Pyramid Input Pyramid Output 

Feature Abstraction Network (PIPO-FAN). Our proposed method was evaluated on four publicly 

available datasets, including BTCV, LiTS, KiTS and Spleen, where very promising performance 

has been achieved. The source code of this work is publicly shared at https://github.com/DIAL-

RPI/PIPO-FAN to facilitate others to reproduce the work and build their own models using the 

introduced mechanisms.

Keywords

Medical image segmentation; multi-scale feature; deep learning; convolutional neural networks; 
multi-organ segmentation; multiple datasets

I. Introduction

AUTOMATIC multi-organ segmentation, an essential component of medical image analysis, 

plays an important role in computer-aided diagnosis. For example, locating and segmenting 

the abdominal anatomy of CT images can be very helpful in cancer diagnosis and treatment 

[1]. With the surge of deep learning in the past several years, many deep convolutional 

neural network (CNN) based methods have been proposed and applied to medical image 
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segmentation [2]–[5]. Two main strategies to improve image segmentation performance are: 

(i) Designing better model architectures and (ii) Learning with larger scale of labeled data.

The state-of-the-art models in medical image segmentation are variants of the encoder-

decoder architecture, such as fully convolutional network (FCN) [6] and U-Net [7]. A major 

focus of the FCN based segmentation methods has been on network structure engineering by 

incorporating multi-scale features. That is because multi-scale features contain detailed 

texture information combined with contextual information, which are beneficial for semantic 

image segmentation. The existing deep learning image segmentation methods that exploit 

multi-scale features generally come with designs of pyramid structure using skip 

connections or pyramid parsing modules. Networks employing skip connections to exploit 

features from different levels are referred as skip-nets [8]. Features in skip-net are multi-

scale in nature due to the increasing size of receptive field. U-Net [7] as shown in Fig. 1(a) is 

a typical skip-net with pyramid structure, which is commonly used as a baseline network to 

learn pixel-wise information in medical image segmentation. Many works improve 

segmentation performance on top of U-Net by incorporating new convolutional blocks such 

as residual blocks [9] and dense blocks [10]. For instance, Han [11] won ISBI 2017 LiTS 

Challenge1 by replacing the convolutional layers in U-net with residual blocks from ResNet. 

Li et al. [2] replaced the encoder part of U-net with DenseNet-169 and obtained a high 

accuracy of Dice 95.3% on liver CT segmentation.

In addition to exploring new convolutions in pyramid network structures to efficiently 

extract high level features, incorporating pyramid parsing in FCN also helps utilize multi-

scale information in segmentation tasks [12]–[14]. Fig. 1(b) illustrates two general kinds of 

pyramid parsing modules, pyramid input analysis (P-IA) and pyramid feature analysis (P-

FA). P-IA applies CNN on input pyramid to extract multi-scale features through parallel 

convolutional channels [12], [15]. P-FA methods perform pyramid parsing after the features 

have been extracted by a CNN for further abstraction. In those works, features from different 

scales are only combined at very late stage of the networks to generate final output labels 

[13].

In our work, we hypothesize that extracting and maintaining multi-scale features through the 

network to glean hierarchical contextual information can significantly improve the 

segmentation performance. Although pyramid parsing modules and pyramid structures with 

skip connections have been utilized in various computer vision tasks (e.g. saliency detection, 

object detection, image segmentation), these mechanisms have not been integrated together 

for exploration, especially in multi-organ segmentation from medical images. In this paper, 

as shown in Fig. 1(c), we design a new network architecture, which takes pyramid inputs 

with dedicated convolutional paths to combine features from different scales to utilize the 

hierarchical information. The hierarchical convolutions through different scales alleviate the 

semantic gaps between ends of connections. To fuse the segmentation features from different 

scales, we further design an adaptive weight layer. In particular, this layer uses an attention 

mechanism to compute the importance of the features from each scale. The proposed 

method is thus coined as Pyramid Input and Pyramid Output (PIPO) Feature Abstraction 

1https://competitions.codalab.org/competitions/15595
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Network (FAN). The proposed method can be easily integrated into other existing U-shape 

networks to improve the feature representation power of the models.

Deep CNNs have shown great performance for single organ segmentation. However, we 

often face the problem of multi-organ segmentation in clinical applications. Segmenting 

multiple organs independently using single organ segmentation algorithms may be 

straightforward, which, however, loses the holistic view of the image. Therefore, the 

segmentation performance may be degraded. However, collecting multi-organ annotations 

for training algorithms is more difficult than annotating single organ datasets. Ideally, 

researchers could use similar datasets created by different organizations for their research. 

However, in reality, there will always be some differences that the datasets cannot be directly 

used, since those data were collected for various purposes. For instance, there are several 

abdominal CT datasets are publicly available but they are annotated with different targeted 

organs at risk as shown in Fig. 2. One CT dataset contains the labeled segmentation of the 

spleen, while another dataset include only the liver annotation. It will be highly 

advantageous if we can utilize all those datasets together to train a multi-organ segmentation 

network. In order to achieve this goal, in this paper, we propose a unified training strategy 

with a novel target adaptive loss.

In this paper, we extensively evaluated the proposed method on the BTCV (Beyond the 

Cranial Vault) segmentation challenge dataset2 and three partially labeled datasets, including 

MICCAI 2017 Liver Tumor Segmentation (LiTS) Challenge3 dataset, MICCAI 2019 Kidney 

Tumor segmentation (KiTS) Challenge 4 dataset, and the spleen segmentation dataset [16]. 

We demonstrate very promising performance of medical image segmentation on these 

datasets compared to the state-of-the-art approaches.

Our contributions in this work can be summarized as follows.

1. A new pyramid-input and pyramid-output network is introduced to condense 

multi-scale features to reduce the semantic gaps between features from different 

scales.

2. An image context based adaptive weight layer is used to fuse the segmentation 

features from multiple scales.

3. A target adaptive loss is integrated with a unified training strategy to enable 

image segmentation over multiple partially labeled datasets with a single model.

4. Very competitive performance with state-of-the-arts has been achieved by using 

the developed network on multiple publicly available datasets.

