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Abstract

Ribosomally synthesized and post-translationally modified peptides (RiPPs) compose a large 

structurally and functionally diverse family of natural products. The biosynthesis system of RiPPs 

typically involves a precursor peptide comprising of a leader and core motif and nearby processing 

enzymes that recognize the leader and act on the core for producing modified peptides. Interest in 

RiPPs has increased substantially in recent years as improvements in genome mining techniques 

have dramatically improved access to these peptides and biochemical and engineering studies have 

supported their applications. A less understood, intriguing feature in the RiPPs biosynthesis is the 

precursor peptides of multiple RiPPs families produced by bacteria, fungi and plants carrying 

multiple core motifs, which we term “multicore”. Herein, we present the prevalence of the 

multicore systems, their biosynthesis and engineering for applications.
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Natural products have long inspired drug discovery and development due to their intrinsic 

bioactivity. A major type of natural products, peptides possess diverse biological roles and 

have received tremendous attention in basic and translational research [43,86]. One specific 

utility for peptides is to target “undruggable” space, e.g., protein-protein interactions, which 

is less accessible with other types of small molecules since peptidic compounds demonstrate 

increased specificity and less off-target effects [115,43,86]. Ribosomally synthesized and 

post-translationally modified peptides (RiPPs) are one category of peptidic natural peptides 

that are produced by all major domains of life and contain a wide variety of structural 

diversity [2]. These peptides demonstrate a wide array of biological activities, e.g., inhibiting 

nucleotides/proteins synthesis, chelating metal ions, and permeabilizing cell membranes 
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[5,21,41,70,127]. RiPPs also play important roles in internal regulation and host-bacteria 

interactions [5,70,127]. Of note, the RiPP nisin has been used for food preservation since the 

late 1960s. As new RiPPs are rapidly discovered, their applications in drug development and 

other areas will continue to expand.

So far, over 22 RiPP families have been discovered with distinct structural features, e.g., 

lanthipeptides, thiopeptides and lasso peptides, while their biosynthesis follows a common 

logic (Fig. 1A) [5]. The RiPP biosynthetic gene clusters (BGCs) minimally consist of one 

precursor peptide and one or more pathway-specific modification enzymes. The precursor 

peptide generally includes an N-terminal leader peptide (LP), which often dictates the 

binding of modification enzymes, and a C-terminal core peptide (CP), which is 

enzymatically modified and then released to form the advanced biosynthetic intermediate or 

final product (Fig. 1A). A long list of peptide modification enzymes promotes a wide variety 

of modifications on the CP, e.g., methylation, oxidation/reduction, dehydration, crosslinks 

between amino acid residues, and macrocyclization; the chemical diversity of RiPPs rivals 

that of nonribosomal peptides, another major category of peptidic natural products 

[3,5,23,87,114,127]. Importantly, capable bioinformatics tools have been developed to 

predict and discover new RiPP analogs and even novel families from organism genomes 

[11,20,55–58,64,106–108,113]. The known and newly mined RiPPs gene clusters can be 

further categorized into three groups based on the status of their precursor peptides. The 

gene clusters in the first group encode only a single precursor peptide that contains a single 

CP, while those in the second group carry multiple precursor peptides (Fig. 1B). The single 

CP of these multiple precursors can range from identical sequences to very low similarity. 

The RiPP gene clusters in the last group have one or more precursor peptides, each of which 

consists of multiple CPs after the single LP (Fig. 1B). Compared with the first two RiPP 

groups, the biosynthetic understanding of the multicore RiPPs remains underexplored. On 

the other hand, the multicore system holds the promising potential to expand peptide 

chemical diversity with an economical genetic cost, aiding improved target selectivity and 

potency in peptide drug research [8,25,44,97,101,125,126]. Herein, we review current 

knowledge of all known multicore RiPPs systems in bacteria, fungi and plants, highlighting 

their prevalence, distribution, bioactivity, and biosynthetic logic compared to their respective 

single-core systems. We will further highlight engineering efforts in developing these RiPPs 

for biomedical applications.

1. Bacterial multicore RiPPs

The vast majority of RiPPs are of bacterial origins but only a few demonstrate apparent 

multicore features in the biosynthesis, with repeated CP units within a single precursor 

peptide, including cyanobactins and microviridins as well as some Ω-ester peptides. We will 

review each of these RiPPs families along with putative multicore RiPPs discovered through 

genome mining efforts.

1.1 Cyanobactins:

Cyanobactins were first discovered in 1989 as natural products of marine ascadians, but 

were later shown to be biosynthesized by the symbiotic cyanobacterium Prochloron didemni 
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[40,47,90,101]. To date, dozens of cyanobactins have been isolated from multiple 

cyanobacterial species (Fig. 2). Importantly, over 20% of cyanobacterial genomes are 

predicted to contain at least one cyanobactin cluster [66,105], while the similar clusters have 

been discovered in other bacterial phyla, such as Actinomycetes [38,53]. The native 

functions of cyanobactins remain unclear, but these peptides have been shown to execute 

diverse biological activities, including cancer cytotoxicity, growth and protease inhibition, 

metal chelation, and reducing antibiotic drug resistance [45,105].

The biosynthesis of cyanobactins obeys the general logic of RiPPs (Fig. 1A) [24,67,73], and 

demonstrates obvious biosynthetic plasticity in generating chemical diversity. Some 

cyanobactin gene clusters contain up to 10 precursor peptides, each of which carries a single 

CP, while others encode a single precursor peptide with up to 4 CP motifs [99]. Our current 

understanding of cyanobactin biosynthesis mainly comes from the precursor peptides with 2 

to 3 CPs, e.g., PatE from the patellamide biosynthetic pathway, while the engineered single-

core precursors have often been used for easing enzymatic and engineering studies [33,39]. 

The cyanobactin CP generally consists of 6 to 8 amino acids with cysteine, serine, threonine 

residues separated by one nonconserved residue, e.g., xTxCxSxC. Multiple enzymes install 

modifications on each CP, including heterocyclase (e.g., PatD), N-terminal protease (e.g., 

PatA), C-terminal protease/cyclase (e.g., PatG), oxidase (e.g., ThcOx), and prenyltransferase 

(e.g., PatF) (Fig. 2). Some modification enzymes contain a RiPP precursor peptide 

recognition element (RRE) that is a PqqD domain for recognizing and binding a helix-turn-

helix motif typically found in the LP [7]. In addition, some cyanobactin biosynthetic 

enzymes bind to another type of conserved motifs in the precursor peptide, termed 

recognition sites (RSs) (Fig. 2). Recognition site 1 (RSI) is N-terminal to the CP and 

typically has a conserved sequence of LAELSEE. RSI guides the heterocyclization of the 

conserved cysteine, serine, and threonine in the CP. The cyanobactin heterocyclases contain 

an ATP-dependent YcaO domain [9]. The heterocyclization within the cyanobactin CP 

occurs in a C to N direction, with cysteines modified before threonine or serine residues. 

The majority of cyanobactin CPs contain a C-terminal heterocycle, typically thiazol(in)e 

[38,67,105]. On the other hand, some cyanobactin BGCs have no heterocyclase and their 

precursor peptides carry no RSI but often have a C-terminal proline in the CP, e.g., 

xTxCxSxP [99]. Following RSI, RSII with a conserved sequence of Gx(E/D)xS flanks the 

CP on the N-terminus, while RSIII as the motif of (A/S)YD is C-terminal to the CP (Fig. 2). 

RSII interacts with the N-terminal subtilisin-like protease (PatA) to release the 

heterocyclized CP C-terminal to the conserved Ser of the RSII motif. RSIII in the released 

modified CP then guides the C-terminal subtilisin-like protease (e.g., PatP) to hydrolyze the 

amide bond N-terminal to its conserved Ala/Ser residue. In addition, the latter protease often 

catalyzes head to tail cyclization of the released cyanobactins through a transamidation, but 

linear cyanobactins have also been found [1,60,61,65,67,76].

The modified CP cleaved from the cyanobactin precursor peptide can undergo additional 

modifications, commonly oxidation and prenylation, to generate the final product, e.g., 

patellamides and trunkamides (Fig. 2) [46,77]. The FMN-dependent oxidase can be fused 

with the C-terminal protease (e.g., PatG) or as a stand-alone enzyme (e.g., ThcOx) [32]. 

Oxidation on the azolines (e.g., thiazolines) proceeds in an N to C direction on both linear 

and macrocyclic peptides [32,46]. The oxidase domain contains an RRE that is important to 
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enzyme stability but shows no clear binding to the cyanobactin precursor peptide [32]. The 

prenylation is often the last possible modification on cyanobactins [75,97]. The 

prenyltransferase LynF modifies the –OH group of tyrosine residues, while TruF acts on the 

–OH group of serine and threonine residues. After the O-prenylation, a spontaneous Claisen 

rearrangement can occur to produce an ortho-C-prenylated cyanobactin. On the other hand, 

the prenyltransferase is fused with a methyltransferase as a single enzyme AgeMTPT for the 

biosynthesis of linear cyanobactins aeruginosamides [97]. In this case, after 

heterocyclization and N-terminal cleavage, the exposed N-terminus is prenylated to prevent 

the transamidation reaction by the C-terminal protease AgeG that cleaves at RSIII. The 

AgeMTPT further protects the C-terminus by the methylation [97].

Multicore cyanobactin precursors are often found in the patellamide/trunkamide-like BGCs 

and contain up to 4 CP motifs. Each CP is flanked by an RSII and RSIII with only one RSI 

site before the first CP, if heterocyclization enzymes are present (Fig. 2) [39,99]. The 

modifications on these CPs demonstrate distinct features, although the overall modifications 

on each CP are the same as the single-core system (Fig. 2) [98]. In contrast to the engineered 

single-core precursor peptide, the heterocyclase iteratively binds to, releases, and rebinds to 

the parental substrate and modified intermediates during the reaction, and displays no 

preferred order in modifying the multiple CPs. Indeed, cyanobactin intermediates have been 

detected with cyclization on either CP [39]. The N-terminal protease prefers the cleavage at 

the first CP under non-reductive conditions, but distributive catalysis still occurs with initial 

cleavage at the second CP as a minor product (Fig. 2). Interestingly, the order of cyclization 

and cleavage is redox-state dependent [39]. Overall, in the multicore processing, the 

majority of cyanobactin modification enzymes are distributive and tolerant to core sequence 

variations, leading to the generation of multiple intermediates depending on the processing 

order [39].

The inherent biosynthetic plasticity of cyanobactins can be leveraged to produce unnatural 

analogs. Several libraries of unnatural cyanobactins have been synthesized, with most 

proteinogenic residues being accepted at several positions within the CP, without affecting 

enzyme activity [95]. Furthermore, cyanobactin biosynthetic enzymes successfully 

processed the precursor peptides carrying non-proteinogenic residues in the CP 

[46,100,112]. For example, the macrocyclase PatG has been shown to cyclize compounds 

with no natural residues or the presence of heterocycles [87]. Remarkably, the use of 

modification enzymes from different cyanobactin pathways further expanded the chemical 

diversity, generating hundreds of new compounds [46,95,98]. Importantly, the engineering 

of the multicore system, in conjunction with combinatorial biosynthesis, is expected to lead 

to new or improved activities for a wide range of applications.

1.2 Microviridins:

Microviridins were discovered in 1990 from an extraction of the cyanobacterium 

Microcystis viridis [49]. Since then, tens of microviridins have been isolated from a variety 

of cyanobacterial strains [2,128]. These tricyclic peptides possess potent and selective serine 

protease inhibitory activity (Fig. 3A) [80,93,104,128]. In addition, microviridin J has 
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demonstrated the toxicity to the water flea Daphnia pulicaria that is the predator of the 

producing cyanobacterium [93,94].

Microviridin BGCs have a minimal gene set of a precursor peptide and two ATP-grasp 

ligases but can contain additional genes, including an acyltransferase and an ABC 

transporter. The ATP-grasp ligases contain an atypical ATP-binding site, named the ATP-

grasp fold, and typically catalyze the intermolecular formation of a peptide or ester bond. 

The microviridin precursor peptide (e.g., MdnA) carries an N-terminal conserved leader 

motif of PFFARFL and a conserved 10-amino acid core motif of 1-TxKYPSDx(D/E)(D/

E)-10 (Fig. 3A) [88]. The two ATP-grasp ligases (e.g., MdnB and MdnC) interact with the 

conserved leader motif and install three macrocycles on the CP. The first ATP-grasp ligase 

MdnC lactonizes the CP between the side chains of its Thr1 and Asp7. Upon the formation 

of the first macrolactone, MdnC further forms the second macrolactone between the side 

chains of Ser6 and Asp/Glu9. The bicyclic microviridin CP is then modified by the second 

ATP-grasp ligase MdnB to install one macrolactam between the side chains of Lys3 and 

Asp/Glu10 (Fig. 3A) [69,88,121]. The order of these three cyclizations is strict [88], while 

natural bicyclic microviridin analogs have been isolated when their core Lys3 is mutated to 

Arg [109,111]. Interestingly, recent structural studies revealed that neither MdnC nor MdnB 

carries the RRE domain [69]. Instead, MdnC and MdnB share the standard ATP-grasp ligase 

structural motifs comprising of N-domain, central domain and C-domain, and their central 

domain interacts with an α-helical element formed from the conserved leader motif (Fig. 

3A) [69], representing a new strategy of substrate/enzyme recognition in the RiPPs 

biosynthesis. The LP/enzyme interaction opens the catalytic pocket formed by residues from 

the N- and C-domains for cyclizing the CP [69]. Furthermore, the leader motif can activate 

the ATP-grasp ligases for the cyclizations when it is fused to the enzymes or added in trans 
[2,69,91,121]. The remaining biosynthetic steps of microviridin include the proteolytic 

cleavage of the LP and the acetylation of N-terminus of the released CP to produce mature 

microviridins that may be subjected to a pathway-specific ABC transporter [2,121,128].

Recent bioinformatics studies identified hundreds of microviridin BGCs from the genomes 

of cyanobacteria, as well as those of proteobacteria, bacteriodetes, and acidobacteria phyla 

[2]. These mined clusters demonstrate tremendous diversity as some encode up to 10 

precursor peptides, while the precursor peptides of other clusters contain up to five CPs 

[2,127]. Of note, the microviridin multicore precursors appear in the clusters found in all 

four bacterial phyla [2], presumably reflecting the biological significance of the multicore 

design. The first understanding of the enzymatic processing of the microviridin multicore 

systems comes from the research of the cluster in the filamentous cyanobacterium Anabaena 
sp. PCC 7120 [127]. In this cluster, the precursor peptide AMdnA has three predicted CPs 

and the lactone-forming ATP-grasp ligase AMdnC cyclizes these cores with a favored N to 

C directionality (Fig. 3B) [127]. On the other hand, the first CP of the most abundant 

product is macrocyclized only once, while two macrolactones are installed on each of the 

remaining CPs (Fig. 3B). The order of two cyclization reactions on the two CPs of AMdnA 

is the same as the single-core containing MdnA. These results together suggest that the 

modification status on one CP of AMdnA has no, to minimal, influence on the enzymatic 

macrocyclization of others, highlighting the enzyme’s substrate promiscuity. The broad 

substrate scope of AMdnC is further supported by its reactions on engineered AMdnA 
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analogs with one to four CPs and the noncognate substrate MdnA. Similar to the 

biosynthetic enzymes of cyanobactins, AMdnC is distributive in cyclizing CPs within 

AMdnA [39,127]. The distributive catalysis may be one hallmark of the processing of 

multicore precursors in the RiPPs biosynthesis. A conserved GG motif is often available 

between two microviridin CPs that can be cleaved by a C39 protease [2]. However, 

individual microviridins have not been isolated from any multicore systems yet [2,127].

The plasticity of microviridin biosynthetic systems has allowed engineering efforts to 

expand the chemical diversity of these peptides for the discovery of potent and selective 

serine protease inhibitors [2,128,122]. Almost all proteinogenic residues are tolerant in the 

nonconserved sites of the CP to generate diverse peptide libraries [91,122]. It is expected 

that the multicore systems can further facilitate the synthesis of new analogs that can be used 

to screen for inhibitors of serine proteases essential to all forms of life.

1.3 Ω-Ester peptides:

In the continued effort to uncover microviridin-like peptides, the Kim laboratory predicted a 

total of 12 putative peptide groups whose precursor peptides demonstrate distinct features 

but contain multiple potential pairs of Thr/Ser/Lys and Asp/Glu residues for the ATP-grasp 

ligase mediated macrocyclizations [63]. Remarkably, similar to microviridins (Group 1), 

some precursor peptides from Groups 2 to 6 also carry multiple CP repeats [63]. Among 

them, the biosynthesis of plesiocin (Group 2) and thuringinins (Group 3) have been studied 

in good detail, as discussed below.

The plesiocin gene cluster was first mined from the genome of a marine myxobacterium 

Plesiocystis pacifica in 2017, and its putative clusters were later found to be widely 

distributed in actinobacteria, cyanobacteria, firmicutes, proteobacteria, acidobacteria, 

euryarchaeota, and plantomycetes [63,64]. The understanding of the plesiocin biosynthesis 

came from the in vitro biochemical characterization of the plesiocin precursor PsnA2 

processed by the pathway specific ATP-grasp ligase PsnB (Fig. 4A). PsnA2 carries four 

repeats of 1-TTLxxGEE-8 separated by 2 to 4 residues, while its homologs can have up to 

15 repeats. Recombinant PsnB prepared from E. coli successfully processed all four repeats 

of PsnA2 by forming two ester linkages between the side chains of Thr1 and Glu8 and of 

Thr2 and Glu7 in each repeat, yielding four hairpin-like bicyclic units. PsnB was distributive 

in modifying these four repeats but demonstrated low activity toward engineered repeats 

with more than four residues between the inner pair of Thr and Glu [62]. Furthermore, the 

plesiocin precursor does not share the same conserved leader motif as microviridins, 

suggesting a new way for the interactions of leader/ATP-grasp ligase in the peptide 

macrocyclization. The minimal leader peptide for the effective processing was determined 

with serial truncated PsnA2 analogs (Fig. 4A). Although it is still unclear if one or more 

repeats of plesiocin are proteolytically released in the native producers, both plesiocin and 

its engineered single repeat inhibit serine proteases elastase and chymotrypsin, but not 

trypsin, and plesiocin is 10 to 20-fold more potent. On the other hand, the replacement of 

Leu3 with Arg introduced potent trypsin activity. In this regard, plesiocins can be engineered 

to target one or multiple proteases at once potently and selectively.
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Similar to plesiocins, the thuringinin (Tgn) gene cluster was first mined from the genome of 

one Bacillus species in 2019 and appeared in multiple species of Firmicutes and 

Proteobacteria [92]. All clusters consist of at least one precursor peptide (e.g., TgnA), a 

transmembrane protein (e.g., TgnC), and an ATP-grasp ligase (TgnB) (Fig. 4B). The 

thuringinin precursor peptides have an N-terminal leader and 2 to 7 repeats of the conserved 

motif of 1-TxxTxxxExxD-11 at the C-terminus. TgnA from the Bacillus species carries 

three repeats and the co-expression with its cognate TgnB in E. coli generated the 

recombinant TgnA that receives six macrolactones, two on each repeat (Fig. 4B) [92]. The 

first ester linkage is formed between the side chains of Thr4 and Glu8 and the other from 

Thr1 and Asp11. Remarkably, the conserved leader motif of TgnA for the binding of TgnB 

is discovered by substrate engineering and distinct from those of microviridin and plesiocin 

precursor peptides (Fig. 4B), indicating that ATP-grasp ligases can evolve multiple modes of 

protein/protein interactions in the RiPPs biosynthesis. Processed thuringinins with the 

attached leader showed no inhibitory activity against several serine proteases. Furthermore, 

it is unclear if any repeats of thuringinins are proteolytically released.

2. Fungal multicore RiPPs

So far, only several families of fungal RiPPs have been isolated, e.g., amatoxins and 

phallotoxins [4,5,72,123]. On the other hand, multicore precursor peptides are increasingly 

being discovered due to improvements of genome mining approaches. The biosynthetic 

understanding of multicore fungal RiPPs has been elucidated, in part, for dikaritin-type 

peptides.

Dikaritins are a family of cyclic peptides produced by fungal species of the Dikarya 

subkingdom [28]. Within this family are currently ustiloxins, phomopsins, and asperipins 

(Fig. 5) [117]. The characteristic cycle of the dikaritin family is formed between the aryl 

hydroxyl group of Tyr and ß-carbon of another residue, e.g., Ile for ustiloxins and 

phomopsins. Ustiloxins were first isolated from parasitic false smut balls growing on rice 

plants and were shown to inhibit microtubule assembly and mitosis of human tumor cell 

lines in the low μM range and are extremely toxic against mice [89,90]. Similarly, 

phomopsins are a group of hexapeptide mycotoxins that are the major cause of lupinosis 

disease and inhibit microtubule assembly [19,117]. In contrast, asperipins were recently 

identified from Aspergillus flavus primarily driven by searching biosynthetic enzyme 

homologs of ustiloxins from fungal genomes [82].

The biosynthesis of dikaritins has been characterized to a certain degree in the biochemical 

and genetic studies of ustiloxins and phomopsins. The ustiloxin BGCs contain 11 to 17 

genes, encoding a precursor peptide (e.g., UstA), a copper-dependent tyrosinase (e.g., UstQ), 

and a variety of other tailoring enzymes, e.g., flavin-dependent monooxygenases (e.g., 

UstF1-F2), P450 (e.g., UstC), methyltransferase (e.g., UstM), and pyridoxamine 5′-
phosphate (PLP) oxidase (e.g., UstO) [82,116,125]. The precursor peptide UstA from 

Aspergillus flavus contains 16 repeats with a highly conserved sequence motif of 

NSVEDYAIGIDKR, of which the tetrapeptide YAIG fragment appears in the final 

structures of ustiloxins (Fig. 5B). A combination of functional prediction, gene knockouts, 

and biochemical characterization suggests key modifications on the conserved repeats, but 

Rubin and Ding Page 7

J Ind Microbiol Biotechnol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the details of these modifications (e.g., order and distributive catalysis) are still unknown. 

Briefly, the processing requires multiple proteases to release the conserved repeats and the 

modified or unmodified tetrapeptide. A subtilisin-like endoprotease Kex2 is expected to 

release the repeat fragments at the C-terminus of the conserved KR motif but this protease is 

not pathway-specific. The ustiloxin BGC encodes two S41 family peptidases UstP1 and 

UstP2 that may remove the N and C-terminal sequences of the tetrapeptide core in the 

released repeat fragments. The conversion of the tetrapeptide YAIG into ustiloxin F requires 

a series of reactions, including β-hydroxylation and 3-hydroxylation on the phenol of Tyr, 

crosslinking between 3-OH of Tyr and β-carbon of Ile and N-methylation of the primary 

amine of the core motif [82,116,125]. The tyrosinase UstQ is likely responsible for the 

phenol hydroxylation, while UstM catalyzes the N-methylation (Fig. 5B). Two essential 

uncharacterized proteins UstYa and UstYb may catalyze the β-hydroxylation of Tyr and the 

oxidative cyclization. Of note, except UstM, the order and other details of the proteolysis 

and tailoring reactions in processing the multicore UstA are completely unknown. 

Furthermore, it is unclear if and how the processing enzymes interact with the LP in the 

modifications. The synthesis of other ustiloxin analogs requires additional modifications. 

For example, a norvaline residue is added through a sulfur linkage at the tyrosine benzyl 

group of ustiloxin F to generate ustiloxin B, which likely requires a cytochrome P450 UstC, 

a cysteine desulfurase UstD, a glutathione S-transferase UstS, two flavin-dependent 

enzymes UstF1 and UstF2, and a PLP-dependent oxidase UstO (Fig. 5B) [116,125]. The 

functions of UstF1, UstF2 and UstD in the biosynthesis of ustiloxin B have been confirmed 

in both genetic and biochemical studies [116,125]. The biosynthesis of phomopsins is highly 

similar to ustiloxins [117]. The precursor peptides of phomopsins carry multiple repeats with 

a highly conserved sequence motif of VEDY(V/A/F)I(G/P)(I/V/A)DKR. The central 

hexapeptide fragment appears in the final structures of phomopsins. The proteolytic 

cleavages of the native or modified repeats are presumably mediated by Kex2 and one 

pathway-specific S41 family peptidease PhomP1, while the modifications on the 

hexapeptide can be catalyzed by the tyrosinase PhomQ1, one or more of five 

uncharacterized enzymes PhomYa-e, a hydroxylase PhomE, an oxidoreductase PhomF, and 

a methyltransferase PhomM [117]. Again, the order and details of these potential processing 

steps in the phomopsin biosynthesis have not been studied yet. Collectively, the known 

dikaritin precursor peptides contain multiple repeats of conserved sequence motifs and the 

biosynthesis requires multiple proteolysis steps and enzymatic modifications, particularly 

aromatic hydroxylation and oxidative crosslinking, which await further characterization. The 

similar biosynthetic logic can be employed in the biosynthesis of epichloëcyclins that are 

produced by Epichloë fungi associate with grasses in mutualistic to parasitic manners 

