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Abstract

Background: “Single-arm trials” with external comparators that contrast outcomes in those on 

experimental therapy to real-world patients have been used to evaluate efficacy and safety of 

experimental drugs in rare and severe diseases. Regulatory agencies are considering expanding the 

role these studies can play; guidance thus far has explicitly considered outcome misclassification 

with little discussion of misclassification of confounding variables.

Objectives: This work uses causal diagrams to illustrate how adjustment for a misclassified 

confounder can result in estimates farther from the truth than ignoring it completely. This theory is 

augmented with quantitative examples using plausible values for misclassification of smoking in 

real-world pharmaceutical claims data. A tool is also provided for calculating bias of adjusted 

estimates with specific input parameters.

Results: When confounder misclassification is similar in both data sources, adjustment generally 

brings estimates closer to the truth. When it is not, adjustment can generate estimates that are 

considerably farther from the truth than the crude. While all non-randomized studies are subject to 

this potential bias, single-arm studies are particularly vulnerable due to perfect alignment of 

confounder measurement and treatment group. This is most problematic when the prevalence of 

the confounder does not differ between data sources and misclassification does, but can occur even 

with strong confounder-data source associations.

Discussion: Researchers should consider differential confounder misclassification when 

designing protocols for these types of studies. Subsample validation of confounders, followed by 

imputation or other bias correction methods, may be a key tool for combining trial and real-world 

data going forward.
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INTRODUCTION

Researchers are always searching for ways to leverage data to maximize efficiency. The 

historic gold standard for regulatory approval of new treatments has been the randomized 

controlled trial, but these experiments are costly in terms of both time and resources. 

Recently, regulators and stakeholders in healthcare research have expressed interest in using 

real-world data (RWD) to supplement these randomized experiments; the 21st Century Cures 

Act has prompted particular discussion on the topic in the United States.1–3

One potential use of RWD is the creation of external contemporary or historical untreated 

comparator (or control) cohorts with a disease of interest to stand-in for the placebo arm 

after early testing of a new treatment has been conducted in those with the disease.4,5 This 

approach is particularly useful when new therapies appear so much better than standard care 

during early testing that it is difficult to ethically justify patients not receiving the treatment, 

when the pool of patients with the disease is too small to allow for sufficient outcomes in an 

internal untreated group, or when the disease is so fatal that benefits are almost certain to 

outweigh the risks to the individual.

As the treatment group is no longer randomized, these studies rely on methods and 

assumptions from non-experimental (or observational) research to estimate valid treatment 

effects. In particular, these methods assume that individuals in the two treatment arms are 

“exchangeable conditional on measured covariates.”6 Traditionally, outcome rates have been 

compared with expected rates from historical “controls” in such settings, often with limited 

to no attempt to adjust for differences in the two groups of patients.7–9 More recently, the 

availability of routinely collected health data (e.g. insurance claims, electronic health records 

[EHR]) increasingly allows patients receiving investigational treatments to be compared 

with contemporary cohorts of patients that did not receive the treatment of interest. Access 

to individual-level data for the comparators has also enabled the use of propensity score-

based methods or outcome modeling that do not rely on the assumption that historical rates 

of the outcome apply directly to the target population. One major single-arm trial compared 

those in a phase II test of blinatumomab with an external comparator drawn from EHR data 

and closely replicated the results of the subsequent randomized controlled trial mandated by 

FDA.10,11

If external comparators are to be used more frequently alongside early studies, it is vital to 

investigate the methodologic challenges that may be particularly problematic in single-arm 

trials with external comparators such as differential confounder misclassification across 

treatment groups.12,13 These studies are particularly vulnerable to this bias due to the perfect 

alignment between the differing methods of confounder measurement and the treatment 

groups. Specifically, prospectively enrolled individuals in the experimental arm are likely to 

have had more detailed, complete and accurate confounder assessment than those in an 

external comparator group. This work adds to existing literature on bias induced by 

misclassification of confounding variables by investigating the special case of external 

and/or historical ‘control’ groups. We use causal diagrams and simple quantitative examples 

to explore when and how adjustment for mismeasured confounders can remove, limit, or 
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even add bias to estimates of treatment effect in the context of single-arm trials with external 

comparators.

