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Abstract

Introduction: When analyzing data from large-scale genetic association studies, such as targeted 

or genome-wide resequencing studies, it is common to assume a single genetic model, such as 

dominant or additive, for all tests of association between a given genetic variant and the 

phenotype. However, for many variants, the chosen model will result in poor model fit and may 

lack statistical power due to model mis-specification.

Objective: We develop power and sample size calculations for tests of gene and gene by 

environment interaction, allowing for mis-specification of the true mode of genetic susceptibility.

Methods: The power calculations are based on a likelihood ratio test framework and are 

implemented in an open-source R package (“genpwr”).

Results: We use these methods to develop an analysis plan for a resequencing study in idiopathic 

pulmonary fibrosis and show that using a 2-degree of freedom test can increase power to detect 

recessive genetic effects while maintaining power to detect dominant and additive effects.

Conclusions: Understanding the impact of model mis-specification can aid in study design and 

developing analysis plans that maximize power to detect a range of true underlying genetic effects. 

In particular, these calculations help identify when a multiple degree of freedom test or other 

robust test of association may be advantageous.
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Introduction

Genetic association studies remain an important study design for testing hypotheses related 

to the relationship between DNA polymorphism and biological or clinical traits. Many of 

these studies are now more focused than a genome-wide study as the results of genome-wide 

studies are used to design follow-up investigations of the impact of identified genetic risk 

variants. For example, some studies examine the association between disease-risk variants 

and the clinical features related to that disease, such as FEV1 in studies of COPD [1–3]. 

Other study designs use re-sequencing of a small portion of the genome identified in a larger 

study to further understand how many and which variants are contributing to an association 

signal identified by relatively sparse genotyping [4–7]. As such, there remains a need to 

estimate power and/or sample size in the design of genetic association studies.

Several tools for power and sample size calculations for genetic association studies are 

available [8–14], although many are specialized for specific study designs. For example, 

GWAPower performs power and sample size calculations for quantitative traits, assuming 1-

degree of freedom tests (additive, dominant or recessive genetic effects) and allows users to 

specify effect sizes in terms of heritability [8]. CaTS was developed specifically to aid in the 

design 2-stage genetic association studies with a discrete phenotype and allows for 

multiplicative, recessive, additive and dominant genetic effects [14]. QUANTO is a power 

calculation tool for both discrete and quantitative phenotypes and for testing gene by 

environment interactions. QUANTO allows for additive, dominant or recessive genetic 

effects [9, 10]. ESSPRESSO is a flexible simulation-based approach to power and sample 

size calculations for both quantitative and discrete phenotypes and gene by environment 

interactions, while accounting for genotyping errors and phenotype mis-classification [15, 

16]. Additive and binary genetic effects are allowed. GPC was originally developed for 

power calculations for variance component tests for quantitative traits, although other tests 

are also available[12].

While these tools are all helpful aids for study design, most assume that the model being 

tested represents the true underlying biological model, which is not known in practice. For 

example, many studies choose to assume an additive model for testing purposes, based on 

convenience and/or because it has been shown to be more robust to model misspecification 

than either a dominant or recessive model [17]. Previous simulation studies have 

demonstrated the loss of power that can occur when the statistical model is mis-specified 

(e.g. using an additive model when the true genetic model of susceptibility is recessive)[17–

19]. Several robust test statistics have been proposed to address the issue of model mis-

specification in the analysis of genetic association studies [20–29]. Popular approaches 

involve taking the maximum of test statistics assuming several plausible genetic models. For 

example, the MAX3 or So-Sham test statistic [18] takes a maximum of test statistics 

assuming additive, recessive and dominant models, with p-values appropriately adjusted to 

account for these multiple comparisons. While these robust tests have lower power than a 

correctly specified model, they perform well for additive, dominant and recessive tests and 

have higher power than an incorrect model [30, 31]. Another simple approach is to use a 2-

degree of freedom test, sometimes referred to as a genotypic test, which does not impose any 

assumptions about the underlying genetic model. Simulation studies have shown that 2-
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degree of freedom tests are slightly less powerful than the robust tests described above for 

truly additive, dominant and recessive genetic effects; however, they are more powerful for 

other arbitrary genetic effects that do not follow these models, as is the case in 

overdominance. In addition, 2-degree of freedom tests were found to have the best efficiency 

robustness when arbitrary genetic effects were considered in addition to the standard genetic 

models, and have been recommended as a viable alternative to robust test statistics for 

genome wide scans [30–32].

