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Abstract
From a holistic point of view, aging results from the cumulative erosion of the various systems. Among these, the immune system is
interconnected to the rest as immune cells are present in all organs and recirculate through bloodstream. Immunosenescence is the term
used to define the remodelling of immune changes during aging. Because immune cells—and particularly lymphocytes—can further
differentiate after their maturation in response to pathogen recognition, it is therefore unclear when senescence is induced in these cells.
Additionally, it is also unclear which signals triggers senescence in immune cells (i) aging per se, (ii) specific response to pathogens,
(iii) underlying conditions, or (iv) inflammaging. In this review, we will cover the current knowledge and concepts linked to
immunosenescence andwe focus this review on lymphocytes and T cells, which represent the typical model for replicative senescence.
With the evidence presented, we propose to disentangle the senescence of immune cells from chronological aging.

Introduction

The interest in aging studies has grown with the number of
elderly individuals in our societies. There is the opportunity to
increase health span by better understanding the process of
aging and why disease becomes more prevalent. Early studies
on aging humans revealed the reduced capacity of leukocytes
to produce certain cytokines or to proliferate in response to
in vitro stimulation [1] and, thus, emerged the concept of
immunosenescence, which is coined for the age-related im-
mune erosion. While a significant number of studies focused
on lymphocytes are particularly T cells, there are older theo-
ries that innate immunity may have a preponderant implica-
tion in the process and signs of aging [2]. Immunosenescence
is often pointed to explain the reduce responsiveness to

vaccination in older adults. However, not all elderly show
hypo-responsiveness towards vaccination and some older
adults are able to maintain a fully functional immune system
during old age. This then poses an essential question: what is
immunosenescence and when does it apply? In this review,
we will cover the global changes observed in the major organ
system with a focus on the immune system. We will cover the
most updated findings in the field and propose why and how
we should better redefine immunosenescence.

Aging of the major organ system

Aging differentially affects the human body, with studies sug-
gesting that different organs and even regions within the same
organ can change at different rates (Fig. 1) [3]. Therefore,
even if our body and the individual organ systems are of the
same chronological age, we should be more focused on mea-
suring our “biological age”, which tracks the detrimental ef-
fect of time on each of our organs, especially because these
effects vary between individuals [4]. Regardless, there are
some important structural and functional changes that occur
in the major organs system that we will briefly cover in this
section.

Brain aging

One major organ system associated with aging is our
brain and central nervous system. Aging is associated
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with a shrinkage in brain volume, although the exact
cause of this decrease is not definitively known [5]. The
prevailing theories for this observation are neuronal cell
death and/or a reduction in neuronal volume [6]. In addi-
tion, changes in the neuronal structure have also been
described, such as synaptic pruning [6], dendritic
sprouting [7], and deterioration of the myelin sheath,
which can then affect cognition [8]. Different areas of
the brain exhibit different rates of shrinkage at different
ages [9]. A longitudinal study found that the cross-
sectional whole brain, temporal lobe, and hippocampus
volumes decreased with age, with an accelerated atrophy
rate after 70 years of age [9]. Multiple cross-sectional
studies were also reviewed, and the authors concluded
that the prefrontal cortex was the most affected area of
the brain with age [10]. In addition to a decreased brain
volume, aging also brings about cognitive decline and
pathological diseases. Aging adversely affects the brain
vasculature, and the altered blood-brain barrier and re-
duced cerebral blood flow are associated with white mat-
ter lesions, and correspondingly with cognitive decline
[11–13]. Hypertension and altered small and large
cerebro-vasculature are also associated with stroke and
Alzheimer’s disease [12–14]. From an immunological
perspective, the aged brain experiences an increase in an
inflammatory phenotype. One key cell population pro-
posed to contribute to the inflammation in the brain is
the microglia. Microglia is an innate immune cell of the

central nervous system, and in aged mouse studies, is
primed for increased activation and expression of in-
creased markers of inflammation. Following the theory
that increased inflammation in the brain contributes to
cognitive decline, cytokines such as type 1 IFN have been
shown to negatively impact brain function [15] while IL-4
is pro-cognitive in mice [16]. In human studies, peripheral
blood CD28− CD4 T cells has been shown to expand in
Alzheimer’s patients compared with healthy control, con-
tributing to low-grade inflammation [17]. Thus, an in-
creased pro-inflammatory phenotype in the central ner-
vous system could be associated with cognitive impair-
ment, which can exacerbate any cognitive degeneration
due to age-associated structural changes [18].