2https://www.synapse.org/#!Synapse:syn3193805/wiki/89480
3https://competitions.codalab.org/competitions/17094
4https://kits19.grand-challenge.org/
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II. Related Works

A. Multi-scale feature learning

Multi-scale features contain detailed texture and context information, which is helpful for 

many computer vision tasks including object detection [17], saliency detection [18] and 

image segmentation [19]. Multi-scale feature learning can be generally grouped into two 

categories. The first type, sometimes referred to as skip-net [8], combines different level 

features with skip connections. They are always in pyramid structures. For example, FPN 

[20], U-Net [7] and FED-Net [21] use an encoder that gradually down-samples to capture 

more context, followed by a decoder that learns to upsample the segmentation. Low-level 

fine appearance information is fused into coarse high-level features through skip 

connections, attention gates or convolutional blocks between shallow and deep layers. These 

works effectively fuse multi-scale context using skip connections, but in the same time 

introduces huge semantic gap between features at two ends of the connections. UNet++ [22] 

tries to bridge the semantic gap of skip-net by redesigning the skip-pathways to fuse 

semantic similar features. Pyramid structures have been employed to extract multi-scale 

features in computer vision tasks. To obtain effective pyramid features, deep supervision has 

been used in saliency detection [18] and image segmentation [23]. In object detection works 

using pyramid features [17], [20], detection is made at different levels in the feature pyramid 

for objects of various sizes. Pyramid features are fused to provide multi-scale context for the 

final prediction. The mechanism has been shown to be highly useful, which, however, has 

not been explored in multi-organ segmentation. SegCaps [24] introduces Capsules for object 

segmentation, which replaces max-pooling layers with convolutional strides and dynamic 

routing to preserve spatial information. That achieves highly competitive segmentation 

performance compared with UNet, but with substantially decreased parameter space.

The second type of methods uses pyramid parsing module to extract multi-scale features in 

the same convolutional level with either pyramid input analysis (P-IA) or pyramid feature 

analysis (P-FA) as shown in Fig. 1. These features have different effective receptive fields 

and are concatenated or summed to boost feature representation ability of context 

information. For example, P-FA methods like PSP-Net [13] apply spatial pyramid pooling to 

convolutional feature maps for pyramid feature analysis. Deeplab [25] and CE-Net [26] use 

parallel atrous convolution with different sampling rates to extract multi-scale features to 

augment segmentation. Qin et al. [27] integrates attention module into the pyramid parsing 

layer to adapt the network’s receptive field in a data-driven manner. P-IA methods, on the 

other hand, perform feature analysis from input images with different sizes, i.e. create image 

pyramid at multiple scales. For example, Farabet et al. [28] enforce scale invariance by 

applying shared network on different scales of a Laplacian pyramid version of the input 

image. Kamnitsas et al. [15] employ a dual pathway architecture that processes the input 

images at multiple scales simultaneously to extract pyramid features to strengthen the 

feature representation.

Although pyramid inputs and pyramid parsing module are commonly utilized in computer 

vision, they have not been explored in multi-organ segmentation. Since both the pyramid 

parsing module and skip-net can extract multi-scale context information to help image 
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segmentation, they may also be combined to further boost the performance. Some recent 

works like [29], [30] integrate features from pyramid input images to the U-Net structure. 

However, since those features are at different semantic abstraction levels, fusing those 

features from different scales may cause the problem of semantic gap. Thus, those networks 

fail to mitigate the multi-scale context information, by only partially utilizing the pyramid 

shape of U-Net.

B. Segmentation over multiple datasets

Various datasets for semantic segmentation have been presented. Training one general model 

over multiple datasets will make the features more robust and accurate. When annotations 

for different datasets are same labels [31], model can be directly trained over these datasts 

[32]. However, in most cases, different datasets have different annotations. Although many 

datasets share similar appearance information, annotations difference make it a challenging 

problem of model generalization over multiple datasets. Many works have been done to deal 

with the diversity problem. These works can be divided according to different types of 

annotation difference. When strongly label (pixel-wise annotations) and weak labels (image 

category, bounding box) exists over multiple datasets. It’s a problem of semi-supervised 

segmentation. Features are extracted from the encoder are used to learn through multi-task 

learning. Hong et al. [33] train class labels and segmentation together with two branches. 

Papandreou et.al. [34] develop Expectation-Maximization (EM) methods for semantic image 

segmentation model training on few strongly labeled and many weakly labeled images, 

sourced from one or multiple datasets. When the labels are different but the types of 

annotations are pixel-wise. Only a few works have been done to solve the problem. Some 

works [35], [36] design hierarchical classifier for multiple heterogeneous datasets. Each 

classifier classifies the children labels of a node and the whole classifier is trained. However, 

semantic hierarchy of the labels is required. The Multi-Sourced Dice Loss proposed by Tang 

et al. [37] is another closely related work, which was used to train a segmentation network 

on heterogeneous multi-resource datasets to segment the spleen. Unlike these methods, our 

proposed approach allows a single model using partial labels, which exploit label proportion 

information. To train our model, we introduce a new loss function that adapts it-self to the 

proportion of known labels per example.

C. Multi-organ Segmentation

Accurate and robust segmentation of multiple organs is essential. Three methodologies, 

statistical models [38], [39], multi-atlas methods [40], [41] and registration-free methods 

[42], [43] are always used to do multi-organ segmentation. However, these methods are 

always organ-specific and require prior professional knowledge and manual designing.

Recent advances in deep learning and data availability enabled the training of more complex 

registration-free methods, eg. deep CNN, which neither explicit anatomical correspondences 

nor hand crafted features. Many studies based on deep CNNs focused on single organ 

segmentation, particularly for abdominal regions due to the similar intensity and size 

variation between different target organs. Multi-organ segmentation in abdominal CT has 

been an important problem to solve for precise diagnosis and treatment. Deep learning based 

segmentation methods have been developed to segment multiple abdominal organs [32], 
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[44]–[47]. Some works use two-step segmentation to exploit the prior anatomical 

information [45]–[47]. Specifically, Chen et al. [45] use an organ attention module to guide 

the fine segmentation. However, majority of the existing works are mostly customized for a 

certain dataset labeled with all target organs. The lack of variety and quality of datasets 

make segmentation models specific to particular diseases and also hard to train.

Relaxing the learning requirements to exploit all the available labels open better 

opportunities for creating large-scale datasets for training deep neural networks. A 

promising strategy is to use partial annotations from multiple available datasets, which may 

shared some labeled organs in common. Partial labels are recently introduced to improve 

image classification performance [48]. We suppose that different datasets are 

complementary, which can be used together to train a unified segmentation model without 

harming the performance.

