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Abstract

The cortex plays an important role in regulating motivation and cognition, and does so by regulating multiple
subcortical brain circuits. Glutamatergic pyramidal neurons in the prefrontal cortex (PFC) are topographically
organized in different subregions such as the prelimbic, infralimbic (IL), and orbitofrontal and project to topo-
graphically-organized subcortical target regions. Dopamine D1 and D2 receptors are expressed on glutamater-
gic pyramidal neurons in the PFC. However, it is unclear whether D1 and D2 receptor-expressing pyramidal
neurons in the PFC are also topographically organized. We used a retrograde adeno-associated virus
(AAVRG)-based approach to illuminate the topographical organization of D1 and D2 receptor-expressing neu-
rons, projecting to distinct striatal and midbrain subregions. Our experiments reveal that AAVRG injection in
the nucleus accumbens (NAcc) or dorsal striatum (dSTR) of D1Cre mice labeled distinct neuronal subpopula-
tions in medial orbitofrontal or prelimbic PFC, respectively. However, AAVRG injection in NAcc or dSTR of
D2Cre mice labeled medial orbitofrontal, but not medial prelimbic PFC, respectively. Additionally, D2R+ but
not D1R+ PFC neurons were labeled on injection of AAVRG in substantia nigra pars compacta (SNpc). Thus,
our data are the first to highlight a unique dopamine receptor-specific topographical pattern in the PFC, which
could have profound implications for corticostriatal signaling in the basal ganglia.
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Cortical dopamine is critical for motivation and cognition, and its dysfunction is implicated in multiple psychiatric
disorders. Cortical dopamine mediates its effects through dopamine receptors expressed on neurons that con-
nect to multiple brain regions. Our data highlight that dopamine receptor-expressing pyramidal neurons in the
cortex are more organized than previously thought. Dopamine receptor-expressing pyramidal cortical neurons
are organized in distinct subcircuits that project to different target brain regions. Our findings will help us better
understand the regional and global effects of cortical dopamine and its receptors, and how these discrete path-
\ways regulate distinct dopamine-dependent functions such as reward, movement, and cognition. /

ignificance Statement

Introduction

Dopamine regulates normal processes such as motiva-
tion, reinforcement-based learning, reward and move-
ment (Schultz, 2002; Palmiter, 2008), and its dysfunction
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is implicated in many psychiatric and neurologic disorders
such as schizophrenia, Parkinson’s disease, obsessive
compulsive disorder, attention deficit hyperactivity disor-
der (ADHD), and addiction (Robinson et al., 2006; Sulzer,
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2011; Yager et al., 2015; Zhai et al., 2018; Abi-Dargham,
2020).

The striatum is the main input center of the basal ganglia,
receiving input from cortical, thalamic, limbic and dopami-
nergic nuclei (Ikemoto and Bonci, 2014). Glutamatergic sig-
nals from cortical areas, and dopamine signals from
midbrain dopaminergic nuclei act on spiny projection neu-
rons (SPNs) in the striatum. The SPNs integrate both gluta-
mate and dopamine signals and coordinate various aspects
of learning and behavior (Horvitz, 2009; Shiflett and Balleine,
2011; Bamford et al., 2018).

Afferent cortical glutamatergic inputs into the striatum
originate within various medial or lateral subregions of the
prefrontal cortex (PFC) such as the prelimbic, infralimbic
(IL), orbitofrontal, and motor cortex. The PFC plays a criti-
cal role in motivation and cognition (Balleine and
O’Doherty, 2010; Smith and Graybiel, 2014). Within the
medial and lateral PFC, topographically-organized re-
gions such as the dorsally located prelimbic corticostriatal
neurons, and the ventral IL or orbitofrontal PFC (OFC)
neurons have dissociable effects on motivated behavior
and cognitive flexibility (Killcross and Coutureau, 2003;
Rudebeck and Murray, 2011; Ahmari et al., 2013;
Burguiére et al., 2013; Gremel and Costa, 2013; Barker et
al.,, 2017; Hart et al., 2018). Although, these studies ele-
gantly outline the role of sub-regions in the PFC or stria-
tum, few studies have explored the neuronal and
molecular diversity of PFC pyramidal neurons involved in
regulating motivation and cognition.