Musculoskeletal aging

Another system often associated with aging is the muscu-
loskeletal system. Aging brings about a deterioration of
the structural integrity of the supporting skeletal structure
as well as the muscles that determine our mobility,
strength, and frailty. Bones are complex structures
consisting of a collection of minerals, organic matrix, vas-
culature, and cells that grow and change in composition
over one’s lifetime [19]. There is an increased risk of
fracture with age caused by multiple factors such as in-
creased brittleness due to changes in bone mineral density
[20] and protein matrix [21, 22], structural weakening due
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Fig. 1 Age-related deterioration in function of various organ systems during human aging (created with BioRender.com)
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to morphological changes [23], and an imbalance in bone
formation, resorption, and bone repair [19].

Muscles work together with the skeletal structure to facil-
itate motion and mobility. Sarcopenia is defined as the decline
in muscle mass and function and is one of the most significant
changes caused by age that influences frailty, which is a syn-
drome as described by Fried and colleagues that collectively
includes weakness, weight loss, low physical activity, exhaus-
tion, and slowness [24, 25]. This decrease in muscle strength
and function is due to quantitative and qualitative changes in
the muscle fibres and motor unit [26]. At the muscle level,
there is a loss in overall muscle fibres due to an imbalance of
muscle regrowth and protein synthesis, although the exact
mechanism for this decline is still under investigation and is
influenced by both biological and lifestyle factors [26]. There
is also a particular decrease of fast myosin isoform-expressing
fibres compared with slow myosin isoform-expressing fibres,
thus possibly decreasing the maximum force generated [27].
In addition, the lost fibres can be replaced by non-contractile
connective or fat tissue, thus reducing the overall muscle
strength even though cross-sectional area of the muscle is
unchanged [28, 29]. Apart from the muscle itself, studies have
implicated that loss of muscle function is linked to the age-
related changes and loss of motor neurons in the motor unit.
With aging, motor neurons start experiencing irregularities
that adversely affect their ability to transmit signals and to
restore synapses to muscle fibres after injury. Ultimately,
these motor neurons, especially the largest and fastest
conducting ones, are lost due to cell death [26]. One leading
theory for this loss is the accumulation of DNA damage and
modifications as a possible result of reactive oxygen species
(ROS) generation [30]. Thus, both muscle strength and fine
muscle control decline with age.

The immune system is also associated directly and in-
directly with the age-associated muscle decline. Multiple
immune cells (macrophages, eosinophils, and Tregs) have
been implicated in appropriate muscle repair and regener-
ation (Fig. 2). Of special note are Tregs as they are im-
portant in the repair of injured muscle by controlling the
local inflammatory responses and promoting muscle
growth by releasing growth factors. There is a reduction
of Treg accumulation in injured muscles of aged mice,
with an associated reduction of muscle repair. This obser-
vation can be reversed by treatment with IL-33 which
induces an increased Treg population and an associated
enhancement of muscle repair [31, 32]. Other immune
system related cytokines, such as C-reactive protein, IL-
6, and TNF-α, are associated with sarcopenia which is
unsurprising as they have been implicated in protein syn-
thesis and proteolysis. As it turns out, these cytokines also
tend to be upregulated in the elderly [33].

Thankfully, this age-related decline of muscle function can
be ameliorated to some extent with interventions such as

exercise and caloric restriction [26, 34]. Reducedmuscle func-
tion also contributes to one aging-related change in the next
major organ that we shall discuss.

Lung aging

The lungs are also associated with pathology in aging. As one
of the organ systems constantly exposed to external stresses
and allergens, the lungs play an important function as a phys-
ical as well as immunological barrier to the environment (Fig.
3). As a consequence of age-associated muscular degenera-
tion, respiratory muscle strength is affected, leading to diffi-
culties in breathing and reduced cough strength [35, 36]. The
inability to adequately expel air, fluids, and particles from the
airways is particularly detrimental during infection and dis-
ease. This is compounded by the reduced ability of the cilia
lining the upper and lower airway to efficiently work to move
foreign particles and mucus up and out of the airways [37].
Structurally, there is an increase in average alveolus size and
decrease in alveolus elasticity, and this affects the efficiency
of air exchange and susceptibility for alveolar damage during
infections [38, 39].