III. Pyramid Input and Pyramid Output Feature Abstraction Network

In this section, we present a novel Pyramid Input and Pyramid Output Feature Abstraction 

Network (PIPO-FAN), which fully fuses multi-scale context information and semantic 

similar features with one single network. Pyramid input analysis and pyramid feature 

analysis are integrated in the proposed network. Our hypothesis is that the semantic 

information in various depths can be further enhanced by utilizing hierarchical contextual 

features. PIPO-FAN aims to effectively extract multi-scale features for medical image 

segmentation, on top of the multi-scale nature of U-net. Fig. 3 shows the overall structure of 

the proposed PIPO. The network perform spatial pyramid pooling on input and hierarchical 

abstract multi-scale features at each level enforced by deep supervision mechanism.

A. Pyramid Input with Equal Convolutional Depth

To seek for patterns from images in different scales, i.e. scale invariance, the proposed 

network first performs pyramid analysis to the input image by using spatial pyramid pooling 

and shared convolution to obtain context information in different scales. Unlike the classical 

U-net based methods, where the scale only reduces when the convolutional depth increases, 

PIPO-FAN has multi-scale features at each depth and therefore both global and local context 

information can be integrated to augment the extracted features. After going through one or 

more convolutional layers, the features are fused together to have hierarchical structural 

information. The input feature maps to each level of U-Net and PIPO-FAN are listed in 

Table I for comparison. In Table I, Is denotes the input at the s-th scale, fs,j denotes the input 

features of the j-th convolution block at the s-th scale, and S is the scale number of inputs. A 

feature map to the first convolutional block at each scale fs,1 is set as Is.

A notable character of PIPO-FAN is that features fused at each level all went through the 

same number of convolutional layers, i.e. they have equal convolutional depth (ECD). It is 

achieved by inserting the ResBlocks to the networks, as shown in Fig. 3 by the light blue 

color boxes. Unlike the existing works, e.g. [29], [30], where features after various depths of 

convolutions are directly fused together, we deal with the problem of semantic gap using 

ECD. With the proposed ECD connections, all the fused features at each step are at the same 

semantic abstraction level to better exploit the pyramid shape of U-Net.

Fang and Yan Page 6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B. Pyramid Output

Furthermore, inspired by the work of deep supervision [23], we introduce deep pyramid 

supervision (DPS) to the decoding path for generating and supervising outputs of different 

scales. During the training process, we perform spatial pyramid pooling to the ground truth 

segmentation to generate labels in all output scales. The training loss is computed by using 

the corresponding output and ground truth segmentation at the same scale. Weighted cross 

entropy is used as the loss function in our work, which is defined as

LDPS = − 1
S ∑

s = 1

S 1
Ns

∑
i = 1

Ns
∑

c = 0

3
wi, sc yi, sc logpi, sc , (1)

where pi, sc  denotes the predicted probability of voxel i belonging to class c (liver, kidney, 

spleen or background) in scale s

pi, sc =
exp fi, s

j

∑jexp fi, s
j , (2)

yi, sc  is the ground truth label in scale s, Ns denotes the number of voxels in the scale s, and 

wic is a weighting parameter for class c. DPS can help relieve the problem of gradient 

vanishing in deep neural networks and learn deep level features with hierarchical contexts. It 

also enforces the outputs in all scales to maintain structural information.

C. Adaptive Fusion

With the above mentioned DPS mechanism, informative segmentation features are obtained 

at different scales. Since they may contain complementary context information, we are 

motivated to fuse these features together to achieve more accurate segmentation. To 

effectively exploit the contextual information in different scales, we design an adaptive 

fusion (AF) module to learn the relative importance of each scale and fuse the score maps 

(i.e., last layer output before softmax) in an automatic fashion. For each pixel of each score 

map, larger value indicates higher probability belonging to the class. It also implies higher 

certainty of the prediction. Thus, squeezing one channel of a score map into single core by 

using a global operation can provide a measure of the prediction confidence.

In particular, this AF module uses an attention mechanism to indicate the importance at each 

scale. As shown in Fig. 4, after hierarchical abstraction from pyramid input, pyramid output 

features are propagated into the attention module. To leverage the similar structural 

information at each scale, Pyramid outputs are first passed into a shared convolutional block 

to achieve scale invariance.

Fs = Conv fs , (3)

Those features are then squeezed into a single channel feature vector, which denotes the 

overall score of output at each scale. Global average pooling (GAP) and global max pooling 
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(GMP) can extract the global certainty score of predictions at each scale. In our work, GAP 

and GMP are summed up to extract the global score Ss at scale s

Ss = GAP Fs + GMP Fs . (4)

The values from different scales are then concatenated to feed into a softmax layer to get the 

corresponding weight for each scale. The weights ws reflects the importance of feature at 

scale s. After resampling to the original image size, the pyramid output features are summed 

to get the fused features, where the scale weights are computed as

W s = exp Ss
∑sexp Ss

. (5)

Another softmax layer is applied to obtain the final segmentation result

pac =
exp ∑s = 1

S W sfs

∑cexp ∑s = 1
S W sfs

. (6)

D. Multi-organ segmentation over multiple datasets

The proposed target adaptive loss (TAL) allows training a segmentation algorithm over 

multiple datasets with different labels. To use a cross entropy loss, the model should 

typically predict the probability distribution for all labels in the dataset as

Lfull = ∑
c = 0

n
yiclogpic . (7)

Considering the partial labels are subset of all labels, probabilities can be merged according 

to the known labels. Therefore, we treat the unknown labels as background to allow 

computing the loss. TAL function is defined as

LTAL = ∑
c ∈ Ck

yiclogpic + 1[∑c ∈ Ckyic = 0]log 1 − ∑
c ∈ Ck

pic , (8)

where Ck denotes the organs labeled in the dataset. pic is the predicted probability of voxel i 

belonging to class c. The ground truth label yic indicates whether voxel i belonging to class c 

or not.