[54,55]. Furthermore, the relatively conserved modifications and the variations on several 

positions of the dikaritin CPs indicate great potential in the creation of diverse libraries and 

combinatorial biosynthesis [22,82,116,125].

3. Plant multicore RiPPs

Plant RiPPs are stable cyclic peptides of significant pharmacological interests. These 

peptides are very diverse in the size and residue components. Although they can be produced 

from the precursor peptides containing a single CP, recent genome mining studies revealed 

Rubin and Ding Page 8

J Ind Microbiol Biotechnol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the prevalence of multicore precursor peptides. Here we will review the biosynthesis and 

engineering of three known families, cyclotides, orbitides and lyciumins.

3.1 Cyclotides:

Cyclotides were first discovered from Oldelandia affinis DC, a plant used by African women 

to accelerate contractions and childbirth [35,36,96], and hundreds of analogs have been 

identified from many other plants [15,18,79,119]. These compounds have a common 

characteristic structural feature, a cysteine knot in which a ring formed by two disulfide 

bonds is threaded by a third disulfide linkage (Fig. 6A). This structural fold is further 

divided into three subfamilies, bracelet-like in which the backbone is not twisted (e.g., 

Cycloviolacin O2), Möbius where the peptide is cyclized through a backbone twist (e.g., 

Kalata B12), resembling a Möbius strip, and the trypsin inhibitor (e.g., MCoTI-II), which 

has a longer sequence resulting in a looser cysteine knot (Fig. 6A) [34,77]. The bracelet 

family is the most common, accounting for approximately two-thirds of known cyclotides, 

followed by the Möbius family [120]. On the other hand, while many cyclotides are also 

head to tail cyclized, there are known linear cyclotides [18,48,96]. Cyclotides often contain 

28 to 37 amino acid residues, including six conserved cysteines at specific positions for 

forming the characteristic fold. Furthermore, the first and last residues of cyclotides are 

generally A/G and N/D, respectively [17,52], while the rest are highly variable. The 

sequence diversity may be related to their potential biological role as a host defense factor as 

some plants produce large quantities of these compounds (e.g., 1g compound/kg leaf extract) 

[18], while cyclotides also demonstrate diverse other activities, including antiviral, protease 

inhibition, insecticidal, and cytotoxic activities.

Cyclotide BGCs have been uncovered with up to 10 precursor peptides, while each 

precursor peptide can contain up to eight CP motifs. In the multicore systems, these CPs can 

encode both identical and unique cyclotides, i.e., the cyclotide precursor peptide from 

Cucurbitacaeae can produce four distinct products from six CP units [17,18,52,81]. Each CP 

of the cyclotide precursor peptide is flanked by two conserved motifs, termed terminal 

repeats (NTR/CTR) (Fig. 6B) [41]. On the other hand, the NTR/CTR sequences of the 

precursor peptides from different plants are highly variable. Furthermore, the cyclotide CPs 

have been found to be embedded in the albumin gene, which normally encode hormone-like 

peptides with insecticidal properties [37,89]. The albumin BGC can generate the active 

cyclotide, without clear cyclotide NTR/CTR [90]. The same “hijacking” mechanism has also 

been found in the biosynthesis of cyclic plant peptides PawS and PawL [27,30,31,50].

The cyclotide precursor peptide is ribosomally translated and targeted to endoplasmic 

reticulum (ER) by its N-terminal ER signal peptide, where the signal peptide is removed 

(Fig. 6B). The details of the remaining steps, particularly the order, in the cyclotide 

biosynthesis have not been clearly defined. Briefly, a protein-disulfide isomerase (PDI) is 

expected to catalyze the formation of the three disulfide bonds on each CP in the ER [42]. It 

is unclear if and how the leader peptide interacts with PDI and other processing enzymes in 

the cyclotide biosynthesis. The modified precursor peptide is then transported to the vacuole, 

where a yet-identified enzyme first cleaves the NTR of each modified CP. The exposed 

amino group of A/G of each modified CP then acts as a nucleophile for intramolecular 
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transpeptidation mediated by an asparaginyl endopeptidase (AEP) to produce cyclic 

cyclotides (Fig. 6B) [14,17,83,84]. On the other hand, the head-to-tail cyclization mediated 

by AEP is independent of the presence of disulfide bonds and the enzyme is promiscuous. 

