Skip to main content
. 2020 Nov 13;25(11):116502. doi: 10.1117/1.JBO.25.11.116502

Table 2.

Comparison of classification performance on individual RBCs using Mask R-CNN, XGBoost with manual delineation and XGBoost with Mask R-CNN segmentation results.

Method Sensitivity (%) Specificity (%) F1-score AUC Accuracy (%)
Mask R-CNN 97.1 98.5 0.975 0.982 97.8
XGBoost with MD 99.9 100 0.992 0.999 99.9
XGBoost with Mask R-CNNa 99.9 100 0.992 0.999 99.9

Note: AUC, area under the receiver operating characteristic curve; MD, manual delineation.

a

XGBoost classifier trained with the segmentation results from Mask R-CNN.