TAL can be easily implemented by modifying the last layer of the segmentation network to 

have multiple branches to segment all organs labeled in these datasets. After the second 

softmax layer, each branch gets a probability of that class. When training on the partially 

labeled datasets, probabilities of labeled target organs are preserved, while other 

probabilities are merged as “non-target” class in that dataset. For example, to train on LiTS 

dataset, we preserve the probability of liver and combine the other branches probabilities to 

the probability of non-liver. Then a binary cross entropy can be computed as
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LTAL = 1 yic1 = 1 logpic1 + 1 yic1 = 0 log 1 − pic1 , (9)

where c1 denotes the labeled liver. Similarly, training on the KiTS and spleen datasets can be 

completed. Such a mechanism allows gradients to be back propagated through the branches 

with the labeled organs. A general segmentation model can then be obtained, which is able 

to segment multiple organs when they are present in an image.

IV. Experiments

A. Materials

We evaluated our model on four publicly available datasets, LiTS (Liver tumor segmentation 

challenge) [49], KiTS (Kidney tumor segmentation challenge) [50], the Spleen segmentation 

dataset [16] and BTCV (Beyond the Cranial Vault) segmentation challenge dataset [51]. The 

first three datasets are single-organ annotation datasets and the last one has multiple organs 

annotated. Fig. 2 provides a summary of the available organ annotations in those datasets.

LiTS consists of 131 training and 70 test images. The data were collected from different 

hospitals and the intraslice resolutions of the CT scans vary between 0.45mm and 6mm and 

the inter-slice resolutions vary between 0.6mm and 1.0mm for inter-slices. KiTS consists of 

210 training and 90 test images collected from 300 patients, who underwent nephrectomy 

for kidney tumors. The spleen segmentation dataset is composed of patients undergoing 

chemotherapy for liver metastases at Memorial Sloan Kettering Cancer Center (New York, 

NY, USA) [16]. The BTCV segmentation challenge dataset contains 47 subjects with 

segmentation of all abdominal organs except duodenum. 30 of them have labels of both two 

kidneys. We randomly split those subjects into 21 for training and 9 for validation. We select 

three abdominal organs in partially labeled datasets as the target organs.

In these datasets, the size of each slice is 512×512 pixels. To speed up the model training, 

we resized the axial slices into 256×256 pixels, where the boundary information is still well 

preserved. We keep the CT imaging HU values using in range of [−200, 200] to have a better 

contrast on the abdominal organs. Then we normalize all volumetric data into zero mean and 

unit variance. For each epoch, we randomly select three continuous slices containing target 

organ label from all the CT training volumes and crop a patch with size of 224×224 as input 

to the network. After obtaining the segmentation volume, the connected component analysis 

was performed to keep only the largest component as the segmentation result of liver and 

spleen, and the largest two components as the segmentation of the kidneys.

B. Implementation Details

Our implementation is based on the open-source platform PyTorch [52]. All the 

convolutional operations are followed by batch normalization and ReLU activation. The 

channel numbers of feature maps after the convolutional blocks are 64, 128, 256, 512, 512, 

512, 256, 128, 64 sequentially. The numbers of input and output scales are both set to be 5. 

For network training, we use the RMSprop optimizer. For multi-organ segmentation, we set 

learning rate to be 0.0002 and the maximum number of training epochs to be 4000. For 

single organ segmentation, we set the initial learning rate to be 0.002 and the maximum 
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number of training epochs to be 2500. The learning rate decays by 0.01 after every 40 

epochs. For the first 2000 epochs, the deep supervision losses are applied to focus on the 

feature abstraction ability in each scale. For the remaining epochs, the adaptive weighting 

layer is activated and the deep supervision loss stops, which helps to optimize only the 

adaptively fused score map output.

When training a single-organ segmentation model, empirically, we set the weights in Eqn. 

(1) to be 0.2 and 1.2 for background and the organ, respectively, to counteract the 

unbalanced training samples. When training a multi-organ segmentation model, for 

simplicity and generalization ability, all the weights in the cross entropy function are set to 

be 1. When two or more datasets are used, the model is trained alternatively on those 

datasets by using one at a time.

In our work, five-fold cross validation on LiTS and KiTS was employed to evaluate the 

performance of the models. Dice score is used as the evaluation criterion. When preparing 

the test result submission to the LiTS challenge websites, we used majority voting to 

combine the outputs of the five models to get the final segmentation. Our implementation 

code is open-sourced available at https://github.com/DIAL-RPI/PIPO-FAN.

C. Multi-organ Segmentation

We evaluate our proposed training strategy on BTCV validation dataset. Liver, kidney and 

spleen are three target abdominal organs to compare the segmentation performance. In Table 

II, different combinations of datasets are used to train the multi-organ segmentation model. 

The proposed PIPO-FAN is used as the segmentation model. Dice score is used as the 

evaluation criterion. When training on the BTCV dataset, the model serves as the baseline of 

multi-organ segmentation. Three partially labeled datasets, LiTS, KiTS and Spleen 

segmentation datasets are individually added as additional training dataset to enhance 

training procedure. The combination of four datasets are also used for the unified training. 

Some example results are shown in Fig. 5. We noticed that training with the additional 

partially labeled datasets improves the multi-organ segmentation, especially the spleen 

dataset. Compared to using BTCV alone, the use of additional datasets significantly boosts 

the segmentation performance of the spleen, which may be because the spleen has similar 

appearances across all the datasets.

D. Model Analysis and Ablation Studies

We further compared our proposed PIPO-FAN against several other classical benchmark 2D 

segmentation networks, including U-Net [7], ResU-Net [11], DenseU-Net [2] and 

DeepLabV3 [53] to demonstrate the effectiveness of DPS and AF. For fair comparison, U-

Net, ResU-Net and our PIPO-FAN are all 19-layer networks. DeepLabV3 uses ResNet18 [9] 

as its backbone. The segmentation results on BTCV are shown in Table III. For comparison 

on partially labeled multi-organ segmentation, the results on the combined all datasets are 

shown in Table IV. PIPO-FAN outperforms all other networks on multi-organ segmentation 

in both the BTCV dataset and the combined all datasets. Some example results on LiTS are 

shown in Fig. 6. The DenseU-Net is the 2D DenseU-Net architecture used in [2] and the 

encoder part is Densenet-169. According to the experimental results from [54], adding 
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residual connections makes little difference in performance on the KiTS data. Thus, in our 

experiments on the KiTS data, we used ConvBlocks in PIPO-FAN rather than ResBlocks. 