Additional modifications to the cyclic cyclotides are present, e.g., reductions and alkylations 

[102]. Furthermore, the current understanding of the cyclotide biosynthesis has mainly relied 

on the use of natural or engineered single-core precursor peptides, and the processing details 

of multicore systems remains unknown.

Given the availability of multiple nonconserved sites, cyclotides have been used for 

molecular grafting, in which epitopes are engineered into cyclotides, for improving the 

stability and efficacy of the epitope and introducing new bioactivities for the recombinant 

cyclotides [16,118]. Unfortunately, some epitopes prevent enzymatic cyclization. Recently, 

an enzymatic method for improved cyclization of epitope-linked cyclotides has been 

reported [108]. In this case, an alternative cyclization site was introduced, allowing for 

efficient ligation and efficacy of the bioactive epitope, without affecting normal cyclization 

of the peptide. This improved method opens new opportunities to create large cyclotide 

libraries in a rapid and low-cost manner.

3.2 Orbitides:

Orbitides are another family of plant cyclic peptides that contain 5–16 residues (Fig. 6C) 

[6,28]. Over 130 orbitides have so far been discovered and some possess anti-inflammatory, 

antiplatelet, antimalarial, immunosuppressive, and cytotoxic activities 

[12,13,79,85,110,119,124]. Compared with cyclotides, orbitides are also head-to-tail 

cyclized through the peptide backbone, but have no disulfide bridges. On the other hand, the 

biosynthesis of cyclotides and orbitides share multiple common features (Fig. 6B). The 

orbitide precursors contain up to nine CP motifs whose sequence components and sizes can 

be varied [29,86,103]. Each orbitide CP is flanked by conserved NTR/CTR repeats whose 

sequences often differ among plants. Similar to cyclotides, the orbitide CPs have been found 

in the albumin gene cluster [30,50]. The processing of the CP is believed to start by the 

removal of NTR by a serine protease OLP1, followed by the cleavage of CTR and the 

intramolecular transpeptidation by a peptide cyclase of the S9A protease family, PCY1 (Fig. 

6B) [6,10,13,71]. Additional modifications on the cyclized orbitides have been observed 

[68,109]. Similar to AEP in the biosynthesis of cyclotides, PCY1 is promiscuous in 

modifying a variety of non-native substrates [106], suggesting its biotechnological 

applications for the synthesis of the orbitide libraries. Similar to the cyclotide biosynthesis, 

the details of the enzymatic processing of the orbitide multicore system, including the LP/

protein interactions, have yet been deduced.

3.3 Lyciumins:

Lyciumins are a family of branched cyclic peptides produced by Lyceum barbarum (Fig. 7) 

and are potent inhibitors of proteases, angiotensin-converting enzymes and renin. The 

biosynthetic logic of lyciumins was uncovered in 2018 through genome-mining efforts [59]. 

The first precursor gene discovered, LbaLycA, contains 12 CP motifs coding for four 

different compounds, while the precursor peptides mined from other plants can carry 1 to 18 

CPs [59]. In addition to the CPs, the precursor peptides have an N-terminal ER signal and a 
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C-terminal BURP domain that is specific in terrestrial plants [42,59]. The CPs can reside 

within the BURP domain or be N-terminal to it. The 12 CPs in the LbaLycA show a 

conserved motif of 1-QP(W/Y)GVG(I/S)W-8, with a kexin-like cleavage site N-terminal to 

each core. However, the LP portion of LbaLycA and its role in the CP processing have not 

been defined. Biochemical studies of the lyciumin biosynthesis have not been available, 

while the functional prediction and heterologous expression suggested that the processing is 

started by cyclizing the CP by a C-N bond between the α-carbon Gly4 and the indole 

nitrogen of Trp8, likely through a radical mechanism (Fig. 7). Subsequently, the N-terminus 

of each modified CP is exposed after the cleavage by yet-identified endopeptidases. The 

Gln1 is then converted into a pyroglutamate moiety by a pathway-specific glutamine 

cyclotransferase. The final products are then generated by proteolytic cleavage C-terminal to 

each modified CP (Fig. 7). The processing enzymes of lyciumins are tolerant alanine 

replacement of the CP at every position other than the residues involved in cyclization [59]. 

Furthermore, the CP with a Gly4Thr mutant was converted into a cyclized product, 

Lyciumin I, as well as a dehydrothreonine derivative. On the other hand, the details in 

processing the lyciumin multicore system have not been studied. Collectively, the enzymes 

involved in the lyciumin biosynthesis show different biotransformations with those of 

cyclotides and orbitide (Fig. 6).