When designing a genetic association study, it is important that the power calculations match 

the statistical analysis plan as closely as possible, as data analysis choices can influence 

statistical power [33]. However, most power and sample size calculation tools do not allow 

for model mis-specification or for the use of robust test statistics or 2-degree of freedom 

tests [19]. We know that using an incorrect model, a robust test statistic or a 2-degree of 

freedom test will result in lower power than a correctly specified model. Assuming that a 

single model is correct for all variants when performing sample size calculations may lead to 

an underpowered study. Understanding how model misspecification influences power and 

sample size calculations is essential to appropriately power genetic association studies and to 

develop robust analysis plans. Given the wide range of potential study parameters, including 

sample size, type of outcome, and expected strength of the associations, no one model is 

most powerful or appropriate for all studies.

To address this need, we have developed a power and sample size calculation tool, 

GENPWR, that allows calculation of power and sample size under model misspecification. 

Importantly, we include power calculations for a 2-degree of freedom test. As simulation 

studies have shown that these tests are slightly less powerful than robust test statistics for the 

most common genetic models, these calculations can serve as conservative estimates or 

lower bounds of power (or upper bounds on required sample size) for studies that plan to use 

robust test statistics in their analyses. GENPWR allows for both discrete and continuous 

phenotypes, as well as gene by environment interactions.

Materials and Methods

Notation and Models for Genetic Association

In this paper, we extend power and sample size calculations proposed by Gauderman (2002) 

to account for genetic model misspecification. For consistency, we follow Gauderman’s 

notation where possible [10]. Let Y be the phenotype of interest, either a binary disease trait 

or a continuous, normally distributed phenotype. If Y is a binary disease trait, define pd as 

the prevalence of disease in the study population. If Y is a continuous, normally distributed 

measurement, let σY be the standard deviation of the measurement in the study population.

Let G be the genotype at a candidate locus with risk allele A and alternative allele a and let 

qA represent the risk allele frequency (RAF). Assuming Hardy-Weinberg equilibrium, the 

distribution of the genotypes is 

P g = AA ∣ qA = qA
2 , P g = aA ∣ qA = 2qA 1 − qA  and P g = aa ∣ qA = 1 − qA

2. In order to 

perform statistical testing using a linear or logistic regression model, we must choose a 

genetic model and code the three possible genotypes into a genetic covariate or covariates, X 
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(Table 1). However, the model that we assume for the pattern of inheritance may be 

incorrect, which can impact power to detect associations between phenotype and genotype. 

To allow greater flexibility, we might use two covariates to represent genotype, with X1 as 

an indicator of genotype aA and X2 as an indicator of gentoype AA. We refer to this as 

“genotypic” or “2 degree of freedom” (2df) coding.

For categorical Y, we consider the logistic regression model:

P (Y = 1 ∣ X) = eβ0 + Xβg

1 + eβ0 + Xβg

where eβ0

1 + eβ0
 is the probability of disease when X = 0 (or when X1 = 0 and X2= 0 for 2df 

coding) and ORg = eβg is the genetic odds ratio comparing X = 1 to X = 0 for dominant, 

recessive and additive coding. For 2df coding, βg = (βg1,g2), with eβg1 representing the odds 

ratio comparing genotype aA to aa and eβg2 comparing AA to aa. For continuous Y, we use a 

linear regression model:

f(Y ∣ X) = β0 + Xβg + ε

where β0 is the baseline mean of Y, βg is the genetic effect, and ε is a normally distributed 

error term with mean 0 and standard deviation σ∈. Again, for 2df coding, βg = (βg1,g2), with 