METHODS

Worst case:

Suppose researchers are interested in evaluating a novel drug, Xylobegron, that laboratory 

tests suggest will markedly improve survival in patients diagnosed with a rare but deadly 

disease of the respiratory tract. While conducting the phase II trial of the drug in patients 

with the disease, the investigators noticed improved survival compared to expected outcomes 

based on existing literature. While waiting for the results of a large-scale randomized 

controlled trial, the FDA and the researchers decide to conduct a single-arm trial and use 

historical RWD to construct a comparator arm and potentially begin marketing the drug if 

those findings are favorable. Knowing that smoking has a strong negative association with 

survival after diagnosis with this rare disease (multiplying mortality risk by a factor of 5), 

and believing that smokers are less likely to enroll in the trial because of correlations 

between smoking, socioeconomic status, and inability to reach study centers, they pre-

specify that the primary analysis will match each trial patient to two patients from the RWD 

with similar smoking status to control for the potential confounding.1

When they combine the trial and RWD, they discover that most variables like age and sex 

appear similar between the phase II trial patients and the patients in the RWD. The exception 

is smoking, as they expected. Only 3.8% of the patients in the RWD smoke, while 20.85% 

of the trial participants do. The crude risk ratio for all-cause mortality with the new drug in 

the total cohort is 1.00 (95% C.I. 0.87, 1.28), while the risk ratio for all-cause mortality in 

the matched cohort is 0.80 (95% C.I. 0.68, 0.93), with a corresponding p value of 0.005. 

They report the matched estimate as the truth, stating that the difference between these two 

estimates was the result of confounding by smoking status and they have identified a 

statistically significant benefit for Xylobegron.

Unfortunately, the crude estimate was the correct one; the weighted estimate is considerably 

biased away from the null. Why is this the case? How can adjustment for a variable result in 

more biased estimates?

The problem is that there was never any difference in smoking rates between the two groups 

(20% of each group were smokers); the observed difference in smoking rates was entirely 

the result of the fact that smoking was measured by interviews with near-perfect sensitivity 

of 0.99 in the trial but via a claims-based algorithm with sensitivity of 0.15 in the RWD.

Explaining how these biases come about can be difficult outside of a dedicated mathematical 

framework. Causal diagrams, specifically directed acyclic graphs,14,15 have been previously 

used to clarify problems of outcome and exposure misclassification.16–18 Here, we apply 

them in the context of a study with an external comparator arm and potentially differential 

confounder misclassification.
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Causal diagrams:

This situation can be encoded in the directed acyclic graphs in Figure 1: X represents 

Xylobegron; Y mortality; C “true” smoking; and Cmeasured the recorded value of smoking in 

the trial or RWD. In these graphs, an arrow drawn from one variable to another means that a 

change in the first variable would change the second. For example, altering someone’s 

smoking status (C) will result in a change in their mortality (Y); there is thus an arrow from 

C to Y in all three diagrams in Figure 1. When estimating the effect of X on Y, we generally 

want to adjust for variables that are causes of the two of them to close non-causal, or 

“backdoor,” paths that result in biased estimates.

Figure 1a represents the case where sensitivity and specificity of the in-person evaluation 

and the RWD review are identical and there is confounding by smoking status (i.e. there is a 

causal effect of smoking status on both trial enrollment and the outcome). Figure 1b 

represents the scenario where sensitivity or specificity differ between the trial and RWD but 

there is no confounding by smoking status (as was the case for Xylobegron); there is an 

arrow from X to Cmeasured because swapping someone from the trial to the RWD or vice 

versa could result in a change in their measured value of smoking. Figure 1c, the most 

plausible scenario, allows for differing sensitivity and specificity and confounding by 

smoking status. In all three diagrams the effect of X on Y is unbiased if investigators could 

match, weight by, or otherwise adjust for C (though it is unnecessary in Figure 1b). 

Unfortunately, they only have access to Cmeasured. What are the potential consequences for 

adjusting for Cmeasured, rather than C itself in each case?

In Figure 1a, adjusting for Cmeasured will reduce confounding bias by C provided that the 

confounder affects the outcome in the same direction in those with and without X (which is 

likely).13,19 The amount of confounding that remains depends on the measurement error (i.e. 

sensitivity and specificity) of Cmeasured as well as the overall prevalence of C.

