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Abstract

The human body is host to several distinct microbial communities. Disruption of these 

communities increases susceptibility to a wide range of diseases, including respiratory tract 

infections. While commensal bacteria in the gut contribute to this effect, recent studies point to a 

role for commensals occupying the upper respiratory tract through direct pathogen killing and by 

modifying nasal and lung immune homeostasis. Clinical trials exploring ‘probiotic’ respiratory 

tract commensals are an exciting development in this area. Upper respiratory tract microbiome 

sequencing has revealed that destabilization of this community precedes infection, indicating that 

microbiome profiling of individuals has predictive value. Further investigation of respiratory tract 

commensal–host interactions will be critical to translate bacterial-mediated protection toward new 

therapeutic approaches for respiratory tract disease.

Introduction

The upper respiratory tract (URT) contains a well-documented bacterial community, or 

microbiome, residing in the nasal cavity and nasopharynx. Opportunistic bacterial 

pathogens, referred to here as opportunistic pathogens, are transient members of this 

community that cause illness upon invasion of other host tissues. Respiratory tract infections 

caused by opportunistic pathogens constitute a major burden of disease. Among these, 

pneumonia is the number one cause of death worldwide in children under five years old and 

the leading infectious cause of death in the elderly [1–3]. Otitis media, or ear infection, is the 

most frequent diagnosis for antibiotic prescription in young children [4]. The four 

predominant opportunistic pathogens of the URT are Streptococcus pneumoniae, 
Haemophilus influenzae, Moraxella catarrhalis and Staphylococcus aureus. While these 

bacteria often occupy the URT asymptomatically, colonization is a prerequisite for invasive 

disease [5–7]. Cooperative and competitive interactions between these bacterial pathogens 

influence susceptibility to infection [8–11]. In addition, co-infection with viral pathogens 

including influenza A, influenza B, or respiratory syncytial virus (RSV) pre-dispose 

bacterial invasion and are associated with more severe disease [12–14]. However, it is less 
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clear how the remaining members of the URT microbial community modify pathogen 

acquisition.

Many bacteria inhabiting the gut and URT are never or only rarely associated with disease, 

referred to as commensals. URT commensals predominantly reside in the nasal cavity and 

nasopharynx, but also reach the lung through aspiration [15–17]. The URT microbiome is 

composed of several ‘core’ genera present in the majority of healthy individuals, the most 

abundant of which include Staphylococcus, Streptococcus, Corynebacterium, Prevotella, 
Veillonella, Propionibacterium, and Fusobacterium in adults with Moraxella also prominent 

in young children [17,18,19••,20]. It is clear that the microbiome as a whole contributes to 

resistance against diverse (fungal, viral and bacterial) lung infections, which are frequently 

more severe in antibiotic treated and germ-free animals [21–26]. However, the depletion (or 

absence) of bacteria from both the gut and URT obscures the contributions of microbiota 

from each site to immune homeostasis. Antibiotic treatment also differentially enriches 

genera in the URT as well as the gut [23], which may influence susceptibility to infection 

depending on which bacteria remain. In people, the increased abundance of Haemophilus, 
Streptococcus, and Staphylococcus following antibiotic therapy is likely in part due the rise 

in antibiotic resistance among opportunistic pathogens including H. influenzae, S. 
pneumoniae and S. aureus [20,27,28]. This review focuses on new developments in our 

understanding of how commensal bacteria regulate susceptibility to respiratory tract 

infection, with an emphasis on the role of the URT microbiota.

Shared mechanisms for the regulation of lung immunity by commensal 

bacteria

URT commensal bacteria occupy the same niche as opportunistic pathogens, making it 

difficult to distinguish between direct competition and indirect modulation of the immune 

response. In contrast, bacteria colonizing the gut must engage circulating immune factors to 

influence lung immunity. Some of the signaling pathways activated by gut commensals are 

also induced by bacteria in the URT. This is particularly evident for innate immune 

receptors, which recognize conserved bacterial ligands. For example, Toll-like receptor 

(TLR)4 recognition of bacterial lipopolysaccharide (LPS) improves protection against 

influenza A virus following either intranasal or rectal exposure in mice [23]. More recently, 

this was also shown for the innate immune Nod-like receptor (Nod)2[29••].Reconstitution of 

antibiotic treated mice with a compilation of potent Nod2-stimulators from either the URT 

(intranasal reconstitution) or gut (oral reconstitution) rescues protection against S. 
pneumoniae and Klebsiella pneumoniae infections [29••]. Nod2 activation primes alveolar 

macrophages in the lung to produce reactive oxygen species (ROS), contributing to pathogen 

clearance [29••]. Similarly, the respiratory tract commensal Staphylococcus sciuri promotes 

the adjuvanticity of cholera toxin in a Nod2-dependent manner [30]. In this case, stimulation 

of lung CD11c+ cells, the majority of which are alveolar macrophages, by intranasal cholera 

toxin requires activation of Nod2 by commensal bacteria including S. sciuri [30]. Alveolar 

macrophage ROS is also induced by oral treatment with the gut commensal Bifidobacterium 
longum, boosting protection against lethal K. pneumoniae lung infection in mice [31]. These 
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studies demonstrate that recognition of either gut or URT commensals by innate immune 

receptors activates alveolar macrophages in the lung, improving resistance to lung infection.

Commensal bacteria also influence lung immune homeostasis by regulating production of 

the cytokines IL-17A and IL-22 from several immune cell types. This has been shown for 

gut segmented filamentous bacteria (SFB), which improve resistance against both S. aureus 
and the fungus Aspergillus fumigatus in mice by activating lung IL-17A+ T helper (Th)17 

cells and IL-22 production [25,32]. SFB are also protective against lethal S. pneumoniae 
infection in Rag1−/− mice, which lack mature T and B cells, indicating a role for other cell 

types [33]. Aside from Th17 cells, gut commensal bacteria regulate lung mucosal-associated 

invariant T (MAIT) cell production of IL-17A and innate lymphoid cell type 3 (ILC3) 

production of IL-22, increasing resistance in murine models of Mycobacterium tuberculosis 
and S. pneumoniae infections respectively [24,34]. The bacterial ligands from SFB and other 

gut commensals that are critical for regulating these responses, and whether these ligands are 

shared by URT commensals, have not been established. However, the observation that Nod2 

signaling induced by URT bacteria correlates with IL-17A-dependent GM-CSF production 

in the lung supports a role for bacteria from both the lung and gut in modulating lung 

IL-17A [29••]. Together, these studies indicate that commensal URT and gut bacteria 

activate shared innate immune pathways that regulate resistance to lung infection.

It less clear whether URT commensal bacteria modulate Th1/Th2 immunity in the lung 

similar to bacteria from the gut. For example, short-chain fatty acids (SCFAs) produced by 

gut commensals are protective against Th2 associated allergic lung inflammation, without 

influencing accumulation of regulatory T cells (Tregs), in mice [35,36]. Gut bacteria 

including Lactobacillus rhamnosus also improve Th1 responses in the lungs of mice infected 

with influenza A virus, S. pneumoniae, and M. tuberculosis [37–39]. While the URT harbors 

anaerobic SCFA-producers including Prevotella, the concentrations of SCFAs found in the 

URT are extremely low [40], suggesting a limited role. Commensal bacteria found in the 

skin and nose can differentially induce Th1 cytokines in the lung [41], but the impact of 

these responses on pathogen challenge remains largely unexplored. Instead, URT 

commensal bacteria have been shown to improve resistance to infection by mechanisms 

unique to the environment of the respiratory tract, as discussed below.

Distinct mechanisms for the regulation of pathogen acquisition and 

invasion by URT commensal bacteria

URT commensal bacteria regulate the mucosal barrier, the initial site of pathogen exposure. 

For example, the URT commensal Staphylococcus epidermidis induces nasal epithelial 

production of interferon (IFN)-λ, which increases resistance to influenza A virus infection 

in mice [42••]. IFN-λ is observed in the nasal secretions of people colonized with S. 

epidermidis [42••], though it is unclear whether these levels are sufficient for protection in 

humans. Resistance to influenza A virus infection is also associated with modulation of type 

I IFN signaling in the lung epithelium by gut bacteria [43]. However, there is no evidence to 

date that gut commensals regulate the nasal mucosa similar to URT bacteria. Another way 

that S. epidermidis regulates the nasal epithelium is by the stimulation of antimicrobial 
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peptide (AMP) production [44••]. This has direct consequences for pathogen resistance, as 

S. epidermidis blocks S. aureus and M. catarrhalis acquisition in an AMP-dependent manner 

in mice [44••]. In addition to stimulating mucosal immune factors, S. epidermidis produces 

bacteriocins that restrict the growth of S. aureus and M. catarrhalis [45,46] and protect 

against S. aureus colonization in mice [47]. Similarly, commensals closely related to H. 
influenzae produce bacteriocins and modify nasal pro-inflammatory cytokine production 

[48,49•], indicating that other URT commensals contribute to pathogen resistance through 

similar mechanisms. Collectively, these findings illustrate that URT commensal bacteria 

reduce susceptibility to pathogen acquisition by regulating the nasal mucosa.