βg1 representing the difference in means between aA and aa and βg2 the difference between 

AA and aa. To perform power and sample size calculations, the parameters in the above 

models need to be specified. For the logistic regression model, ORg and pd are sufficient to 

define all model parameters, as β0 can be calculated from these two quantities. For the linear 

model, βg and σY must be specified; from this, σ∈ can be determined.

True vs. Test Models

As mentioned in Section 2.1, the coding of the genotype covariates for inclusion in the 

statistical model relies on assumptions about the pattern of inheritance for genetic 

susceptibility, which may or may not hold for any given candidate gene. For example, we 

may use dominant coding in our statistical model when in reality the effect of the risk allele 

on the outcome is additive. Define X* as the true or correct coding of genetic susceptibility 

for a gene, and XM as the coding in the model used to perform statistical testing. Define 

β* = β0*, βg* ′ as the true values of β0 and βg when genotype is correctly included in the 

model as X* and βM = β0
M, βg

M ′ as the values of β0 and βg when genotype is included in 

the model as XM. Similarly, let σϵ* be the value of σ∈ when genotype is coded as X* and σϵM

be the value when genotype is coded as XM.

Calculation of Power and Sample Size

Following Gauderman (2002), we base our power and sample size calculations on likelihood 

ratio tests. The likelihood ratio test statistic is Λ = 2(L1 − L0), where L1 is the log likelihood 
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of the full model and L0 is the log likelihood of the reduced model, where βg is constrained 

to its null value of 0. Under the null hypothesis, Λ χp2, where p is the difference in the 

number of parameters between the full and reduced models; for additive, dominant, and 

recessive tests p = 1, while for the 2df test p=2. Under the alternative hypothesis, Λ follows 

a non-central chi-square distribution with the non-centrality parameter equal to Λ [34].

For a single observation, the log likelihood for the logistic regression model is:

log L1 βM = Y log eβ0
M + XMβgM

1 + eβ0
M + XMβgM

+ (1 − Y)log 1

1 + eβ0
M + XMβgM

For the linear regression model, the log likelihood is:

log L1 βM = − 0.5log 2πσϵ2M −
Y−β0

M − XMβgM
2

2σϵ2M

The likelihoods depend on the value of Y. Therefore, we calculate the expected log 

likelihood, given the true parameter values, β*, X*, qA, pd and σϵ*. This differs from the 

method proposed by Gauderman et al [10], since we allow the coding of the genetic 

covariate to differ between the true pattern of genetic susceptibility and the coding used in 

statistical tests of association. In other words, we allow for XM ≠ X* and βM ≠ β*.

For the logistic regression model the expected log likelihood is:

E log L βM = ∑
G

P g ∣ qA E(Y ∣ G = g)log eηgM

1 + eηgM
+ E(1 − Y ∣ G = g)log 1

1 + eηgM

= ∑
G

P g ∣ qA
eηg*

1 + eηg*
log eηgM

1 + eηgM
+ 1

1 + eηg*
log 1

1 + eηgM

where ηg* = β0* + Xg*βg* and ηgM = β0
M + Xg

Mβg
M under the alternative hypothesis and ηgM = β0

M

under the null hypothesis. Xg* is the value of X* for genotype g and Xg
M is the value of XM 

for genotype g. For the linear regression model:

E log L βM = ∑
G

P g ∣ qA −0.5log 2πσϵ2M − E
Y − ηgM

2

2σϵ2M

= ∑
G

P g ∣ qA −0.5log 2πσϵ2M −
σϵ2 * + ηg*

2 − 2ηg*ηgM + ηgM
2

2σϵ2M

Power and/or sample size can be calculated using these expected likelihoods as described by 

Gauderman et al [10].
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Extensions for Tests of Gene × Environment Interactions

The above framework can easily be extended to tests of gene × environment interaction. Let 

E be an exposure or environmental factor, which can be either categorical or continuous. For 

continuous E, we assume E is normally distributed with standard deviation σe. For 

categorical E, we define pe as the probability of exposure in the study population. We 

assume independence of the exposure and genotype in the population.