Dopamine and its receptors in the PFC also regulate
motivated behavior and cognitive flexibility (Goldman-
Rakic, 1998; Hitchcott et al., 2007; Barker et al., 2013;
Natsheh and Shiflett, 2018; Ott and Nieder, 2019).
Dopamine activates D1 and D2 class of receptors in the
PFC that signal through stimulatory Gas or inhibitory Gai
proteins, respectively, and through g-arrestins as well,
which modulate the activity of both pyramidal neurons
and interneurons (Tseng and O’Donnell, 2004, 2007;
Beaulieu et al., 2007; Santana et al., 2009; Urs et al.,
2016; Ferguson and Gao, 2018; Tomasella et al., 2018;
Cousineau et al., 2020). Moreover, pharmacological tar-
geting of D1Rs or D2Rs, or genetic deletion of D2Rs in the
PFC can regulate dopamine-dependent behaviors such
as locomotion, cognition, and goal-directed behavior (Del
Arco et al., 2007; Hitchcott et al., 2007; Barker et al.,
2013; Urs et al.,, 2016; Natsheh and Shiflett, 2018;
Tomasella et al., 2018; Khighatyan and Beaulieu, 2020).
Although PFC dopamine receptors play an important role
in motivation and cognition, the topographical distribution
of D1R+ or D2R+ pyramidal neurons in specific subre-
gions of the PFC is not known. Here, we use a retrograde
adeno-associated virus (AAVRG)-based approach to
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identify distinct topographically-organized subpopula-
tions of D1R+ and D2R+ pyramidal neurons in the PFC
based on their target projection areas. Given the role of
various subregions of the PFC in motivated behavior and
cognition, and the heterogeneity of these regions, the ef-
fects of dopamine and its receptors within these subre-
gions will expand our understanding of the molecular and
neuronal mechanisms regulating motivated behavior and
cognition.

Materials and Methods

Animals

All mouse studies were performed according to NIH guide-
lines for animal care and use, and were approved through the
University Animal Care and Use Committee. All mice were
housed in a 12/12 h light/dark cycle at a maximum of five per
cage, provided with food and water ad libitum, and tested at
8-12 weeks of age. Mice were age matched and mice of
both sexes were used, and all experiments were performed
in naive animals. Dopamine D1 receptor Cre (D1Cre, EY262)
and Dopamine D2 receptor Cre (D2Cre, ER44) transgenic
mice were obtained from MMRRC. Cre+ hemizygous trans-
genics were used for all experiments.

Viral surgeries

D1Cre or D2Cre mice were stereotaxically injected uni-
laterally with 40- to 100-nl AAVRG, AAVRG-CAG-Flex-
TdTomato (Addgene #238306) and AAVRG-hSyn-DIO-
GFP (Addgene #50457). Stereotaxic coordinates are as
follows: dorsal striatum (dSTR; AP +1.0, ML +1.8, DV
—3.25), nucleus accumbens (NAcc) core (AP +1.0, ML
+1.0, DV —4.75), dorsomedial striatum (DMS; AP +1.0,
ML +1.2, DV —2750), dorsolateral striatum (DLS; AP
+1.0, ML +2.2, DV —8.25); and substantia nigra pars
compacta (SNpc; AP +3.5, ML +1.25, DV —4.1). Mice
were allowed to recover for two weeks to allow for viral ex-
pression of GFP or TdT before imaging and counting of
cells.

Immunostaining, imaging, and quantification

40 um thick vibratome cut sections of formalin-fixed
mouse brains were processed for imaging. Sections
from rostral, rostrocaudal, and caudal PFC, and striatal
and midbrain sections were imaged using a Nikon
AZ100 Zoom microscope, using the same exposure
across genotypes for an injection pair. Captured im-
ages were used for quantifying number of fluorescent
cells for each channel (GFP and TdT) in different subre-
gions of rostral, rostrocaudal, and caudal PFC using
Imaged (NIH), and threshold was kept the same be-
tween genotypes and injection pairs. At least three sec-
tions from rostral, rostrocaudal, and caudal PFC were
analyzed for each mouse, with an n=5 mice per injec-
tion pair. For glutamatergic or GABAergic marker iden-
tification, we performed antigen retrieval in citrate
buffer at 80°C on virally injected PFC sections, and co-
labeled with antibodies to GFP (Frontier Institute, catalog
#AB_2571575), RFP (Rockland, catalog #600-401-379),
CamKlla (Enzo Life Sciences, catalog #ADI-KAM-
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Figure 1. Unique topographically organized subpopulations of D1R+ and D2R+ PFC neurons project to dSTR and NAcc. PFC sections
from D1Cre (Ai) and D2Cre (Bi) mice showing cell bodies retrograde labeled with both TdTomato and GFP. Left panels, Zoomed insets of me-
dial PrL and MO showing layer-specific localization of cell bodies. PrL, prelimbic; Cg1, anterior cingulate; MO, medial orbitofrontal; VO, ventral
orbitofrontal; LO, lateral orbitofrontal; Al, agranular Insular; M1, primary motor; M2, secondary motor cortex. Aii, Bii, Injection sites are shown in
striatal (STR) sections along with midbrain SNpc/VTA (SN VTA) sections. D1Cre and D2Cre mice were injected with Cre-dependent retrograde
AAV, AAVRG-CAG-Flex-TdTomato, and AAVRG-hSYN-DIO-GFP in dSTR (100 nl) and NAcc (100 nl). Representative images (n=5). C, D,
Quantification of number of cells. Data are represented as mean = SEM,; n.s., not significant; *xp < 0.01, two-way ANOVA. Scale bar: 100 um.

CA002-D), parvalbumin (PV; Frontier Institute, catalog
#AB_2571613), and GAD 65/67 (Frontier Institute, cata-
log #AB_2571698). Imaging for PV and GAD colabeling
were done using the Nikon AZ100 zoom microscope.
Imaging for CamKlIla labeling was done using a Nikon
spinning disk confocal (CSU-X1, Yokogawa) with either
10x or 60x objective on an inverted microscope (Nikon
Ti2-E), with a back-thinned sCMOS camera (Prime 95B,
Photometrics).

Statistical analyses

Data were analyzed by a standard two-way ANOVA test
for comparison between genotypes, and injection pairs.
Individual genotypes, or injection pairs were compared
using a post hoc Tukey’s test. Data are presented as
mean * SEM, p < 0.05 is considered as significant.

Results

For this study, we focused primarily on dopamine-re-
lated subcortical target regions such as the striatum and
midbrain dopamine nuclei, i.e., SNpc. The striatum itself
can be topographically divided along the dorsoventral or
mediolateral axes, into the dorsal and ventral striatum, or
DMS and DLS, respectively.

Dorsoventral topographical distribution of D1R+ and
D2R+ neurons in the PFC

We first injected AAVRGs in topographically distinct tar-
get regions along the dorsoventral axis in the dSTR and
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the NAcc core within the ventral striatum, respectively, of
either D1Cre or D2Cre mice. A total of 100 nl of AAVRG-
CAG-Flex-TdTomato and AAVRG-hSyn-DIO-GFP were
stereotaxically injected in the dSTR or NACC core (for co-
ordinates, see Materials and Methods), respectively. As
shown in Figure 1, we observed distinct topographically-
organized patterns of GFP (dSTR) and TdT (NAcc core)
positive cells in the PFC of D1Cre and D2Cre mice. For
D1Cre mice, AAVRG injection in the dSTR (GFP+) and
NAcc (TdT+) labeled distinct minimally overlapping sub-
populations of dorsally located layer 5, and ventrally lo-
cated layer 2/3 neuronal cell bodies in the PFC,
respectively (Fig. 1Ai). The dSTR projecting neurons were
primarily localized to dorsally located prelimbic/cingulate
(Cg1/PrL) and motor cortex (M1/M2), and mediolaterally
located ventral/lateral OFC (VO/LO), whereas the NAcc
projecting neurons were primarily localized to the ventrally
located medial OFC and IL (MO/IL) regions. Quantifying
the number of cell bodies in these regions from rostral,
rostrocaudal, and caudal PFC sections (see Materials and
Methods) revealed minimal overlap (~5%) between the
PrL and MO/IL subpopulations (x*¥p < 0.01, two-way
ANOVA; Fig. 1C). “D1-dSTR,” Cg1/PrL: 145 = 11.3; MO/
IL: 22.5+3.9; VO/LO: 121.7 =16; M1/M2: 122 +11.2
neurons, and “D1-NAcc,” Cgi1/PrL: 20.8 +9.1; MO/IL:
93.4 +10.6; VO/LO: 10.1 £2.2; M1/M2: 6.7 = 6.6 neu-
rons. In contrast, for D2Cre mice, AAVRG injection in the
dSTR and NAcc labeled predominantly ventrally located
TdT+ layer 5 neuronal cell bodies in MO/IL, but few dor-
sally located GFP+ neurons in Cg1/PrL (Fig. 1Bi).
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Figure 2. Unique topographically organized subpopulations of D1R+ and D2R+ PFC neurons project to dSTR and SNpc. PFC sec-
tions from D1Cre (Ai) and D2Cre (Bi) mice showing cell bodies retrograde labeled with either GFP or TdTomato, respectively. Left
panels, Zoomed insets of medial PrL and MO showing layer-specific localization of cell bodies. PrL, prelimbic; Cg1, anterior cingu-
late; MO, medial orbitofrontal; VO, ventral orbitofrontal; LO, lateral orbitofrontal; M1, primary motor; M2, secondary motor cortex.
Alii, Bii, Injection sites are shown in striatal (STR) and midbrain SNpc/VTA (SN VTA) sections. D1Cre and D2Cre mice were injected
with Cre-dependent retrograde AAV, AAVRG-CAG-Flex-TdTomato, and AAVRG-hSYN-DIO-GFP in dSTR (100 nl) and SNpc (40 nl).
Representative images (n=5). C, D, Quantification of number of cells. Data are represented as mean = SEM; #p < 0.05, *xp < 0.01,