All these 2D networks are trained from scratch in the same environment. We evaluate the 

performance of the above networks on each dataset through five-fold cross validation. The 

131 labeled LiTS data and 210 KiTS data are split into 5 folds, respectively. Each fold is 

used only once for validation, while the other four are used for training.

The five-fold cross validation results are shown in Table V. The conducted t-test shows that 

PIPO-FAN significantly outperforms U-Net, ResU-Net and DenseU-Net with p-values of 

0.004, 0.025, and 0.002 in LiTS data respectively.

We first evaluated the effectiveness of the proposed equal convolutional depth (ECD) 

mechanism presented in Section III-A. Table VI shows the the segmentation performance 

under different network configurations. As expected, using PIPO always outperforms single-

scale input/output segmentation, which is indeed a ResU-Net. With PIPO to explore multi-

scale image information, using ECD results in consistent performance improvement. It is 

worth noting that using ECD with only deep pyramid supervision (DPS) performs better 

than using AF without ECD. This not only shows that ECD is effective in extracting image 

features, but also illustrates the necessity of having good features for adaptive fusion module 

to work efficiently.

We also tried different number of scales for the input and output to evaluate the relationship 

between scales and model capacity. The results are shown in Table VII. It can be seen that 

the larger scale numbers of input scales and output scales, the better segmentation accuracy 

the model obtains. It may be because the higher scales can provide larger receptive fields 

and thus enhance the contextual information, This in turn helps the feature abstraction, i.e. 

extracting representative segmentation features. A special case is that when the number of 

input scale increased from 3 to 5, but the number of output scale remains at 1, the 

segmentation performance dropped. It may be because increasing the input scale alone 

without additional output supervision adds difficulty to the network training. Based on the 

results, we empirically make use of five input and output scales in the final version of our 

work.

E. Comparison with state-of-the-arts on LiTS challenge

Most of the state-of-the-art methods on liver CT image segmentation takes two steps to 

complete the task, where a coarse segmentation is used to locate the liver followed by fine 

segmentation step to obtain the final segmentation [2], [11]. However, such two-step 

methods can be computationally expensive. For example, the method in [2] takes 21 hours to 

finetune a pretrained 2D DenseUNet and another 9 hours to finetune the H-DenseUNet with 

two Titan Xp GPUs. In contrast, our proposed method can be trained on a single Titan Xp 

GPU in 3 hours. More importantly, when segmenting a CT volume, our method only takes 

0.04s for one slice on a single GPU, which is, to the best of our knowledge, the fastest 

segmentation method compared to other reported methods. In the same, we are able to 

obtain the same Dice performance and even better symmetric surface distance (SSD) 

(ASSD: 1.413 < 1.450, MSSD: 24.408 < 27.118, 2.421 < 3.150). Table VIII shows the 

performance comparison with other published state-of-the-art methods on LiTS challenge 
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dataset. Despite its simplicity, our proposed 2D network segments the liver in a single step 

and can obtain a very competitive performance with less than 0.2% drop in Dice, compared 

to the top performing method – DeepX [56].

V. Discussion and Conclusion

In this work, the proposed method provides a universal training strategy for better utilization 

of partially annotated datasets for multi-organ segmentation. Robust and accurate multi-

organ segmentation can help improve clinical applications such as computer-aided diagnosis 

and surgery. Benefited from the flexibility in annotations for training, the work can be 

extended to train networks on heterogeneous datasets focusing on different regions (e.g. 

abdominal, chest, pelvic, and whole body). That makes it possible to use one network to 

segment different CT images. To leverage the information from large scale datasets, previous 

works presented semi-supervised methods use weakly labeled and even unlabeled data. Our 

work is complementary to those methods and can be combined with semi-supervised 

learning to further alleviate the problem of data hunger in multi-organ segmentation.

In summary, a novel network architecture for multi-scale feature abstraction, which 

incorporates multi-scale features in a hierarchical fashion at various depths for medical 

image segmentation, is presented in this paper. The proposed 2D network with only a single 

step shows very competitive performance compared with other multi-step 3D networks in 

CT image segmentation. We further develop a unified segmentation strategy to train the 

proposed network on multiple partially labeled datasets for multi-organ segmentation. The 

new strategy gives the segmentation network better robustness and accuracy by enlarging the 

training dataset. The source code of our work has been open sourced to enable further 

testing and development in a larger scale on other imaging modalities.

Acknowledgment

The authors would like to thank NVIDIA Corporation for the donation of two Titan Xp GPUs used for this 
research. We would also like to thank Prof. George Xu (RPI), Mr. Zhao Peng (USTC), and Dr. Sheng Xu (NIH) for 
the insightful discussions.

This work was partially supported by National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the 
National Institutes of Health (NIH) under awards R21EB028001 and R01EB027898, and through an NIH Bench-to-
Bedside award made possible by the National Cancer Institute.

References

[1]. Wolz R, Chu C, Misawa K, Fujiwara M, Mori K, and Rueckert D, “Automated abdominal multi-
organ segmentation with subject-specific atlas generation,” IEEE Transactions on Medical 
Imaging, vol. 32, no. 9, pp. 1723–1730, 9 2013. [PubMed: 23744670] 

[2]. Li X, Chen H, Qi X, Dou Q, Fu C, and Heng P, “H-denseunet: Hybrid densely connected unet for 
liver and tumor segmentation from CT volumes,” IEEE Transactions on Medical Imaging, vol. 
37, no. 12, pp. 2663–2674, 12 2018. [PubMed: 29994201] 

[3]. Zhu Q, Du B, and Yan P, “Boundary-weighted domain adaptive neural network for prostate mr 
image segmentation,” IEEE Transactions on Medical Imaging, pp. 1–1, 2019.

[4]. He K, Cao X, Shi Y, Nie D, Gao Y, and Shen D, “Pelvic organ segmentation using distinctive 
curve guided fully convolutional networks,” IEEE Transactions on Medical Imaging, vol. 38, no. 
2, pp. 585–595, 2 2019. [PubMed: 30176583] 

Fang and Yan Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[5]. Chen L, Bentley P, Mori K, Misawa K, Fujiwara M, and Rueckert D, “Drinet for medical image 
segmentation,” IEEE Transactions on Medical Imaging, vol. 37, no. 11, pp. 2453–2462, 11 2018. 
[PubMed: 29993738] 

[6]. Long J, Shelhamer E, and Darrell T, “Fully convolutional networks for semantic segmentation,” in 
CVPR, 2015, pp. 3431–3440. [Online]. Available: 10.1109/CVPR.2015.7298965

[7]. Ronneberger O, Fischer P, and Brox T, “U-net: Convolutional networks for biomedical image 
segmentation,” in MICCAI, 2015, pp. 234–241.