Again, we consider two basic models to describe the association of genotype, environment 

and the outcome, a logistic regression for categorical Y and a linear regression for 

continuous Y. For the logistic regression model:

P (Y = 1 ∣ X, E) =
eβ0 + Xβg + Eβe + XEβge

1 + eβ0 + Xβg + Eβe + XEβge

where eβ0

1 + eβ0
 is the probability of disease when X = E = 0, ORg = eβg is the genetic odds 

ratio when E = 0, ORe = eβe is the odds ratio for the environment when G = 0, and 

ORge = eβge is the interaction odds ratio. For the linear regression model:

f(Y ∣ X) = β0 + Xβg + Eβe + XEβge + ε

where β0 is the baseline mean of Y, βg is the genetic effect, βe is the environment effect, βge 

is the interaction effect, and ε is a normally distributed error term with mean 0 and standard 

deviation σ∈. To perform power and sample size calculations for the logistic regression 

model, ORg, ORe, ORge, pd, and either pe or σe are sufficient to define all model parameters, 

as β0 can be calculated from these quantities. For the linear model, βg, βe, βge, σY, and 

either pe or σe must be specified; from this, σ∈ can be determined.

For a categorical environmental factor, the expected log likelihood for the logistic regression 

model is:

E log L βM = ∑
E

∑
G

P Xe ∣ pe P g ∣ qA
eηge*

1 + eηgex log eηgeM

1 + eηgeM + 1
1 + eηge* log 1

1 + eηgeM

where ηge* = β0* + Xg*βg* + Xeβe* + Xg*Xeβge* , ηgeM = β0
M + Xg

Mβg
M + Xeβe

M + Xg
MXeβge

M under the 

alternative hypothesis and ηgeM = β0
M + Xg

Mβg
M + Xeβe

M under the null hypothesis. For the 

linear regression model:

E log L βM = ∑
E

∑
G

P Xe ∣ pe P g ∣ qA −0.5log 2πσϵ2M −
σϵ2 * + ηge* 2 − 2ηge* ηgeM + ηgeM 2

2σϵ2M
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For a continuous environment variable, the summations over E can be replaced with an 

integral:

E log L βM = 1
(2πσe2

∫ e
Xe2

2σe2 ∑
G

P g ∣ qA E log L βM ∣ G = g, E = Xe dXe

Power and sample size can be computed as described in Gauderman to test for βge
M = 0, using 

the expected log likelihoods E log L β0
M, βg

M, βe
M, βge

M  and E log L β0
M, βg

M, βe
M  for the 

alternative and null hypotheses, respectively.

Comparison of Power Across Study Designs

In Figures 1 and 2, we depict how power to detect an odds ratio of 1.5 in a case control 

GWA study changes as a result of differing sample size, significance level, RAF and 

proportion of cases in the study population. In Figures 3 and 4 we focus on variants with 

relatively low RAF’s ranging from 0.005 to 0.05. As expected, higher sample sizes and less 

stringent significance thresholds result in increased power for both RAF > 0.05 and < 0.05. 

In Figures 2 and 4 we see that a balanced study design, with a 1:1 ratio of cases and controls 

results in the higher power than study designs with either 25% cases or 75% cases for both 

RAF > 0.05 and < 0.05.

As expected, the correctly specified model always has the highest power to detect an OR of 

1.5 across the range of RAFs; however, in practice, the correct model is unknown. The 

relative performance of incorrectly specified models and the 2df model depends on the RAF, 

the sample size, the significance level and the odds ratio to detect. For variants that act in a 

dominant manner, the additive model has higher power than the 2df model for lower RAF, 

but lower power for higher RAF. A similar pattern is seen when using 2df and dominant 

coding to test truly additive genetic effects. The exact RAF at which the power curves for the 

2df test and the mis-specified additive or dominant test cross depends on the sample size, 

significance threshold, ratio of cases to controls and OR to detect. With increasing sample 

size, the RAF beyond which 2df tests have higher power decreases. For example, assuming a 

5 × 10−8 significance level and a 1:1 case control design, with a total sample size of 5,000, 

the 2df test has higher power to detect an additive genetic effect than the dominant test for 

all RAF greater than 14.5%, while with 20,000 subjects, the 2df test has higher power for all 

RAF greater than 8.5%. This RAF also decreases with less stringent significance thresholds 

and larger detectable OR’s.

For truly recessive effects, the 2df test has higher power than either the additive or dominant 

models, particularly at lower RAF. Notably, for low RAF there is very low power to detect 

recessive effects, even when using a correctly specified model, as the probability of 

observing a subject homozygous for the risk allele becomes extremely low. For example, 

with a RAF of 0.01 and sample size of 5,000, we would expect < 1 subject homozygous for 

the risk allele. In the absence of subjects with the aa genotype, the additive, dominant and 

genotypic tests become equivalent. We see that power for these tests becomes increasingly 

similar as RAF declines, regardless of the true genetic effect.
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Example Modeling Strategies for GWA Study with N = 5,000

We illustrate how these results could be used to develop analysis plans for a 1:1 case control 

GWA study design with total sample size of 5,000, assuming a 5 × 10−8 level is used to 

determine statistical significance. With a sample size of 5,000, additive odds ratios of 1.5 

can be detected with 80% power with either the dominant, additive or 2df models for RAF 

≥≈ 12% (12%, 11.5%, and 12.5%, respectively, Table 2). For truly additive effects, the 2df 

test has higher power than the dominant test for all RAF greater than 14.5%.

For variants that act in a dominant manner, using the correctly specified dominant model 

coding results in greater than 80% power to detect an OR of 1.5 for all RAF ≥ 14.5%, while 

for additive and 2df coding, greater than 80% power is achieved for RAF ≥ 17% and 16.5% 

respectively (Table 2). For truly dominant effects, the 2df test has higher power than the 

additive test for all RAF greater than 15.5%.

For recessive variants, no testing model has power greater than 80% to detect an OR of 1.5 

for RAF < 50%. However, moderate size recessive OR’s can be detected at a RAF of 30% 

using a 2df or recessive model (Table 3. Given these power curves, we would recommend 

using the 2df test or another robust test of association for all variants with RAF greater than 

15.5%, as this model has higher power than an incorrectly specified dominant or additive 

model. For variants with RAF below 15.5%, we would suggest using either the additive or 

dominant test, since there is little power to detect recessive odds ratios and these tests have 

higher power than the 2df test to test for additive or dominant effects in this RAF range 

(Figure 1, second row). However, it should be noted that power drops below 50% for all tests 

for RAF < 8%; we would suggest considering alternative testing strategies, such as a 

grouped variant testing method for these low RAFs.

Application to a Re-Sequencing Study of Idiopathic Pulmonary Fibrosis

We use these methods to develop an analysis plan for a study of gene by environment 

interaction. Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with a 

median survival of 3 years [35]. Studies of both familial and sporadic disease have identified 

rare mutations in telomerase (TERT, TERC, RTEL1, and PARN) and surfactant protein 

(SFTPC and SFTPA2) genes [36–39] and common variants in 12 genetic loci [40–43]. The 

strongest known risk factor for both familial and sporadic IPF is a polymorphism in the 

distal promoter region of MUC5B gene, rs35705950. The risk variant is common (10% 

frequency) among individuals of European ancestry and acts in an additive fashion, with 

each additional risk allele resulting in approximately a 5 times increase in the odds of IPF. In 

comparison, other polymorphisms associated with IPF have odds ratios ranging from 

approximately 1.25 to 1.5 [44].

In addition to these genetic polymorphisms, other potential risk factors for the development 

of IPF have been identified, including environmental and occupational exposures, tobacco 

smoking, and comorbidities such as gastroesophageal reflux disease. Meta-analyses have 

found that odds of IPF are 1.58 times higher in ever-smokers compared to never smokers 

(95% CI 1.27–1.97) [45]. The prevalence of ever-smoking in IPF cases has been reported at 
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72% vs. 63% in age, sex and geographically matched controls [46] and there may be a dose 

response relationship, with those with longer smoking histories having increased odds of 

disease [47].

An important question is whether the effect of smoking on the odds of IPF is modified by 

genetic risk factors. For example, genetic variants that lead to over-expression of the 

MUC5B mucin may impair mucociliary function [48]. This may in turn cause excess 

retention of inhaled substances, such as cigarette smoke, and could increase the potential for 

inhaled substances to damage the lungs. We develop an analysis plan to test for gene by 

smoking interactions in a cohort of 3,624 cases with IPF and 4,442 controls. Subjects in the 

cohort have previously had targeted, deep sequencing in regions with GWAS signals 

associated with IPF. Our analysis decisions are informed by considering power to detect a 

gene by smoking interaction odds ratio of 1.5, 1.75 and 2, assuming a 5 × 10−5 significance 

level, chosen based on the number of variants available for analysis. We perform power 

calculations assuming genetic odds ratios of 1.25, 1.5, and 5, based on the range of effects 

seen in previous studies of IPF and assume a 1.6 odds ratio for ever-smoking and an ever-

smoking prevalence of 67%.

Power curves to detect gene by smoking interaction odds ratios of 1.5, 1.75 and 2 are 

presented in Figures 5, 6, and 7. First we note that results for ORg of 1.25 and 1.5 are very 

similar to one another and that these results largely follow the same patterns as the tests for 

genetic association seen in Section 3, with the correct test being the most powerful. For ORg 

of 1.25 and 1.5, we again see that for dominant (additive) variants, a mis-specified additive 

(dominant) test is more powerful than the 2df test only for lower RAF. For recessive 

variants, the 2df test is more powerful than additive or dominant tests.

In the case of ORg of 5, we see that the power for most tests is reduced compared to when 

ORg is smaller. This may be due to the extreme odds ratio resulting in few subjects in certain 

disease status and genotype combinations. For example, with such a large odds ratio, we 

would expect few controls to be homozygous for the risk allele. While results for additive 

and recessive tests follow the same patterns as described above, for dominant variants, the 

additive test somewhat unexpectedly has the highest power. While the expected log 

likelihood for the correctly specified dominant model is higher than that of the mis-specified 

additive model, the difference in expected log likelihoods between the null and full models 

is larger for the additive model. This larger change indicates a bigger improvement in model 

fit when the gene by smoking interaction term is included in the additive model, resulting in 

higher power.

As we believe that the majority of variants will have odds ratios much less than 5, we focus 

on the results for genetic OR’s of 1.25 and 1.5. In addition, we see that there is limited 

power to detect interaction odds ratios of 1.5, and therefore focus on ORge of 1.75 and 2. For 

dominant variants, the 2df model has higher power to detect the GxE effect than the additive 

model for all RAF > 0.26 when ORg= 1.25 and for RAF > 0.335 when ORg= 1.5. However, 

the power for the 2df model and the incorrectly specified additive model remain relatively 

similar even at RAF of 0.2. For additive variants, the 2df model has higher power to detect 

the GxE effect than the dominant model for all RAF > 0.16 when ORg= 1.25 and for RAF > 
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0.155 when ORg= 1.5. Since compared to the additive and dominant models, the 2df model 

has substantially increased power to detect interactions for recessive variants, we plan to test 

all variants with RAF > 0.2 with the 2df model and all variants with RAF ≤ 0.2 with the 

additive model.