two-way ANOVA. Scale bar: 100 pm.

Quantifying the number of cell bodies in these regions re-
vealed minimal overlap of TdT+ neurons (~15%) be-
tween the PrL and MO/IL subpopulations (x#p < 0.01,
two-way ANOVA; Fig. 1D). The NAcc projecting neurons
were primarily localized to the ventrally located MO and IL
(MO/IL) regions, whereas the few dSTR projecting neu-
rons were primarily localized to M1/M2 and VO/LO re-
gions. “D2-dSTR,” Cg1/PrL: 7 =1.8; MO/IL: 3.7 = 1; VO/
LO: 24.4+5.9; M1/M2: 45.7 =11.8 neurons, and “D2-
NAcc,” Cg1/PrL: 55.7 = 9.7; MO/IL: 162.9 = 25.5; VO/LO:
32.8 =6.1; M1/M2: 5.6 = 1.7 neurons. Thus, in the medial
PFC of D2Cre mice, MO/IL neurons were predominantly
labeled, but not Cg1/PrL neurons.

In both D1Cre and D2Cre mice, distinct projection fi-
bers were observed in midbrain regions, i.e., SNpc and
substantia nigra pars reticulata (SNpr). In the D1Cre mice,
GFP+ projection fibers (from dSTR) were observed in the
SNpr, whereas, TdT+ projection fibers were observed in
the SNpc (Fig. 1Aii). In contrast, for the D2Cre mice only
TdT+ projection fibers were observed in the SNpc, and
no labeling in the SNpr (Fig. 1Bii).

PFC projection neurons are primarily glutamatergic, but
some studies have shown that a small percent of these
projection neurons can be GABAergic (Lee et al., 2014;
Melzer et al., 2017), and contribute to physiological out-
comes. To confirm whether these retrogradely labeled
neurons are glutamatergic or GABAergic, we performed
colocalization studies with known glutamatergic neuron
marker CamKlla, and known GABAergic neuron markers
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GAD 65/67 and parvalbumin (PV). As seen in Extended
Data Figure 1-1, retrogradely labeled neurons in D1 or
D2Cre mice predominantly colocalize with CamKlla but
not with GAD or PV, thus confirming a glutamatergic iden-
tity of these corticostriatal projection neurons.

