Skip to main content
. Author manuscript; available in PMC: 2021 Oct 1.
Published in final edited form as: J Ind Microbiol Biotechnol. 2020 Sep 3;47(9-10):675–702. doi: 10.1007/s10295-020-02306-3

Table 3.

Demonstrated substrate promiscuity of terpene cyclases with native, chemoenzymatically, and synthetically accessible elongated prenyl diphosphates.

Enzyme (organism) Native Substrates Non-Native Substrates New-to-Nature Products Reference
amorpha-4,11-diene synthase (Artemisia annua) 5 57, 58 94 [137]
5-epi-aristolochene synthase (Nicotiana tabacum) 5 59 95 [132]
aristolochene synthase (Penicillium roqueforti) 5 56, 57 94 [136]
cineol synthase (Salvia fruticosa) 3 4 - [128]
δ-selinene synthase (Abies grandis) 5 3 - [121]
γ-humulene synthase (Abies grandis) 5 3 - [121]
limonene synthase (Citrus limon) 3 4 - [128]
camphene synthase (Solanum elaeagnifolium) 3 4 - [128]
sabinene synthase (Salvia pomifera) 3 4 - [128]
TPS5 (Medicago truncatula) 5 6 - [130]
δ-cadinene synthase (Gossypium arboreum) 5 46, 47 81–85 [133]
germacradien-4-ol synthase (Streptomyces citricolor) 5 56, 57 94 [136]
(+)-zizaene synthase (Chrysopogon zizanioides) 5 3, 4, 6, 7 - [129]
germacerene D synthase 5 45–50, 52–54 87–93 [134]
(E)-β-farnesene synthase (Mentha × piperita) 5 56 94 [136]
R-germacene A synthase (Solidago canadensis) 5 56, 57 94 [136]