4. Conclusion and future perspectives

The wide-spread presence of multiple core motifs within the precursors of different RiPPs 

families is a recently discovered phenomenon. The multicore biosynthesis allows for 

increased peptide production and diversity, without the added cost of translating multiple 

precursors or enzymes. This review highlights multicore systems in both eukaryotic and 

prokaryotic organisms, outlining the current biosynthetic understanding of these systems and 

differences between multicore and single-core, as well as the engineering. As a bonus for 

pharmacological research, enzymes in the multicore systems are naturally promiscuous to 

account for changes in size or residues within the various CPs. This inherent promiscuity 

enables the incorporation of canonical and nonproteinogenic residues, as well as medically 

relevant epitopes, to enhance the potency and selectivity. Indeed, the multicore system has 

been utilized to generate diversity in cyanobactin libraries, clearly demonstrating the 

potential of these systems for improving peptide production efficiency. However, a major 

limitation to broad utilization of these multicore systems is our limited understanding of how 

the enzymes act on multiple core-containing substrates. Indeed, the biosynthetic logic of the 

multicore systems has often been characterized with engineered single-core substrates that 

significantly ease the monitoring of CP modifications [47]. However, the simplified 

substrates lead to the missing of critical biochemical and mechanistic insights into the 

enzymatic processing of multicore systems, e.g., the timing and order of different 

modifications on the multiple CPs and the potential cooperation of different biosynthetic 

enzymes in the processing [39, 127]. In this regard, the actual promiscuity and combinatorial 

biosynthesis potential of the enzymes of the multicore systems have not been assessed in 

detail. On the other hand, as the understanding of the multicore biosynthetic logic improves 

with increased research efforts, we believe that there is tremendous potential for the 

generation of large non-natural peptide libraries with demonstrated biological activity. In 
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addition, different sets of enzymes used in the biosynthesis of the same RiPP family 

members and proven enzyme promiscuity enable combinatorial biosynthesis, further 

diversifying these peptides. While many single-core RiPPs have potent bioactivities, their 

multicore counterparts can demonstrate increased potency and specificity [64]. Importantly, 

these multicore peptides can execute different bioactivities by engineering individual CPs 

[62]. We are optimistic that through their natural diversity-generating pathways in 

conjunction with substrate and enzyme engineering, multicore RiPPs systems can greatly 

improve basic and translational studies and expand industrial applications.
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Fig. 1. 
A. General scheme of RiPPs biosynthesis. B. Three groups of precursor peptides found in 

the RiPP gene clusters. The core peptide of the precursor peptide sometimes carries flanking 

sequences at its N- and C-termini, named as N-flanking (NF) and C-flanking (CF), 

respectively.
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Fig. 2. 
Biosynthetic scheme of cyanobactins. The representative gene cluster (pat) of patellamide is 

shown at the top. Pathway-specific enzymes demonstrate different features toward precursor 

peptides with a single CP and multiple CPs. Chemical structures of representative 

cyanobactins, patellamide A and trunkamide, are shown and their thiazole and prenyl 

moieties are shadowed in green and light blue, respectively. RS: recognition site.
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Fig. 3. 
A. A representative gene cluster (mdn) of microviridin. The annotated functions of 

biosynthetic proteins are shown at the top. MdnE encodes a precursor peptide. B. General 

scheme of microviridin biosynthesis. The interaction of LP/enzyme is shown on the top 

right. C. Structure of the most abundant modified AMdnA in the reaction of AMdnC. Each 

CP in AMdnA is shadowed in light blue and the first and second macrolactones are shown 

as red and brown lines, respectively. The blue dashed lines indicate the predicted 

macrolactams.
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Fig. 4. 
The processing of multiple CP repeats within the plesiocins (A) and thuringinin (B) 

precursor peptides PsnA2 and TgnA by their cognate ATP-grasp ligases PsnB and TgnB, 

respectively. Conserved key residues in each repeat that is shadowed in light blue are 

highlighted in bold, while the minimal leader peptides potentially for the interactions with 

ATP-grasp ligases are shadowed in light grey. The ester bonds formed on each repeat are 

shown with red lines. In the thuringinin biosynthesis, the inner macrolactone is formed first 

and the outer cycles are shown with brown lines.
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Fig. 5. 
A. Structures of representative phomopsins and asperipins. B. A schematic representation of 

the ustiloxin B (ust) gene cluster. The precursor peptide gene is shown in dark red, while the 

ustQ, ustYa and ustYB genes are in orange. Two peptidase genes ustP1 and ustP2 are shown 

in blue. C. General scheme of ustiloxin biosynthesis. The leader peptide region is in grey. 

The tetrapeptide core in light blue is flanked with conserved N and C-terminal sequences in 

green and orange, respectively. CP* represents the modified CP. The details of the majority 

of biosynthetic steps remain unavailable. Ustiloxin F and B are used as representative 

examples.
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Fig. 6. 
A. Representative cyclotides showing structural variations. The PDB IDs of Cycloviolacin 

O2, Kalata 12 and MCoTI-II are 2KCG, 2KVX, and 1HA9, respectively. The figures were 

created by Pymol. The disulfide bond is shown in brown and the brown sphere represents 

sulfur atom. B. General scheme of cyclotide and orbitide biosynthesis. The orange line 

represents a disulfide bond. C. Representative orbitide structures. The peptide bond for the 

cyclization is shadowed in orange.
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Fig. 7. 
General scheme of lyciumin biosynthesis. Key chemical transformations are shadowed in 

orange. R1 and R2 represent the side chains of Trp/Tyr and Ile/Ser, respectively.
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