As the lungs are one of the external facing organs, this
also brings us to another important factor: the effect of aging
on the immune system. After exposure to environmental
allergens or infections, the immune system has to mount a
delicately balanced response to the challenge to avoid last-
ing damage from the allergen/infectious agent or from the
body’s own immune response. The immune response in
aged organisms is often inappropriate, such as the innate
cell response of increased pulmonary neutrophilia in the
lung after exposure to cigarette smoke and increasing the
risk of chronic obstructive pulmonary diseases (COPD)
[40]. In the context of influenza infection, this increase in
pulmonary neutrophilia is contributed by a combination of
excessive neutrophil recruitment by aged alveolar epithelial
cells (AECs) and an impairment of alveolar macrophage
phagocytosis of apoptotic neutrophils as demonstrated by
the Goldstein group in an aged murine model [41, 42]. In
addition to this innate response dysfunction, the adaptive
immune system also undergoes significant age-related
changes. The decreased capacity for dendritic cells (DCs)
to properly home and present antigens to B and T cells [43],
along with the decreased naïve T cell compartment and B
cell antibody-secretion capability [44, 45], mean that the
adaptive immune system is less able to efficiently respond
to novel infections in aged people. These inappropriate im-
mune responses can then contribute to excessive tissue
damage, reduced tissue repair, or ineffective infection clear-
ance and therefore lead to reduced lung function [35].
Further discussion on the effects of aging on the immune
system will be discussed in more details later in this review.
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Gastrointestinal aging

The gastrointestinal system is another major system that has an
extensive interaction with the external environment. Of all the
systems mentioned thus far, it is the most complex to study
because its health and aged physiology is intrinsically linked
to the microbiome contained within. There is a general consen-
sus that with age, the microbiome changes, with community-

dwelling elderly exhibiting more discrete and nursing home
elderly exhibiting more drastic changes. Nonetheless, with
age, the gut microbiome exhibits decreased microbial diversity
as well as pathobiont overgrowth throughout the gastrointesti-
nal tract [46, 47]. The changes in the microbiome have exten-
sive physiological and biological effects on the gut environment
as well as on the whole organism [47]. Indeed, there are many
various gastrointestinal dysfunction and disorders associated
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Fig. 3 Various external stressors that results in biological age-related immunosenescence (created with BioRender.com)
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Fig. 2 Age-related deterioration
in function of various immune
cell types (created with
BioRender.com)
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with old age such as loss of intestinal barrier integrity, reduced
gut motility, colitis, ulcers, cancers, and internal haemorrhage
[48]. Of particular note for this review is how gut dysbiosis can
trigger inflammatory responses in an organism. One study dem-
onstrated how a microbiome transplant from aged to young
mice caused local and systemic inflammatory responses in the
recipients, suggesting that gut dysbiosis can drive chronic in-
flammation and lead to an inflammaging phenotype [49].

However, studies on the human gut have to take into ac-
count whether their observations are intrinsically linked to
age, to changes in the microbiota, or both. Many of the disor-
ders mentioned above are associated with old age but are not
definitely linked to the process of aging per se. In addition,
there are many other studies that observed conflicting results;
for example, some animal studies reported a decline in
myenteric neurons with age [50], while others reported no
significant changes [51, 52]. Whether this is also observed
in humans has yet to be proven. This is especially true given
that human aging is influenced by the complex interplay of
genetic, environmental, societal, and infection factors, thus
making studying aging in the gut a particularly difficult chal-
lenge. However, if it is true that some gastrointestinal disor-
ders are caused by changes in the microbial milieu and not by
age, then careful application of prebiotics and probiotics may
prove to be effective prophylactic or therapeutic treatments
[47]. This may then reduce the incidence of inflammaging
and age-related diseases and could be exploited as a method
of ameliorating the “aging” phenotype observed in the gut.