[8]. Chen L-C, Yang Y, Wang J, Xu W, and Yuille AL, “Attention to scale: Scale-aware semantic 
image segmentation,” 2016 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), pp. 3640–3649, 2015.

[9]. He K, Zhang X, Ren S, and Sun J, “Deep residual learning for image recognition,” in CVPR, 
2016, pp. 770–778.

[10]. Huang G, Liu Z, van der Maaten L, and Weinberger KQ, “Densely connected convolutional 
networks,” in CVPR, 2017, pp. 2261–2269.

[11]. Han X, “Automatic Liver Lesion Segmentation Using A Deep Convolutional Neural Network 
Method,” arXiv: 1704.07239, 4 2017 [Online]. Available: http://arxiv.org/abs/1704.07239

[12]. Lin G, Shen C, Van Den Hengel A, and Reid I, “Efficient piecewise training of deep structured 
models for semantic segmentation,” in CVPR, 2016, pp. 3194–3203.

[13]. Zhao H, Shi J, Qi X, Wang X, and Jia J, “Pyramid scene parsing network,” in CVPR. IEEE 
Computer Society, 7 2017, pp. 6230–6239. [Online]. Available: https://
doi.ieeecomputersociety.org/10.1109/CVPR.2017.660

[14]. Fang X, Du B, Xu S, Wood BJ, and Yan P, “Unified multi-scale feature abstraction for medical 
image segmentation,” arXiv preprint arXiv:1910.11456, 2019.

[15]. Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK et al., “Efficient multi-
scale 3D CNN with fully connected CRF for accurate brain lesion segmentation,” Medical Image 
Analysis, vol. 36, pp. 61–78, 2017. [PubMed: 27865153] 

[16]. Simpson AL, Leal JN, Pugalenthi A, Allen PJ, DeMatteo RP, Fong Y et al., “Chemotherapy-
induced splenic volume increase is independently associated with major complications after 
hepatic resection for metastatic colorectal cancer,” Journal of the American College of Surgeons, 
vol. 220, no. 3, pp. 271–280, 2015. [PubMed: 25617913] 

[17]. Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, and Pietikainen M, “Deep learning for 
generic object detection: A survey,”¨ International Journal of Computer Vision, vol. 128, no. 2, 
pp. 261–318, 2020.

[18]. Dong S, Gao Z, Sun S, Wang X, Li M, Zhang H, Yang G, Liu H, and Li S, “Holistic and deep 
feature pyramids for saliency detection,” in 29TH BRITISH MACHINE VISION 
CONFERENCE (BMVC), 2018.

[19]. Chen X, Zhang R, and Yan P, “Feature fusion encoder decoder network for automatic liver lesion 
segmentation,” in 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 
2019), 4 2019, pp. 430–433.

[20]. Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, and Belongie S, “Feature pyramid networks 
for object detection,” in Proceedings of the IEEE conference on computer vision and pattern 
recognition, 2017, pp. 2117–2125.

[21]. Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K et al., “Attention u-net: 
Learning where to look for the pancreas,” arXiv preprint arXiv:180403999, 2018.

[22]. Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, and Liang J, “Unet++: A nested u-net architecture 
for medical image segmentation,” in DL in Medical Image Analysis and Multimodal Learning 
for Clinical Decision Support, 2018, pp. 3–11.

[23]. Lee C-Y, Xie S, Gallagher P, Zhang Z, and Tu Z, “Deeply-Supervised Nets,” in Int. Conf. 
Artificial Intelligence and Statistics, 09–12 May 2015, pp. 562–570.

[24]. LaLonde R and Bagci U, “Capsules for object segmentation,” arXiv preprint arXiv:1804.04241, 
2018.

[25]. Chen L, Papandreou G, Kokkinos I, Murphy K, and Yuille AL, “Deeplab: Semantic image 
segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE 

Fang and Yan Page 13

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1704.07239
https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.660
https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.660


Trans. PAMI, vol. 40, no. 4, pp. 834–848, 2018 [Online]. Available: 10.1109/
TPAMI.2017.2699184

[26]. Gu Z, Cheng J, Fu H, Zhou K, Hao H, Zhao Y et al., “Ce-net: Context encoder network for 2d 
medical image segmentation,” IEEE Transactions on Medical Imaging, vol. 38, no. 10, pp. 2281–
2292, 10 2019. [PubMed: 30843824] 

[27]. Qin Y, Kamnitsas K, Ancha S, Nanavati J, Cottrell G, Criminisi A et al., “Autofocus layer for 
semantic segmentation,” in International Conference on Medical Image Computing and 
Computer Assisted Intervention (MICCAI), 9 2018.

[28]. Farabet C, Couprie C, Najman L, and LeCun Y, “Learning hierarchical features for scene 
labeling,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 
1915–1929, 8 2013. [PubMed: 23787344] 

[29]. Raza SEA, Cheung L, Epstein D, Pelengaris S, Khan M, and Rajpoot NM, “MIMO-Net: A multi-
input multi-output convolutional neural network for cell segmentation in fluorescence 
microscopy images,” in IEEE 14th International Symposium on Biomedical Imaging (ISBI), 4 
2017, pp. 337–340.

[30]. Fu H, Cheng J, Xu Y, Wong DWK, Liu J, and Cao X, “Joint optic disc and cup segmentation 
based on multi-label deep network and polar transformation,” IEEE transactions on medical 
imaging, vol. 37, no. 7, pp. 1597–1605, 2018. [PubMed: 29969410] 

[31]. Rundo L, Han C, Nagano Y, Zhang J, Hataya R, Militello C et al., “USE-Net: incorporating 
squeeze-and-excitation blocks into u-net for prostate zonal segmentation of multi-institutional 
mri datasets,” arXiv preprint arXiv:1904.08254, 2019.