In Figure 1b and Figure 1c, however, they cannot expect results to be less biased. In Figure 

1b, where there is no direct association between C and X, adjusting for Cmeasured opens a 

path between X and Y through C because Cmeasured is a consequence of both C and X 

(variables like Cmeasured are often referred to as colliders because an arrow from X and an 

arrow from C “collide” at Cmeasured).20 This creates bias when the crude would have been 

unbiased. In Figure 1c, the combination of 1a and 1b, adjusting for Cmeasured partially 

controls for the confounding by C but opens up colliding path through Cmeasured. In 

examples with large differences in sensitivity or specificity between the trial and RWD, this 

can result in estimates that adjust for Cmeasured being more biased than the crude estimate. 

Unfortunately, this is the limit of what graphs can tell us.

Additional scenarios:

We can, however, turn to quantitative examples of Figure 1c. It is possible to encode this 

situation in an Excel spreadsheet given binary X, C, and Y (Supplemental Digital Content 

1). While spreadsheets exist that allow researchers to correct for measurement error using 

observed data,21 this spreadsheet instead uses potential confounder prevalence, associations 
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between the confounder, enrollment (or treatment), and the outcome, and differences in 

sensitivity and specificity to generate expected results.

Based upon input parameters, this spreadsheet calculates crude estimates of the effect of X 

on Y as well as estimates based on several different strategies for adjusting for Cmeasured, 

including various propensity-score based weighting methods (one method, standardized 

morbidity ratio (SMR) weighting, is asymptotically equivalent to propensity score matching) 

and restricting to those with a specific value of Cmeasured. Though each of these methods 

estimates a different treatment effect,22 if is no treatment effect heterogeneity all of them 

will be identical.23 While we included a sample size field in the spreadsheet for those 

interested in examining how many individuals would be expected to be misclassified in the 

trial and RWD, the fields are calculated based upon expected proportions (allowing for 

fractions of people).

Table 1 lists the parameters involved in four distinct scenarios that include differential 

confounder misclassification. To ensure the treatment effect estimate was noticeably 

confounded, the association between the confounder and the outcome was set to a high 

constant risk ratio of 5.0. In scenario 1 and 2, we based our values for smoking measurement 

sensitivity (0.15 in claims data, 0.875 in trial data) on literature discussing the sensitivity of 

claims-based algorithms24,25 and a meta-analysis of self-reported smoking.26 Assuming 

specificity would be near-perfect in both settings, we used specificities of 0.99. In scenario 

1, smoking was positively associated with enrollment (20% chance of enrollment for 

nonsmokers, 60% for smokers), while in scenario 2 it was negatively associated with 

enrollment (60% chance of enrollment for nonsmokers, 20% for smokers).

We then created two scenarios specifically designed to showcase where the adjusted estimate 

might be more biased than the crude one. In scenario 3, we examined the possibility of a 

“rare” (10% prevalence) confounder with lower specificity (0.60) in the RWD than the trial, 

creating a large number of false positives. In scenario 4, we considered a common (80% 

prevalence) confounder with lower sensitivity (0.60) in the RWD than the trial, creating a 

large number of false negatives.

Finally, we created scenario 5 based on the published results of the blinatumomab study10 

whose findings were subsequently replicated by a randomized trial.11 We treated second 

leukemic relapse without a graft as the confounder and six-month all-cause mortality as the 

outcome and then derived confounder-outcome and confounder-exposure associations from 

their stratified results. We then considered what their results might have been had they been 

using a RWD source with poorer sensitivity (0.50) to detect past treatment and cancer 

history, like commercial claims.

RESULTS

Table 2 lists the estimated risk ratios for the effect of X on Y (true risk ratio=1.0) in the 

crude and after adjustment. The crude risk ratio is confounded in all scenarios, albeit in 

different directions from the truth. In scenario 1, where smokers had triple the chance of trial 

enrollment than non-smokers, SMR weighted and non-smoker restricted estimates were 
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closer to the truth, i.e. less biased, than the crude, while smoker-restricted estimates were 

more biased. When the confounder-enrollment association was reversed in scenario 2, risk 

ratios were generally as biased after adjustment as they were in the crude except when 

restricting to smokers.