Discussion/Conclusion

We have described and implemented a power and sample size approach that allows 

misspecification of the statistical model used for testing compared to the true underlying 

biological model. The ability to assess the impact of model misspecification on power is 

important when considering the trade-offs between analysis approaches in terms of type I 

error, power, and simplicity of implementation. We have shown that our approach is helpful 

for making both study design and analysis approach decisions based on the specifics of the 

goals and parameters of the study of interest.

Using these power calculation tools, we show when using a 2df test or another robust test of 

association is advantageous compared to mis-specified additive or dominant models. 2df 

tests have higher power to detect recessive genetic effects across the range of RAF. For 

additive and dominant effects, 2df tests have higher power than an incorrectly specified 

additive or dominant model for higher RAF and lower power for low RAF. The RAF where 

these power curves cross depends on several factors, including the sample size, the ratio of 

cases to controls, the OR to detect, and the significance level. In general, as sample size, 

significance level and OR to detect increase, the RAF at which a 2df test becomes more 

powerful decreases. While it is clear that a 2df or robust tests of association should be used 

at higher RAF due to higher power than other mis-specified tests for additive, dominant and 

recessive variants, an additive or dominant test may be preferable at lower RAF where there 

is little power to detect recessive effects and mis-specified additive (or dominant) models 

have higher power than 2df tests for truly dominant (or additive) genetic effects. Notably, as 

RAF decreases, the power of additive and dominant tests become more similar since the 

probability of observing a subject homozygous for the risk allele becomes smaller.

We also illustrate how to utilize these calculations to develop analysis plans for testing gene 

by environment interactions in a study of idiopathic pulmonary fibrosis. For moderate 

genetic odds ratios, the results for power to detect a gene by smoking interaction largely 

followed the same patterns as the power for tests of single variants. However, when 

considering genes with high odds ratios, such as MUC5B, some results were unexpected. 

Power to detect a gene by environment interaction in the presence of a large genetic odds 

ratio was reduced compared to more moderate genetic odds ratios, likely because the larger 

odds ratio resulted in fewer subjects in some disease status and genotype combinations. With 

this larger genetic odds ratio, we also found that for dominant variants, the mis-specified 

additive test had the highest power to detect a gene by environment interaction, due to a 

bigger improvement in model fit when the gene by smoking interaction term is included in 

the additive model. This illustrates the importance of considering the full range of possible 

parameter values when performing power and sample size calculations, particularly for gene 

by environment interactions.
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The calculations we have described are implemented in the genpwr R package, which is 

available on the Comprehensive R Archive Network (CRAN). This software performs power 

and sample size calculations assuming either dichotomous or continuous outcomes, while 

also allowing for optional dichotomous or continuous environmental exposures and can 

provide information for tests of both main and interaction effects. In the R package, the user 

specifies one or more “true” models, such as additive, dominant, and/or recessive, which 

represent the biological relationships between genotype and the outcome, as well as one or 

more “test” models (additive, dominant, recessive and/or 2df), which indicate how the 

genetic effect will be coded for statistical testing. The genpwr package can calculate sample 

size, power, or detectable effect size, given that the other two of these variables are specified 

by the user. In addition, the user must also specify a range of minor allele frequencies and 

type 1 error rate. For binary outcomes, either the disease prevalence in the study population 

or the number of controls per case must be specified. For continuous outcomes, the standard 

deviation of the outcome in the study population is required. For calculations involving a 

gene by environment interaction, depending on the type of exposure measurement, either the 

prevalence or the standard deviation of the exposure in the study population must be 

specified.
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Fig. 1. 
Power to Detect an Odds Ratio of 1.5 in 1:1 Case Control Study with a Total of N Subjects, 

at 5 × 10−5 and 5 × 10−8 Significance Levels. The horizontal dashed line indicates 80% 

power.
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Fig. 2. 
Power to Detect an Odds Ratio of 1.5 in Case Control Study with a Total of 5,000 Subjects 

for Different Ratios of Cases to Controls, at 5 × 10−5 and 5 × 10−8 Significance Levels. The 

horizontal dashed line indicates 80% power.
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Fig. 3. 
Power to Detect an Odds Ratio of 1.5 in 1:1 Case Control Study with a Total of N Subjects, 

at 5 × 10−5 and 5 × 10−8 Significance Levels at Low RAFs. The horizontal dashed line 

indicates 80% power.
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Fig. 4. 
Power to Detect an Odds Ratio of 1.5 in Case Control Study with a Total of 5,000 Subjects 

for Different Ratios of Cases to Controls, at 5 × 10−5 and 5 × 10−8 Significance Levels at 

Low RAFs. The horizontal dashed line indicates 80% power.
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Fig. 5. 
Power to Detect a Gene × Environment (G × E) Odds Ratio of 1.5 in a Case Control Study 

with 3,624 Cases and 4,442 Controls, at 5 × 10−5 Significance Level, Assuming a Genetics 

Odds Ratio of ORg when E=0. The dashed line indicates 80% power.
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Fig. 6. 
Power to Detect a Gene × Environment (G × E) Odds Ratio of 1.75 in a Case Control Study 

with 3,624 Cases and 4,442 Controls, at 5 × 10−5 Significance Level, Assuming a Genetics 

Odds Ratio of ORg when E=0. The dashed line indicates 80% power.
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Fig. 7. 
Power to Detect a Gene × Environment (G × E) Odds Ratio of 2 in a Case Control Study 

with 3,624 Cases and 4,442 Controls, at 5 × 10−5 Significance Level, Assuming a Genetics 

Odds Ratio of ORg when E=0. The dashed line indicates 80% power.
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Table 1:

Coding of Genetic Covariates for Inclusion in Regression Models

Model Genotype X1 X2

Dominant aa 0 -

aA 1 -

AA 1 -

Additive aa 0 -

aA 1 -

AA 2 -

Recessive aa 0 -

aA 0 -

AA 1 -

2df aa 0 0

aA 1 0

AA 0 1
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Table 2:

Smallest Risk Allele Frequency (RAF) with at Least 80% Power to Detect an Odds Ratio of 1.5 for a 1:1 Case 

Control Study with a Total of N Subjects, at 5 × 10−8 Significance Level

True Mode of Genetic Susceptibility

N Model Coding Dominant Additive Recessive

5,000 Dominant 0.145 0.120 -

Additive 0.170 0.115 0.655

Recessive - 0.310 0.515

2df 0.165 0.125 0.550

20,000 Dominant 0.030 0.030 -

Additive 0.030 0.030 0.335

Recessive - 0.130 0.230

2df 0.030 0.030 0.240
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Table 3:

Detectable Odds Ratios for a 1:1 Case Control Study with a Total of N Subjects, at 80% Power and 5 × 10−8 

Significance Level

True Mode of Genetic Susceptibility

N qA Model Coding Dominant Additive Recessive

Detectable OR

5,000 0.1 Dominant 1.58 1.55 >100

Additive 1.60 1.53 >100

Recessive 15.10 3.59 10.39

2DF 1.61 1.56 12.53

0.3 Dominant 1.43 1.36 27.85

Additive 1.48 1.32 2.63

Recessive 3.26 1.51 1.88

2DF 1.45 1.33 1.94

20,000 0.1 Dominant 1.26 1.24 >100

Additive 1.26 1.23 >100

Recessive 3.12 1.68 2.56

2DF 1.27 1.25 2.68

0.3 Dominant 1.19 1.16 2.95

Additive 1.22 1.15 1.59

Recessive 1.79 1.23 1.37

2DF 1.20 1.15 1.39
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