Cardiovascular aging

The last system that we will briefly discuss is the cardiovas-
cular system. Much like the central nervous system, it links all
the other organ systems together, transporting blood and me-
tabolites, and can thus affect all other organ systems. In addi-
tion, blood is an easy tissue to acquire and analyse as a proxy
for the overall health of the organism. The heart is at the literal
heart of the cardiovascular system, and cardiac aging is asso-
ciated with a change in cardiac structure. As with many other
organ systems, aging leads to cell loss, in this case of
cardiomyocytes and sinoatrial pacemaker cells [53, 54]. This
loss corresponds with deposition of extracellular matrix, caus-
ing fibrosis and a decrease in the strength and elasticity of the
cardiac walls. This change drives further adaptive remodelling
of the heart structure, causing ventricular and arterial hyper-
trophies [53]. Together, these remodelling changes drastically
modify the proper muscular and electrical functions of the
heart, increasing the risks of arrhythmia and heart failure.
This extracellular matrix remodelling is also observed in the
vascular periphery, causing arterial stiffening and endothelial
dysfunction, which increases the risk of hypertension, ische-
mia, stroke, and heart disease [55]. Like many other organs,
apart from structural changes in the heart itself, aging also

causes changes to the immune system in the heart; much like
other organ systems, the heart also exhibits chronic inflamma-
tion. CD4 T cell and macrophages have been suggested as key
players involved in inflammation in the heart tissue. One
study showed that in aged mice, mediastinal lymph node
CD4 T cells mediated increased inflammatory signals in the
heart as they exhibited a stronger type 1 immune response as
well as increased c-met-mediated homing to the heart tissue
[56]. Macrophages have also been implicated in contributing
to the inflammatory phenotype as there is an increased number
of macrophages as well as macrophage-associated pro-inflam-
matory cytokines such as MMP-9 and CCL2 in the heart tis-
sue [57].

With this brief overview of key structural and functional
changes in multiple organ systems, one striking commonality
is a decrease in cell number and cell quality, a gradual change
in tissue organisation within each organ system over time, and
an increase in chronic inflammation. One important general
mechanism proposed for aging is the downregulation of au-
tophagy and mitophagy in aged individuals [58, 59]. This
allows damaged cells, which could display a senescence asso-
ciated secretory phenotype (SASP) to persist, accumulating
more DNA and cellular damage, ROS, and oxidative stress,
but remains uncleared from the organism; SASP induces
chronic inflammation, which has a widespread deleterious
effect that is linked to the aging phenotype observed in mul-
tiple organ systems [60]. However, the mechanism behind the
decreased autophagy in the elderly is yet to be fully
elucidated.

Senescence of the immune system

The term immunosenescence is now often used to describe
collective changes that are observed within the immune sys-
tem with age. This term “immunosenescence” has gained a
negative reputation in the literature over the past decades due
to its association with an increased susceptibility towards to
infections, cancer, dementia, cardiovascular diseases, hyper-
tension, diabetes, and autoimmune diseases [61–66].
Alterations in the age-dependent behaviour of T cells, natural
killer (NK) cells, B cells, monocytes, and neutrophils have all
been implicated in the characterization of immunosenescence
[67]. While associated with chronological age, the develop-
ment of immunosenescence in individuals is sensitive to en-
vironmental cues, such as immunological and infection histo-
ry; it is therefore necessary to consider both influences to
appreciate the diverse manifestations of immunosenescence
that is observed between individuals of the same age [68].

Among different immune cell types, T cell in aging has
been most meticulously characterized and includes the loss
of proliferative capacity with progressive replication cycles
that accelerate telomeric erosion and the accumulation of
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DNA damage. Senescent T cells, defined by their loss of rep-
licative capacity, display the downregulated expression of
CD27 and CD28 and can be distinguished by the elevated
expression of CD57, KLRG-1, Tim-3, and CD45RA [69].
Senescent T cells are prolific producers of IL-6, IL-8, TNF,
IFNγ, IL-10, and TGF-β but unable to proliferate effectively
when stimulated [70]. In addition to these intrinsic properties,
T cell senescence can also be described at the systemic level—
this is the result of a progressive loss of lymphocyte renewal
capacity through thymic involution or reduced hematopoiesis
with age [71]. The latter mechanisms impede naïve cell re-
newal and contribute to a T cell compartment where fewer
clones of late-differentiated T cells predominate [72].
Besides the accumulation of senescent T cells, naïve T cells
defined by the expression of CD27 and CD45RA have been
shown to be dysfunctional with age [73, 74]. However, this
could be due to the purity of naïve T cells being isolated in
those studies as recent studies have demonstrated that naïve T
cells remain functional and it is the virtual memory (in mice),
human memory T cells with naïve phenotype, and T memory
stem cells that are dysfunctional during aging [75–79]. With
respect to B cells, an age-associated decline in clonal diversi-
ty, the efficiency of the antibody response, and the frequencies
of naïve and total B cells in peripheral blood have also been
described [80].

While the study of immunosenescence has conventionally
focused on lymphocyte behaviour, the expanding literature on
age-associated changes in innate immune cells has allowed us
to extend the usage of this term to describe functional adapta-
tions in macrophages, neutrophils, dendritic cells, and NK
cells with age [67]. For example, macrophages and neutro-
phils from the elderly exhibit diminished capacities for phago-
cytosis and chemotaxis [81, 82]. In aged mice, macrophages
were more polarized towards an M2 anti-inflammatory phe-
notype that biased IL-10 versus IL-12 and TNF-α secretion
[83]. With age, NK cells display a loss of proliferative capac-
ity, cytotoxicity, as well as cytokine and chemokine produc-
tivity [84].

Given this perception of an age-dependent loss of function
across multiple immune cell subtypes, it can be difficult to
perceive immunosenescence as an adaptation rather than a
consequence of aging. However, these age-associated mecha-
nisms may have co-evolved to minimize disruption to immu-
nological function that may accompany aging. For example,
inflammaging—a systemic state of chronic low-grade inflam-
mation that becomes more apparent with age—may reduce
the threshold required for the activation of immune cells that
is required for competent immunosurveillance. The observa-
tion of a heightened risk of infections in novel therapies that
neutralize inflammatory molecules, such as IL-6 and TNF-α,
supports the latter hypothesis and suggests that these strategies
could disrupt immune homeostasis during aging [85, 86].
Therefore, studies on the aging immune system should look

towards unravelling productive interactions during
immun o s e n e s c e n c e , a s a b r o a d e r i n s i g h t o f
immunosenescence is necessary to facilitate anti-aging
therapies—following sections discuss how we can redefine
immunosenescence for this purpose.

Rethinking Immunosenescence

Factors influencing immune aging

Aging has been associated with a myriad of both acute and
chronic diseases. At the core of these diseases, the change in
the host immune system with age could either have contribut-
ed to the cause as it is the host main defence mechanism
against foreign pathogens or its functionality being impacted
by these diseases and conditions. These includes chronic in-
fections such as CMV, HIV and malaria, chronic stress and
glucocorticoids, memory dysfunction, bipolar disorder, and
chronic inflammation that are due to immunosenescence or
accelerates it [87–95]. However, the change in the immune
system with age could also be seen as an adaptation process to
save resources for the host rather than it being detrimental.
This is because developing competent naïve T cells has only
about 1–2% success rate due to the various stringent selection
processes. Therefore, biological processes such as thymic in-
volution could be seen as advantageous to the host from an
energetic or evolutionary point of view [96–98]. One of the
main arguments that thymic involution is detrimental to the
host is due to the reduction of naïve T cells being produced,
leading to a narrower repertoire for new antigens and perhaps
reduced vaccine efficacy often observed in the elderly [98],
while this may have been a successful programmed process
for the shorter-lived humans in the past centuries and before
the extended human lifespan has revealed the probable need to
reverse this adaptation.

Reduced vaccine efficacy has often been observed in the
elderly ever since the development of vaccines which has
saved many lives from infectious diseases [99, 100].
However, recent studies have suggested that reduced vaccine
efficacy is not limited to elderly individuals. Obese individ-
uals have been reported to have reduced vaccine efficacy or
impact following secondary re-challenge after vaccination
even in the young [101–104]. In the elderly, studies have also
shown that chronic stress, dementia, and malnutrition also
have a significant impact on the efficacy of vaccination
[105–108]. On the flip side, boosting of vaccine efficacy in
the elderly seems possible as studies involving mTOR inhib-
itor such as analogs of rapamycin were able to mildly increase
vaccine efficacy in the elderly [109, 110]. Metformin (a
proposed drug for anti-aging) has also been included in a
clinical trial to assess its potential to boost vaccine efficacy
in the elderly [111]. Collectively, these studies indicate that
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other physiological factors are also important considerations
in order for a successful vaccination to occur besides the range
of T cell repertoire in the host.

The contribution of inflammaging

Chronic low-grade inflammation is a commonality between
individuals that exhibit chronic stress, obesity, aging, sleep
loss, gut dysbiosis, CMV infection, dysregulated immune cell
functions, and accumulation of SASP cells such as fibroblasts
[112–117]. Studies have shown that chronic stress is able to
induce increased levels of CRP, IL-6, TNF-α, and IL-1b [118,
119]. This is very much similar to obesity, in particular vis-
ceral fats and aging [120–126]. Chronic low-grade inflamma-
tion is defined as a higher baseline of pro-inflammatory cyto-
kines in the circulation though the source and specific cyto-
kines might differ slightly between these “diseases” in the
absence of foreign pathogen infection. In terms of impaired
immunity, both human and animal studies have shown that
chronic stress reduces various immune functional capacities
such as antibody production, virus-specific T cell and NK cell
activities, and also the proliferation of leukocytes [127–130].

As for obesity that is also highly associated with other
metabolic syndromes such as diabetes, it has been shown that
insulin resistance may lead to insufficient T cell activation and
also the resolution of inflammation post infection due to lack
of TH2 differentiation. Besides insulin resistance, adipokines
such as leptin and adiponectin are also seen to be reduced in
individuals with obesity and metabolic syndromes and both
play a role in initiating immune responses and resolution of
inflammation respectively [131]. In response to infection,
obese individuals have been reported to have a worse outcome
of infection to 2009 influenza A H1N1 pandemic strain and
circulating mononuclear cells exhibits a more pro-
inflammatory state compared with healthy individuals [132].

In aging studies, for T cells, highly differentiated T cells,
which have lower proliferation capacity, have been shown to
accumulate in high frequencies and reduced productions of
IL-2 in naïve T cells are some of the examples that render
the T cell compartment dysfunctional in elderly individuals.
As for the innate immunity compartment, macrophage phago-
cytic functions are reduced; neutrophil chemotaxis ability in
response to infection and CD16 expression are reduced [87].

Collectively, these highlight that the presence of impaired
immunity albeit having slight differences in the different sce-
narios and low-grade chronic inflammation could be the un-
derlying factors that exacerbate pathology in various disease
contexts.

Immunosenescence is not age-dependent

Thus, it is important that we redefine and stress that the defi-
nition of immunosenescence is the dysfunctionality of the

immune system and should encompass some features of
low-grade chronic inflammation. Though this phenomenon
is often seen in aged individuals, it is also possible in younger
adults as it could be “accelerated immunosenescence”, espe-
cially for T cells, as shown in CMV and HIV seropositive
young patients [72, 133]. Even early in life, the impact of
CMV can be observed. The study from Miles et al. showed
the rapid and sustained switch of the naïve/memory T cell
ratio in 1-year-old infants seropositive for CMV compared
with age-matched seronegative infants. Up to one-third of
the pool of CD8+ T cells could exhibit loss of CD28 and
CD27, which represents the profile of terminal effector T
cells, many of which are in a replicative senescence stage
[134]. This highlights that other factors other than chronolog-
ical age could determine this level of senescence of the im-
mune system, especially for T cells which are prone to prolif-
eration. Looking at the other extreme, a recent study analysed
the individual-level changes in the immune system profile
over a 9-year period. Despite the inter-individual variability
in the rates of change of some of the immune cell proportions,
the authors defined an immune aging (IMM-AGE) that de-
scribes the immune status better than chronological age.
This IMM-AGE score could predict all-cause mortality and
could be associated to individuals with cardiovascular dis-
eases [135]. While some aspects of immunosenescence could
be associated to aging, evidence strongly suggest that re-
sponses to stressors (infectious or not) are strong modulators
of this process. The concept of “accelerated biological aging”
is also shown in two studies that compared biological age and
chronological age in an individual, and they were able to show
that individuals that have older “biological age”, as compared
with chronological age, exhibit cognitive decline, looked
older, self-reported worse health, and measuring lifespan
(mortality) and health span (frailty) [136, 137]. Whether this
is affected by the overall immunological history—the number
of pathogen one experience during lifespan—is a plausible
hypothesis that warrants further work. Overall, rethinking
the causing agents and implications of immunosenescence
will help shift the perspective that this phenomenon is not
attributed to age alone, especially with the global rising rate
of obesity and chronic stress of modern-day life in the young
[138–141].

Immune cell function: differentiation,
adaptation, or senescence?

Post-maturation differentiation

The immune system consists of many types of different im-
mune cells that can be generally classified into innate and
adaptive. While the immune cells in the innate immune sys-
tems generally are differentiated into its respective cell
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populations before exiting the bone marrow, the immune cells
in the adaptive immune systems such as the classical B and T
cells will require further immunological processes such as
antigen presentation and undergo differentiation before being
able to exert its effector functions. The differentiation stages
of T cells can be identified using surface markers such as
CD27 and CD45RA (or CD45RO, inversely expressed) into
naïve (CD27+ CD45RA+), central memory (CD27+
CD45RA−), effector memory (CD27− CD45RA−), and ter-
minal effector (CD27− CD45RA+), and each subset has its
own define functional role in the immune system. Naïve T
cells are able to proliferate effectively but not able to produce
cytokines such as IFNγ while central memory T cells are able
to secrete IFNγ but not effector molecules such as TNF-α.
Effector memory T cells are able to secrete effector molecules,
and terminal effector T cells are able to secrete a wider range
of cytokines but have limited proliferative capacity. [142].

B cell differentiation stages, on the other hand, can be iden-
tified using surface markers such as CD27 and IgD into naïve
(CD27− IgD+), memory B cells (CD27+ IgD+), switched
memory (CD27+ IgD−), and double negative (CD27− IgD
−) [143]. In general, the various immune cells undergo a linear
differentiation process to achieve its various effector func-
tions. However, there is also a certain level of plasticity for
certain cell types such as ILCs and macrophages due to the
environmental milieu that could alter its function, which
should also be viewed as adaption [144, 145].

Post-differentiation adaptation

Adaptation by definition is a process, whereby the subject
changes certain aspects of itself to better survive in the current
environment. Thus, the end goal of the process would be an
evolutionary stronger organism being emerged after the cur-
rent situation but only for that particular situation [146]. With
this, we can view that a functional immune system should be a
system that is adaptable throughout the host lifetime as its role
is to protect the host from various foreign pathogens during
that timeframe. Various adaptation processes of the immune
system when encountered with foreign pathogens can be seen
in the different immune cells ranging from innate immune
cells (e.g. monocytes and natural killer cells) to adaptive im-
mune cells (e.g. T cells and B cells).

The term innate describes the ability to perform a function
by an organism as naturally inherited and not due to improve-
ment based on the current situation which will otherwise be
termed as adaptive. Thus, innate immune cells are termed as
such because its effector functions do not require additional
process for it to be functional in times of challenge and its
magnitude of the effector function following secondary chal-
lenge does not differ as they do not possess immunological
memory. However, recent studies with regard to trained im-
munity on monocytes and “memory” natural killer cells

suggest that they might possess a certain level of adaptation
or immunological memory though it could be short-lived as
compared with the classical T and B cells which are long-
lived. “Trained” monocytes have been shown to secrete
higher level of pro-inflammatory cytokines following a sec-
ond challenge by a different stimulant. After the first chal-
lenge, genes associated with pro-inflammatory cytokines are
marked with H3K4m1 and H3K27ac, a signature of an open
chromatin, allowing these genes to be more transcribed easily
[147–149]. Even though this process has been shown to only
last for up to 3 months, trained immunity can be seen as an
adaptation process by the monocytes as it primes itself to react
stronger to another challenge by a similar or different stimulus
[150]. This process could therefore be seen as essential as the
immune system could deem the current environment as dan-
gerous that threatens the survival of the host.

Natural killer cells have been traditionally categorized as
innate in the lymphoid compartment as they do not under
RAG recombination and possess immunological memory
[151]. However, recent studies in have shown that NKs could
have a “bystander effect”, similar to the concept of trained
immunity, whereby it has enhanced responses for if they were
exposed to IL-12 and IL-18 prior to the second challenge in
mice and “immunological memory” that leads to clonal ex-
pansion upon antigenic challenge [152–154]. These two pro-
cesses thus illustrate how NKs could help the immune system
to adapt to the current environment that could then enhance
the survival rate of the host.

Adaptation of differentiated immune cells

For adaptive immune cells such as T cells and B cells, differ-
entiation is a required process for it to exert its function during
foreign pathogen infections. This is observed when a naïve T
cell or memory T cell differentiates into an effector cell and
clonally expand during such situation. Thus, differentiation
could also be seen as an adaption process by the adaptive
immune system to combat the current infection. Following
resolution of the infection, some of the remaining T cells dif-
ferentiates into central memory, effector memory, and also
tissue-resident memory T cells [155], while B cells differenti-
ate into memory B cells and secrete antibodies in the circula-
tion. This post-infection differentiation process is part of the
adaption that allows these immune cells to respond more ef-
ficiently when challenged with the same pathogen.
Altogether, this makes the organism “fitter” in the local envi-
ronment, whereby the host is expected to face the same path-
ogen again [156].

Senescence: the end road of adaptation

However, with the constant adaptation that is needed to ensure
that the host survive, there is perhaps a limit to the adaptation

566 Semin Immunopathol (2020) 42:559–572



process as resources could be limited. This might result in
some immune cells exhibiting a replicative senescence pheno-
type, whereby they lose their proliferation capacity. The accu-
mulation of such replicative senescent T and NK cells is often
observed in individuals with chronic viral infections such as
CMV, HIV, and also elderly individuals [134, 157–160]. This
phenomenon of replicative senescent was first demonstrated
by Hayflick and is also known as the Hayflick Limit, whereby
the cells could not replicate due to the shortening of its telo-
mere with each cell replication [161]. For most cell types,
when they become senescent, there is a maintenance system
that they are either removed by immune cells or undergo ap-
optosis and the functionality of this system is essential to
prevent impaired immunity [162, 163]. However, this is not
the same for T cells, as senescent CD8 T cells are capable to
acquire a broad-spectrum, innate-like killing activity through
NKG2D against viral infected cells and tumour [164, 165],
suggesting that it could be a benefit to keep senescent T cells
in the circulation considering that thymic involution occurs
which results in the reduction of producing new competent
naïve T cells. Therefore, this process could then be seen as
an adaptation even though not optimal to combat past infec-
tions faced by the host in order to prevent re-activation of
chronic infection.

Conclusion

The immune system is required to go through a continuous
adaptive process throughout the host lifetime, constantly
changing and remodeling to ensure the host survival in an
environment littered with foreign pathogens. Differentiation,
trained immunity, immunological memory, and perhaps se-
nescence are some of the mechanisms it utilizes for this adap-
tion process to balance the use of limited resources and the
survival of the host. When studying immunity in the context
of aging, it is important to differentiate these processes to
better translate the findings into effective measure for improv-
ing immune response in older adults. In the era of omics, the
contribution of epigenetic studies would be important to de-
fine the actual age of cells we study [166]. An important factor
related to immunogerontological studies is cellular turnover
which varies significantly between cell types. Another impor-
tant factor is replicative capacity. While some cell types such
as T cells are able to proliferate (as part of their function),
others proliferate much less (e.g. monocytes) and as such are
less susceptible to replicative senescence. While we use cel-
lular markers, especially by flow cytometry, to identify cell
types and subtypes, we still do not understand the reason these
markers are up- or downregulated. Further studies on the role
of changed expression would unravel whether this is part of
differentiation or an adaptation to specific stimuli. Two
markers in particular are of interest in the context of T cells:

(i) CD57, probably the best marker of replicative senescence,
for which we still do not know the ligand and the intracellular
interactome and signaling effect, and (ii) CD45, a phosphatase
involved in T cell receptor signaling but which splicing vari-
ants (CD45RA, CD45RB, CD45RO) have not been investi-
gated enough for their differential expression and signaling.
Why a vast majority of replicative senescent T cells (CD57+)
express CD45RA is not known. The complexity also resides
in the fact senescence is not linked to one type of stimuli and
that several signaling pathways may lead to senescence in the
same cell type. Defining the commonalities in the process of
senescence across various immune and non-immune cells
would help answer some of these questions which could then
be utilized to improve health span.
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