PFC pyramidal neurons also send projections to mid-
brain regions, specifically to dopamine nuclei (Watabe-
Uchida et al.,, 2012; Murugan et al., 2017). However,
whether D1R+ and D2R+ PFC neurons send projections
to midbrain dopamine neurons is not known. We injected
AAVRGs in dSTR (GFP) as reference, and in SNpc (TdT) of
D1Cre or D2Cre mice. For D1Cre mice, similar to Figure 1,
injection in the dSTR labeled predominantly distinct Cg1/
PrL, VO/LO and M1/M2 localized populations of PFC (Fig.
2Ai). However, for SNpc injections we saw minimal label-
ing of PFC neurons (Fig. 2Ai). Quantification of neurons
from these regions show a similar predominant labeling of
GFP+ neurons in Cg1/PrL as in Figure 1 (+#p < 0.01, two-
way ANOVA; Fig. 2B), but minimal TdT+ (SNpc) labeling.
In contrast, for the D2Cre mice we observed minimal
GFP+ labeling similar to Figure 1, but we observed robust
TdT+ (SNpc) labeling of PFC neurons (Fig. 2Bi). TdT+
SNpc labeling was presumably from dopamine neurons
since dense TdT+ axonal projections were seen in the
dSTR (Fig. 2Bii). Quantification of labeled neurons from
these regions revealed however, that there was no topo-
graphical pattern for the midbrain projecting D2R+ neu-
rons (++p <0.01, two-way ANOVA,; Fig. 2D). “D2-SNpc,”
Cg1/PrL: 22.7 £ 4.3; MO/IL: 17.0 = 3.4 VO/LO: 39.6 £ 7.1;
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Figure 3. Comparison of topographical distribution of D1R+ and D2R+ PFC neurons along the rostrocaudal axis. A, Quantification
of GFP+ (dSTR) cells in PFC sections along the rostrocaudal axis of D1Cre and D2Cre mice. Right panel, Representative images
and stereotaxic coordinates of rostral, rostrocaudal, and caudal PFC sections. B, Quantification of TdT+ (NAcc core) cells in PFC
sections along the rostrocaudal axis of D1Cre and D2Cre mice. C, Quantification of TdT+ (SNpc) cells in PFC sections along the
rostrocaudal axis of D1Cre and D2Cre mice. PrL, prelimbic; Cg1, anterior cingulate; MO, medial orbitofrontal; VO, ventral orbitofron-
tal; LO, lateral orbitofrontal; Al, agranular insular; M1, primary motor; M2, secondary motor cortex; n=5 for each group; n.s., not sig-
nificant. Data are represented as mean = SEM; #p < 0.05, *xp < 0.01, two-way ANOVA.

M1/M2: 29.4 + 4.5 neurons. Similar patterns were observed
for ventral tegmental area (VTA) injections for both D1Cre
and D2Cre mice as well (Extended Data Fig. 2-1). Together,
these data suggest that predominantly D2R+ and not
D1R+ PFC neurons project to midbrain dopamine neurons.

Figure 3 shows a more detailed comparison of PFC to-
pographical patterns of D1Cre and D2Cre mice for each
injection site, i.e., dSTR, NAcc, and SNpc, along the ros-
trocaudal axis, for the same mice used in Figures 1, 2. For
dSTR (Fig. 3A), D1R+ neurons were the predominantly la-
beled subpopulation across the rostrocaudal axis, in all

September/October 2020, 7(5) ENEURO.0194-20.2020

regions (Cg1/PrL, VO/LO, M1/M2) except in the MOV/IL re-
gion in rostrocaudal and caudal regions. D2R+ neuron la-
beling ranged from 1% to 28% compared with D1R+
neurons for all regions except rostrocaudal and caudal
MOY/IL. For NAcc (Fig. 3B), both D1R+ and D2R+ neurons
showed robust labeling across the rostrocaudal axis, with
more D2R+ neuron labeling than D1R+ in only the rostral
and caudal sections. For SNpc (Fig. 3C), D2R+ neurons
were predominantly labeled, showing an incremental gra-
dient along the rostrocaudal axis, whereas only 16-20%
were D1R+.

eNeuro.org
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Figure 4. Topographical organization D1R+ and D2R+ neurons projecting to DMS and DLS. PFC sections from D1Cre (Ai) and
D2Cre (Bi) mice showing cell bodies retrograde labeled with either GFP or TdTomato, respectively. Left panels, Zoomed insets of
medial PrL and MO showing layer-specific localization of cell bodies. PrL, prelimbic; Cg1, cingulate; MO, medial orbitofrontal; Al,
agranular insular; M1, primary motor; M2, secondary motor cortex. Aii, Bii, Injection sites are shown in DMS and DLS subregions in
striatal sections. D1Cre and D2Cre mice were injected with Cre-dependent retrograde AAV, AAVRG-CAG-Flex-TdTomato, and
AAVRG-hSYN-DIO-GFP in DMS (50 nl) and DLS (50 nl). Representative images (n=5). C, D, Quantification of number of cells from
D1Cre and D2Cre mice. E, F, Comparison of number of labeled cells in PFC of D1 and D2Cre mice projecting to DMS and DLS sub-
regions. Data are represented as mean = SEM; #p < 0.05, ##p < 0.01, two-way ANOVA. Scale bar: 100 um.

Mediolateral topographical distribution of D1R+ and
D2R+ neurons in the PFC

In the previous experiments, the injection sites were
along the dorsoventral axis in the dorsocentral striatum
and NAcc core. However, within the dSTR, both medial
and lateral subregions have specific roles in motivated be-
haviors. The DMS is involved in the acquisition of goal-di-
rected actions, whereas the DLS regulates acquisition of
habitual behaviors (Yin et al., 2005, 2006). Previous stud-
ies however show that mPFC pyramidal neurons primarily
project to the DMS whereas more posterior lateral senso-
rimotor cortex neurons project to the DLS (Shiflett and
Balleine, 2011; Kupferschmidt et al., 2017).

We next asked the question whether PFC D1R+ and
D2R+ neurons have specific projection pattern to the
DMS or DLS. Similar to Figures 1, 2, we injected 50 nl of
Cre-dependent AAVRG GFP and AAVRG TdT in the DMS
and DLS, respectively, of D1Cre and D2Cre mice. As
seen in Figure 4, we observe distinct topographical pat-
terns for D1R+ and D2R+ neurons projecting to DMS
and DLS. For DMS injection in D1Cre mice, we ob-
served robust GFP+ labeling predominantly in the PrL
(67 =12.5 neurons), whereas for DLS injection we
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observed robust TdT+ labeling predominantly in M1/
M2 (118.3 =12 neurons) and Al (146 =24.1 neurons;
Fig. 4A,C). Overall, very few D2R+ neurons project to
either DMS or DLS (Fig. 4B,D). Comparison of patterns
of D1Cre and D2Cre mice for DMS show that only Cg1/
PrL has significantly greater labeling of D1R+ neurons
(*%p < 0.01, two-way ANOVA; Fig. 4E). For DLS, how-
ever, Cg1/PrL, Al, and M1/M2 show significantly greater
labeling for D1Cre compared with D2Cre mice
(¥%p < 0.01, two-way ANOVA; Fig. 4F).

Discussion

D1R+ and D2R+ neurons are found throughout all PFC
subregions (Santana and Artigas, 2017; Anastasiades et
al., 2019; Yu et al., 2019; Khighatyan and Beaulieu, 2020),
but this widespread expression pattern does not ad-
equately explain how these neurons mediate distinct
physiological and behavioral outcomes. In this study, we
show a previously unappreciated distinct topographical
organization of D1R+ and D2R+ neurons in the PFC of
mice. As summarized in Figure 5, we observe distinct to-
pographical organization patterns of D1R+ and D2R+
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Figure 5. Summary of topographical organization of D1R+ and
D2R+ pyramidal neurons in mouse PFC. D1R+ neurons repre-
sented by black circles and D2R+ neurons are represented by
white circles. Circle borders represent corticostriatal projection
targets. Size of the circle represent abundance of projections to
target regions.

neurons along the dorsoventral and mediolateral axes,
based on their projection target. Along the dorsoventral
axis, PFC D1R+ neurons are topographically organized
such that D1R+ neurons in prelimbic regions primarily
project to the dSTR, whereas D1R+ neurons in MO and IL
regions primarily project to the NAcc core. In contrast, PFC
D2R+ neurons have a distinct pattern of organization,
such that very few prelimbic D2R+ neurons project to
dSTR, but MO and IL D2R+ neurons project to NAcc core,
similar to D1R+ neurons. Along the mediolateral axis,
D1R+ neurons in the medial prelimbic region primarily pro-
ject to DMS, whereas D1R+ neurons in M1/M2 motor and
agranular insular cortex primarily project to DLS. In con-
trast, very few D2R+ neurons project to either DMS or
DLS. However, medial PFC D2R+ but not D1R+ neurons
project to midbrain dopamine nuclei. Thus, our data pro-
vide, for the first time a detailed insight into the anatomic
organization of D1R+ and D2R+ neurons in the PFC.