In scenario 3, all estimates were more biased than the crude except for the one restricting to 

non-smokers, with restricting to smokers inducing the most bias. In scenario 4, adjustment 

resulted to similarly biased estimates to the crude, restricting to smokers removed all bias, 

and restricting to non-smokers resulted in extremely biased estimates. In scenario 5, results 

were only slightly biased regardless of adjustment for C, likely because the overall 

confounder-outcome association was small.

Somewhat counterintuitively, despite the high specificity for smoking (0.99) in both the trial 

and RWD restricting to smokers was not a good method for confounding control in scenario 

1. Because of the low prevalence of smoking and very poor sensitivity in the RWD, patients 

in the RWD classified as smokers were more likely to be non-smokers (55%) than smokers 

(45%), leading to considerable confounding in the “measured smoker” stratum; so much, in 

fact, that the estimate in those patients is more biased than the crude. Had specificity been 

perfect (1.00), then those in the “measured smoker” stratum would have all been smokers 

and all confounding by smoking would have been removed when restricting to that 

population.

Figure 2 helps illustrate the importance of the direction of the confounder-enrollment 

association. This figure uses the sensitivity and specificity parameters from Scenarios 1 and 

2 and fixes the probability of trial enrollment for those with C=0 at 0.50. We then varied the 

probability of trial enrollment for those with C=1 from 0.001 to 0.999 at 0.001 intervals to 

show the impacts of varying the magnitude and direction of the confounder-enrollment 

association on the crude (solid line) and SMR-weighted (dashed line) risk ratios.

When the association between the confounder and trial enrollment is strong and positive (the 

right side of the chart), the collider bias induced from the difference in sensitivity pushes the 

risk ratio downwards and closer to the null. Once the association between the confounder 

and trial enrollment is null or negative (the left side of the chart), controlling for the 

measured confounder still typically pushes the estimate downward, but it is now farther from 

the null than the crude.

DISCUSSION

Adding external comparator cohorts to single-arm trials represents a major potential 

application of RWD for researchers. When conducting such studies, perfect exposure and 

outcome classification are not enough; the fact that these non-randomized analyses must 

deal with the potential for confounding means they have to worry about confounders and 

how well confounders are measured in both cohorts as well. Unless investigators take steps 

to resolve differential confounder misclassification, controlling for variables that appear to 

be confounders can increase rather than decrease bias in estimates.
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Whether this is the case depends on the overall prevalence of the confounder, the magnitude 

and direction of the association between the confounder and the data source, and the specific 

breakdown of specificity and sensitivity for the confounder in the trial and RWD. The 

association between the confounder and the outcome impacts the amount of bias, but not 

whether it increases or decreases after controlling for the measured confounder. It’s also 

important to note that if researcher identify a perfect comparator arm (i.e. one with no 

association between data source and confounders, like Figure 1b), then any differences 

observed in the prevalence of confounders are due to differential measurement error, and 

adjusting for them will only add bias to the estimates. Researchers should be especially wary 

of these problems when dealing with variables known to be poorly captured in RWD (e.g. 

body mass index or obesity,27 smoking,24 race and ethnicity,28 and alcohol consumption), 

especially when they are unlikely to be associated with whether an individual participates in 

the experimental arm.

There are some ways to ameliorate these concerns.29 Subsample validation of the RWD arm 

as well as linking trial data directly to a source of RWD for imputation can help ensure 

confounder measurement is no longer differential.30–33 This allows investigators to be more 

comfortable assuming that their adjustment sets do not increase bias based on fewer and 

more plausible assumptions; unfortunately, it does not guarantee results closer to the truth 

than adjusting for the misclassified confounder. Sensitivity analyses for measurement error 

akin to those used in traditional non-experimental studies or more sophisticated tools like 

multiple bias modeling can also shed light on the robustness of results to these types of 

biases.21,34,35 Additionally, there are situations where restricting to one strata of the 

confounder is a reliable technique for removing some or most of the bias from differential 

measurement error; while this is useful given perfect specificity (or perfect sensitivity), even 

narrow departures from perfection can result in sizeable remaining confounding within strata 

as we see in Scenario 1 and 2.