[32]. Peng Z, Fang X, Yan P, Shan H, Liu T, Pei X et al., “A method of rapid quantification of patient-
specific organ dose for ct using coupled deep multi-organ segmentation algorithms and gpu-
accelerated monte carlo dose computing code,” arXiv preprint arXiv:1908.00360, 2019.

[33]. Hong S, Oh J, Lee H, and Han B, “Learning transferrable knowledge for semantic segmentation 
with deep convolutional neural network,” in Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, 2016, pp. 3204–3212.

[34]. Papandreou G, Chen L-C, Murphy KP, and Yuille AL, “Weaklyand semi-supervised learning of a 
deep convolutional network for semantic image segmentation,” in Proceedings of the IEEE 
international conference on computer vision, 2015, pp. 1742–1750.

[35]. Meletis P and Dubbelman G, “Training of convolutional networks on multiple heterogeneous 
datasets for street scene semantic segmentation,” in 2018 IEEE Intelligent Vehicles Symposium 
(IV), June 2018, pp. 1045–1050.

[36]. Kong F, Chen C, Huang B, Collins LM, Bradbury K, and Malof JM, “Training a single multi-
class convolutional segmentation network using multiple datasets with heterogeneous labels: 
preliminary results,” in IGARSS 2019 – 2019 IEEE International Geoscience and Remote 
Sensing Symposium, July 2019, pp. 3903–3906.

[37]. Tang Y, Huo Y, Xiong Y, Moon H, Assad A, Moyo TK, Savona MR, Abramson R, and Landman 
BA, “Improving splenomegaly segmentation by learning from heterogeneous multi-source 
labels,” in Medical Imaging 2019: Image Processing, vol. 10949 International Society for Optics 
and Photonics, 2019, p. 1094908.

[38]. Cerrolaza JJ, Reyes M, Summers RM, González-Ballester MÁ, and Linguraru MG, “Automatic 
multi-resolution shape modeling of multi-organ structures,” Medical image analysis, vol. 25, no. 
1, pp. 11–21, 2015. [PubMed: 25977156] 

[39]. Okada T, Linguraru MG, Hori M, Summers RM, Tomiyama N, and Sato Y, “Abdominal multi-
organ segmentation from ct images using conditional shape–location and unsupervised intensity 
priors,” Medical image analysis, vol. 26, no. 1, pp. 1–18, 2015. [PubMed: 26277022] 

[40]. Wolz R, Chu C, Misawa K, Mori K, and Rueckert D, “Multi-organ abdominal ct segmentation 
using hierarchically weighted subject-specific atlases,” in Medical Image Computing and 
Computer-Assisted Intervention – MICCAI 2012, Ayache N, Delingette H, Golland P, and Mori 
K, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 10–17.

[41]. Tong T, Wolz R, Wang Z, Gao Q, Misawa K, Fujiwara M et al., “Discriminative dictionary 
learning for abdominal multi-organ segmentation,” Medical image analysis, vol. 23, no. 1, pp. 
92–104, 2015. [PubMed: 25988490] 

Fang and Yan Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[42]. Lombaert H, Zikic D, Criminisi A, and Ayache N, “Laplacian forests: Semantic image 
segmentation by guided bagging,” in Medical Image Computing and Computer-Assisted 
Intervention – MICCAI 2014, Golland P, Hata N, Barillot C, Hornegger J, and Howe R, Eds. 
Cham: Springer International Publishing, 2014, pp. 496–504.

[43]. Zografos V, Valentinitsch A, Rempfler M, Tombari F, and Menze B, “Hierarchical multi-organ 
segmentation without registration in 3d abdominal ct images,” in International MICCAI 
Workshop on Medical Computer Vision. Springer, 2015, pp. 37–46.

[44]. Gibson E, Giganti F, Hu Y, Bonmati E, Bandula S, Gurusamy K et al., “Automatic multi-organ 
segmentation on abdominal ct with dense v-networks,” IEEE Transactions on Medical Imaging, 
vol. 37, no. 8, pp. 1822–1834, 8 2018. [PubMed: 29994628] 

[45]. Chen S, Roth H, Dorn S, May M, Cavallaro A, Lell MM et al., “Towards automatic abdominal 
multi-organ segmentation in dual energy ct using cascaded 3d fully convolutional network,” 
arXiv preprint arXiv:1710.05379, 2017.

[46]. Roth HR, Oda H, Zhou X, Shimizu N, Yang Y, Hayashi Y et al., “An application of cascaded 3d 
fully convolutional networks for medical image segmentation,” Computerized Medical Imaging 
and Graphics, vol. 66, pp. 90–99, 2018. [PubMed: 29573583] 

[47]. Wang Y, Zhou Y, Shen W, Park S, Fishman EK, and Yuille AL, “Abdominal multi-organ 
segmentation with organ-attention networks and statistical fusion,” Medical image analysis, vol. 
55, pp. 88–102, 2019. [PubMed: 31035060] 

[48]. Durand T, Mehrasa N, and Mori G, “Learning a deep convnet for multi-label classification with 
partial labels,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6 
2019.

[49]. Bilic P, Christ PF, Vorontsov E, Chlebus G, Chen H, Dou Q et al., “The liver tumor segmentation 
benchmark (lits),” arXiv preprint arXiv:1901.04056, 2019.

[50]. Heller N, Sathianathen N, Kalapara A, Walczak E, Moore K, Kaluzniak H et al., “The KiTS19 
challenge data: 300 kidney tumor cases with clinical context, ct semantic segmentations, and 
surgical outcomes,” arXiv preprint arXiv:1904.00445, 2019.

[51]. Landman B, Xu Z, Igelsias JE, Styner M, Langerak TR, and Klein A, “MICCAI multi-atlas 
labeling beyond the cranial vault – workshop and challenge,” 2015.

[52]. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z et al., “Automatic differentiation in 
PyTorch,” in NIPS 2017 Workshop Autodiff, 2017.

[53]. Chen L-C, Papandreou G, Schroff F, and Adam H, “Rethinking atrous convolution for semantic 
image segmentation,” arXiv preprint arXiv:1706.05587, 2017.

[54]. Heller N, Isensee F, Maier-Hein KH, Hou X, Xie C, Li F et al., “The state of the art in kidney and 
kidney tumor segmentation in contrast-enhanced ct imaging: Results of the KiTS19 challenge,” 
arXiv preprint arXiv:1912.01054, 2019.

[55]. Vorontsov E, Tang A, Pal C, and Kadoury S, “Liver lesion segmentation informed by joint liver 
segmentation,” in ISBI, 4 2018, pp. 1332–1335.

[56]. Yuan Y, “Hierarchical convolutional-deconvolutional neural networks for automatic liver and 
tumor segmentation,” arXiv:1710.04540, 2017.

Fang and Yan Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
(a) Pyramid convolution structure of Skip-Net in the most commonly seen form of U-Net. 

(b) Pyramid input analysis (P-IA) applies pyramid parsing to the input and pyramid feature 

analysis (P-FA) uses pyramid parsing on the intermediate features. (c) Our proposed 

pyramid feature abstraction network analyzes pyramid input with Equal Depth Convolution 

(EDC) and fuses the pyramid output to achieve improved segmentation.
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Fig. 2. 
Sample images from the datasets of LiTS, KiTS, Spleen, and BTCV. Some organs are 

included in all the datasets but only annotated in no more than two of them.
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Fig. 3. 
Overview of the PIPO architecture. With the designed architecture, image information 

propagates from pyramid input to pyramid output through hierarchical abstraction and 

combination at each level.
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Fig. 4. 
Adaptive fusion of the multi-scale output segmentation features from PIPO-FAN. Features 

from lower scales tend to represent specific local segmentation, while features from higher 

scales are blurry but carry class information. Adaptive weights are computed by applying a 

shared convolutional module to the pyramid output features.
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Fig. 5. 
Segmentation examples on BTCV data. Each row from left to right shows the following 

images in order: (i) input image, (ii) ground truth segmentation, (iii) segmentation results of 

models trained with BTCV only, (iv) with partially labeled data, and (v) with all the datasets, 

respectively. Red, blue and green colors depict the segmentation of the liver, the spleen, and 

the kidney, respectively.
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Fig. 6. 
Segmentation examples of different methods on LiTS data. From left to right are the raw 

image, results of U-Net, ResU-Net, DenseU-Net and our proposed PIPO-FAN, the red 

depicts correctly predicted liver segmentation, the blue shows false positive, green shows 

false negative.

Fang and Yan Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fang and Yan Page 22

TA
B

L
E

 I

C
om

pa
ri

so
n 

of
 f

ea
tu

re
s 

in
 U

-N
et

 a
nd

 P
IP

O
-F

A
N

.

F
ea

tu
re

s
E

nc
od

in
g

D
ec

od
in

g

U
-N

et
f s

,j 
=

 P
oo

l(
C

on
v(

f s
−

1,
j−

1)
),

 j 
=

 s
f s

,j 
=

 C
on

ca
t(

U
ps

am
pl

e(
C

on
v(

f s
,j−

1)
),

C
on

v(
f s

,s
))

, j
 =

 s

P
IP

O
-F

A
N

f s
,j

=
Co

nv
f s

,j
−

1
,

j<
s

Co
nv

f s
,j

−
1

+
Po

ol
Co

nv
f s

−
1,

j−
1

,j
=

s
f s

,j
=

Co
nc

at
U

ps
am

pl
e

Co
nv

f s
,j

−
1

,C
on

v
f s

,s
,j

+
s=

2S
Co

nv
f s

,j
−

1
,

j+
s>

2S

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fang and Yan Page 23

TABLE II

Segmentation performance using different combinations of datasets (Dice %)

Datasets Liver Kidney Spleen Average

BTCV 95.8 92.7 92.3 93.6

BTCV + LiTS 95.6 91.6 95.4 94.2

BTCV + KiTS 94.2 91.9 94.5 93.5

BTCV + Spleen 95.9 93.5 93.8 94.4

LiTS + KiTS + Spleen 95.6 91.6 93.8 93.7

All datasets 95.9 91.9 95.5 94.4
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TABLE III

Performance comparison with other networks on the BTCV dataset. (Dice %)

Architecture Liver Kidney Spleen Average

U-Net [7] 95.6 89.7 91.0 92.1

ResU-Net [11] 95.1 91.3 90.9 92.4

DeepLabV3 [53] 94.2 86.0 87.4 89.2

PIPO 95.7 92.6 90.1 92.8

PIPO-FAN 95.8 92.7 92.3 93.6
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TABLE IV

Performance comparison with other networks on the combined all datasets. (Dice %)

Architecture Liver Kidney Spleen Average

U-Net [7] 95.9 92.7 93.5 94.0

DeepLabV3 [53] 94.1 89.6 90.9 91.5

PIPO-FAN 95.9 91.9 95.5 94.4
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TABLE V

Five-fold cross validation against other benchmark methods on two open challenge datasets. (Dice %)

Architecture LiTS KiTS

U-Net [7] 93.9 ± 0.50 95.8 ± 0.91

ResU-Net [11] 94.1 ± 0.88 94.8 ± 1.06

DenseU-Net [2] 94.1 ± 0.30 94.2 ± 2.08

PIPO 95.3 ± 0.62 96.5 ± 0.55

PIPO-FAN 95.6 ± 0.48 96.2 ± 1.02
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TABLE VI

Ablation study of PIPO-FAN Network structures on LiTS dataset (Dice %)

Architecture Avg. Dice Glb. Dice

Single-scale input/output 94.1 94.5

PIPO w/o ECD 95.1 95.2

PIPO-FAN w/o ECD 95.2 95.1

PIPO with ECD 95.3 95.4

PIPO-FAN with ECD 95.6 95.8
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TABLE VII

Performance evaluation of varying the numbers of the input and output scales on LiTS dataset.

Input scale Output scale Avg. Dice Parameter numbers

1 1 94.1 13,395,394

3 1 94.9 15,981,634

5 1 94.5 24,740,034

3 3 95.1 16,258,566

5 3 95.3 25,016,966

5 5 95.6 28,270,986
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TABLE VIII

Comparison of segmentation accuracy (Dice %) on the LiTS test dataset. Results are taken from the challenge 

website (accessed on September 11, 2019).

Methods # of Steps Avg. Dice Glb. Dice

Vorontsov et al. [55] 1 95.1 -

H-DenseUNet [2] 2 96.1 96.5

DeepX [56] 2 96.3 96.7

2D DenseUNet [2] 2 95.3 95.9

PIPO-FAN (ours) 1 96.1 96.5
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