In this study, we use AAVRGs to identify afferent PFC
inputs into various striatal and midbrain regions. One po-
tential caveat with using AAVRGs is that we cannot con-
trol for variability of infection at the injection site, even if
we inject the same volume of AAV. However, one advant-
age of using AAVRGs is that target neurons can be specif-
ically labeled in a Cre-dependent manner, and therefore
label cell bodies of specific populations of neurons using
transgenic Cre mice. Our data are consistent with previ-
ous findings that D1R+ neurons are primarily corticostria-
tal, whereas D2R+ neurons are corticostriatal and also
project to more caudal regions such as the thalamus (Gee
et al.,, 2012). Other groups have also shown that PFC
D1R+ and D2R+ neurons also project to other limbic
areas such as the basolateral amygdala (BLA; Jenni et al.,
2017). PFC neurons projecting to BLA, NAcc, or VTA are
not only distinct subpopulations but also have distinct
laminar distribution (Murugan et al., 2017). In this study
we see distinct laminar distribution of both D1R+ and
D2R+ PFC neurons. “D1-dSTR” prelimbic neurons are
predominantly localized to layer 5, whereas “D1-NAcc”
MOY/IL neurons are predominantly localized to layer 2/3.
Interestingly, “D2-NAcc” MO/IL neurons are predomi-
nantly localized to layers 2/3 and 5.
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Our data also suggest that distinct predominantly
D1R+ neuron subpopulations along the mediolateral axis
(Cg1/PrL vs M1/M2/Al), project to the DMS and DLS, re-
spectively. However, D2R+ PFC neurons do not project
to either DMS or DLS. Thus, D1R+ PFC neurons might be
directly involved in regulation of switching between goal-
directed versus habitual actions (Yin et al., 2005, 2006).
Interestingly, a similar topographical pattern is maintained
within the SNpc, where medial and lateral dopamine neurons
project to DMS and DLS, respectively (Lerner et al., 2015).

The dSTR-NAcc injections (Fig. 1) reveal distinct projec-
tion fiber patterns in the SNpr and SNpc. For injections in
dSTR, we observed projection fibers in the SNpr only in
D1Cre and not D2Cre mice, consistent with AAVRG-GFP
labeling striatal D1R+ direct pathway SPNs. However, for
NAcc core injections, we observe projection fibers in the
medial SNpc and not the SNpr in both D1Cre and D2Cre
mice. Our findings are consistent with previous observa-
tions that D1R+ and D2R+ NAcc core SPNs do not follow
the traditional direct/indirect dichotomy like dSTR SPNs,
and instead send projections to ventral pallidum (VP) or
midbrain (Sesia et al., 2014; Kupchik et al., 2015; Pardo-
Garcia et al., 2019). Moreover, these studies suggest that
both D1R+ and D2R+ NAcc core SPNs project to VP, but
only D1R+ NAcc core SPNs project to the midbrain.
Although we observe projection fibers in the SNpc of
D2R+ mice, these are likely direct projections from the
MO/IL PFC (Fig. 2B), and not from NAcc core SPNs.
Thus, D1R+ pyramidal neurons in the MO/IL projecting to
NAcc core, can not only release glutamate and regulate
excitability of GABAergic SPNs, but also modulate dopa-
mine release in the DMS by indirectly acting on medial
SNpc dopamine neurons. In contrast, D2R+ pyramidal
neuron in the MO/IL project directly to both NAcc core
and SNpc. One possible caveat of this interpretation is
that by using AAVRGs we are unable to establish whether
these fibers in the SNpc are afferents on GABAergic or
dopaminergic neurons. A more sophisticated approach
with rabies virus retrograde labeling, with Cre-dependent
labeling of target neurons is required to confirm our
interpretation.

The dSTR is topographically divided into the DMS and
DLS, which have been implicated in action-outcome
learning and stimulus-response learning, respectively,
whereas the NAcc has been implicated in reward percep-
tion (Shiflett and Balleine, 2011). D1R+ and D2R+ neu-
rons in topographically organized regions in the PFC can
thus have various effects on physiology and behavior de-
pending on their striatal or midbrain projection target, and
modulation by cortical dopamine.

llluminating this unique pattern of organization of D1R+
and D2R+ neurons in the PFC will help us better under-
stand the regional and global effects of cortical dopamine
and dopamine receptors in the regulation of motivation
and cognition.
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