URT commensals also influence the adaptive immune response, which has the potential for 

long-term consequences through the generation of immune memory. This has been shown 

most clearly for commensal Streptococcus species. Streptococcus mitis induces cross-

reactive protection against S. pneumoniae in mice characterized by systemic antibody 

production and IL-17+ Th17 cells in the lung [50••]. Memory T helper cells, including Th17 

cells, with cross-reactivity against S. mitis and S. pneumoniae have also been identified in 

humans [51]. Several commensal Streptococcus species express capsule, the predominant 

Streptococcus antigen, with genetic and antigenic similarities to that found in S. pneumoniae 
[52•,53,54•]. However, capsule-specific memory was not prevalent in a pool of cross-

reactive memory T cells identified in humans [51], indicating importance for other antigens. 

Commensal Streptococcus species may thus contribute to baseline resistance against S. 

pneumoniae by promoting cross-reactive immunity. Taken together, URT commensal 

bacteria improve protection against respiratory tract pathogen colonization and infection 

through both direct competition and indirect immune modulation (Figure 1).

Treatment with URT commensals protects against infection in humans

The development of probiotics is centered on the concept that commensal bacteria with 

beneficial properties can be used to improve resistance to disease. While originally 

developed for intestinal diseases, probiotic gut bacteria also increase resistance to influenza 

A virus infection in mice [55–57], indicating the potential utility of probiotics for respiratory 

tract infections. More recently, clinical trials have explored the probiotic potential of URT 

commensal bacteria. In one study, serial treatment with nasal sprays containing commensal 

Streptococcus salivarius and Streptococcus oralis bacteria reduced acute otitis media 

recurrence and severity in children [58•,59]. Similarly, an oral spray containing S. salivarius 
and S. oralis reduced episodes of pharyngotonsillitis infection and need for antibiotic 

treatment in children infected with group A beta-hemolytic Streptococcus (GABHS) [60•]. 

Successful therapy with commensal Streptococcus bacteria relies on repeated inoculation 

over a period of several weeks to months, and lower doses are not effective [61], indicating 

the need for further development of this approach. The protective effect of these commensals 

may depend on direct pathogen competition in addition to the generation of cross-reactive 

immunity discussed above. Streptococcus commensals can disrupt pre-formed biofilms from 

several pathogens [62] and produce bacteriocins that kill S. pneumoniae [63], though these 

observations have not been confirmed in vivo. S. salivarius also restricts S. pneumoniae 
binding to a human epithelial cell line independent of bacteriocin production [64], further 

Clark Page 4

Curr Opin Immunol. Author manuscript; available in PMC 2020 December 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



demonstrating that multiple mechanisms contribute to the inhibitory effect of these 

commensals on pathogen infection.

Other genera in the respiratory tract have similarly antagonistic commensal-pathogen 

interactions in humans. The nasal commensal Staphylococcus lugdunensis produces 

lugdunin, an antibiotic that is bactericidal for S. aureus and S. pneumoniae [65•]. While the 

therapeutic potential of lugdunin has not been evaluated in clinical trials, carriage of S. 

lugdunensis correlates with reduced S. aureus in people [65•]. In another example of 

competition between closely related bacteria, nasal inoculation of the commensal Neisseria 
lactamica reduces carriage of Neisseria meningitidis in young adults [66]. Similar to 

evidence for cross-reactive Streptococcus immunity, cross-reactive opsonophagocytic 

antibodies generated in people colonized with N. lactamica may contribute to this effect 

[67]. These studies identify URT commensal bacteria with probiotic potential for protection 

against infection with closely related opportunistic pathogens in humans.

URT microbiome composition predicts disease risk

URT microbiome sequencing has revealed that this community undergoes substantial 

changes during early development and in the context of disease. The identification of 

respiratory tract commensals that are predominant in healthy, but not infected, people has 

emerged as a common theme (Figure 2). For example, Corynebacterium propinquum, 
Dolosigranulum pigrum and Moraxella bacteria in the nasopharynx negatively correlate with 

lower respiratory tract infection (lower RTI) in young children [68•].

In this analysis the species identity for Moraxella was not defined, making the role of the 

opportunistic pathogen M. catarrhalis unclear. Corynebacterium and Dolosigranulum are 

also largely absent in the nasopharynx of children with otitis media and other upper RTIs 

compared with healthy individuals [69•,70–72]. While it is tempting to speculate that these 

respiratory tract commensals are protective against pathogen acquisition and/or invasion, 

causation has not been established for most of these relationships. However, accumulating 

evidence suggests that Corynebacterium species directly compete with URT pathogens. 

Corynebacterium accolens produces free fatty acids that inhibit S. pneumoniae growth [73•], 

and cell-free medium from Corynebacterium striatum reduces S. aureus adhesion to 

epithelial cells [74•]. These findings are supported by the observation that live, but not 

inactivated, Corynebacterium pseudodiptheriticum reduces RSV and S. pneumoniae lung 

burdens in an infant rat co-infection model [75••]. In summary, microbiome sequencing has 

identified URT commensal bacteria with the potential to contribute to pathogen resistance.

In the absence of mechanistic studies in people, longitudinal analysis of URT microbiome 

profiles in the same individuals over time supports the concept that the composition of this 

community influences susceptibility to infection. One such study paired microbiome 

analysis and RTI incidence in infants throughout their first year of life [19••]. Infants with 

increased RTIs had shorter periods of colonization with Corynebacterium and 

Dolosigranulum species and more rapid dominance of Moraxella [19••]. This is consistent 

with Corynebacterium and Dolosigranulum as predominantly associated with the absence of 

disease, while the impact of Moraxella may be species or time dependent. Moraxella 
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nonliquefaciens is also increased in children with acute sinusitis [76], indicating that species 

beyond M. catarrhalis are associated with disease. Importantly, changes in the URT 

microbiome precede the first RTIs in children [19••,20,77]. The predictive power of URT 

microbiome profiling is consistent with a direct relationship between the composition of this 

community and susceptibility to pathogen infection. In contrast to the consensus for RTIs 

considered as a whole, a separate cohort of respiratory tract commensal bacteria negatively 

correlate with tuberculosis (TB) [78•], indicating that the relationships between the URT 

microbiome and disease risk are pathogen specific.

Opportunistic pathogens destabilize the URT microbiome

While commensal URT bacteria contribute protective benefits, opportunistic pathogens have 

the opposite effect. For example, asymptomatic colonization with Streptococcus earlier in 

life correlates with a younger age of first lower RTI [20]. Pathogen colonization disturbs the 

microbial community of the URT even in the absence of disease presentation. This has been 

shown in children, as colonization with Haemophilus and Streptococcus is associated with 

reduced microbiome stability compared with Corynebacterium, Dolosigranulum and 

Moraxella [77]. The concept of microbiome disruption by opportunistic pathogens has been 

directly tested in a human challenge study, where establishment of S. pneumoniae carriage 

in healthy adults increased URT microbiome diversity [79]. These findings suggest a 

nuanced relationship between opportunistic pathogens and disease, where asymptomatic 

changes in the URT microbiome influence subsequent pathogen invasion. Whether these 

changes modulate invasion of colonizing pathogens or newly acquired opportunistic bacteria 

remains an important area for further study.

Conclusions and future directions

Despite substantial interest in the influence of the microbiome on human disease, the 

importance of commensal bacteria from sites beyond the gut remains poorly characterized. 

Given the dynamic relationships in the URT between commensal and pathogenic species 

within the same genera, more in-depth microbiome analysis may reveal species-specific 

relationships that have been previously overlooked. Models of respiratory tract infection that 

incorporate the manipulation of URT commensal species and pathogen co-infection will 

improve our ability to predict and manipulate these relationships. Collectively, the work 

highlighted here demonstrates that URT commensals influence susceptibility to infection 

through direct and indirect mechanisms, some of which are unique to the environment of the 

nasal mucosa. Further investigation of how URT commensal bacteria alter pathogen 

acquisition and immune homeostasis is critical for the development of new therapeutic 

approaches, the most promising of which include probiotics from and for the respiratory 

tract.
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Figure 1. 
URT commensal bacteria protect against respiratory tract infection. Colonization of the 

nasal epithelium with opportunistic pathogens is restricted by URT commensal bacteria 

through direct competition, for example by production of bacteriocins, lugdunin, and free 

fatty acids that restrict pathogen growth, and indirectly through modulation of the mucosal 

barrier, resulting in secretion of factors including antimicrobial peptides (AMPs) and IFN-l, 

which contribute to pathogen clearance (1). URT commensal bacteria also reduce pathogen 

invasion by promoting innate and adaptive lung immune responses including alveolar 

macrophage production of reactive oxygen species (ROS), IL-22, Th17 cells, and cross-

reactive antibodies (2).
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Figure 2. 
The composition of the URT microbiome of the nasal cavity and nasopharynx influences 

susceptibility to respiratory tract infection. Scales represent how the balance of colonization 

with different types of bacteria reflects an individual’s risk of respiratory tract infection. In 

this example, the scale on the left depicts a higher burden of potentially beneficial 

commensal bacteria, which is associated with health, while scale on the right depicts a 

higher burden of opportunistic pathogens, associated with increased risk of respiratory tract 

infection. URT commensal bacteria that negatively correlate with disease include 

Corynebacterium, Dolosigranulum, S. epidermidis and S. lugdunensis. URT opportunistic 

pathogens that increase infection risk include M. catarrhalis, S. aureus, H. influenzae and S. 

pneumoniae.
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