This work is by no means comprehensive. Additional analyses on the interplay of multiple 

confounders with correlated differential measurement error and how this bias could interact 

with treatment and outcome misclassification are vital. We hope that some future single-arm 

trials using RWD controls will build on this work by validating both outcomes and 

confounder measurement and allow a greater understanding of misclassification’s impact on 

real studies. Continuous confounders are another important area of investigation, particularly 

when random variation across data sources is also differential. The interplay of these 

misclassified covariates with other, better measured confounders is also a key area for 

further investigation. Finally, many single-arm studies use external comparator cohorts as 

benchmarks for survival outcomes like median time to progression or for log-rank tests, with 

or without adjustment for confounding. While differential confounder misclassification can 

be problematic regardless of the outcome in question, further investigation of the specific 

impacts on time-to-event or continuous outcomes would be valuable.

Conclusion

Conducting single-arm trials that integrate trial data with the kind of data used in non-

experimental studies allows researchers to answer new and interesting questions but can 
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create biases that are less common in the context of studies limiting themselves to one data 

source. Investigators need to think carefully about whether observed differences in 

covariates between the trial and RWD arms of these single-arm studies are real or an artifact 

of differential measurement error when deciding whether they want to use techniques to 

adjust for confounding.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Potential directed acyclic graphs for the relationship between Xylobegron use (X), a 

confounder requiring measurement like smoking (C), and an outcome like mortality (Y). An 

arrow from one variable into another means that intervening on the first variable would 

result in a change in the second. A box around a variable means that we are adjusting for it. 

SensX=1 refers to sensitivity in the trial, while SensX=0 refers to sensitivity in the RWD. 

Similarly, SpecX=1 refers to specificity in the trial while SpecX=0 refers to specificity in the 

RWD. PRC->X refers to the association between C and X.
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Figure 2: 
Crude risk ratios (solid black line) and SMR-weighted risk ratios (dashed black line) 

observed with Scenario 1 sensitivity and specificity when varying the probability of trial 

enrollment for those with C=1 while the probability of trial enrollment for those with C=0 is 

held fixed at 0.50. In all cases the true value is 1.00, the gray reference line.
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Table 1:

Key parameter values in four illustrative quantitative scenarios.

Scenario Overall C prevalence C->X association Sensitivity Specificity

Scenario 1:
Plausible values, C increases P(X) Rare (0.10) PR = 3.00 Trial = 0.875

RWD = 0.15
Trial = 0.99
RWD = 0.99

Scenario 2:
Plausible values, C reduces P(X) Rare (0.10) PR = 0.33 Trial = 0.875

RWD = 0.15
Trial = 0.99
RWD = 0.99

Scenario 3:
Extreme example (lower RWD specificity) Rare (0.10) PR = 3.00 Trial = 0.99

RWD = 0.99
Trial = 0.99
RWD = 0.60

Scenario 4:
Extreme example (lower RWD sensitivity) Common (0.80) PR = 0.33 Trial = 0.99

RWD = 0.60
Trial = 0.99
RWD = 0.99

Scenario 5:
Blinatumomab-based example Uncommon (0.27) PR = 0.46 Trial = 0.99

RWD = 0.50
Trial = 0.99
RWD = 0.99

PR = prevalence ratio.
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Table 2:

Calculated RRs in the crude and after various methods of adjustment in four illustrative scenarios.

Crude SMR weighted Strata CM=1 Strata CM=0

Scenario 1 RR (truth = 1.00) 1.65 1.29 1.73 0.98

Scenario 2 RR (truth = 1.00) 0.66 0.66 1.00 0.62

Scenario 3 RR (truth = 1.00) 1.65 1.78 3.29 1.01

Scenario 4 RR (truth = 1.00) 0.72 0.72 1.00 0.26

Scenario 5 RR (truth: varies)
a 0.69 0.69 0.74 0.68

RR=risk ratio. SMR=standardized morbidity ratio.

a
Because Scenario 5 used real confounder-outcome associations from the blinotumomab trial, the risk ratio was not constant across levels of C. It 

was 0.71 for the SMR-weighted population, 0.71 for those without C, and 0.75 for those with C.

Med Care. Author manuscript; available in PMC 2021 December 01.


	Abstract
	INTRODUCTION
	METHODS
	Worst case:
	Causal diagrams:
	Additional scenarios:

	RESULTS
	DISCUSSION
	Conclusion

	References
	Figure 1:
	Figure 2:
	Table 1:
	Table 2:

