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Abstract

Nanoparticle (NP)-based imaging and drug delivery systems for systemic (e.g., intravenous) 

therapeutic and diagnostic applications are inherently a complex integration of biology and 

engineering. A broad range of length and time scales are essential to hydrodynamic and 

microscopic molecular interactions mediating NP (drug nanocarriers, imaging agents) motion in 

blood flow, cell binding/uptake, and tissue accumulation. A computational model of time-

dependent tissue delivery, providing in silico prediction of organ-specific accumulation of NPs, 

can be leveraged in NP design and clinical applications. In this article, we provide the current 

state-of-the-art and future outlook for the development of predictive models for NP transport, 

targeting, and distribution through the integration of new computational schemes rooted in 

statistical mechanics and transport. The resulting multiscale model will comprehensively 

incorporate: (i) hydrodynamic interactions in the vascular scales relevant to NP margination; (ii) 
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physical and mechanical forces defining cellular and tissue architecture and epitope accessibility 

mediating NP adhesion; and (iii) subcellular and paracellular interactions including molecular-

level targeting impacting NP uptake.

Graphical abstract

Caption: The objective is to develop easily computable and physiologically predictive mechanism-

based multiscale pharmacodynamic models for targeted drug delivery.
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Introduction

Clinical medicine has entered an era of burgeoning nanotechnology through the use of drug-

carrying nanoparticles (NPs) [1, 2]. Nanoparticle (NP)-based imaging and drug delivery 

systems for systemic (e.g., intravenous) therapeutic and diagnostic applications are 

inherently complex blends of biology and engineering. NPs have enormous potential to 

enhance imaging or drug delivery in diagnosing and treating diseases [3–5] in humans while 

minimizing potential toxicity [6, 7]. Some NPs (e.g., Feraheme, Doxil), are already 

dramatically changing clinical care by introducing new, or improving upon current, therapies 

and diagnostic methods, and will do more so in the future [8]. NPs have seemingly limitless 

possibilities for serving as tissue targeting devices, but their tremendous potential is also a 

significant impediment to their bench to bedside translation. Empirical determination of 

optimum characteristics to employ for a particular application is extremely costly [9]. Our 

inadequate understanding of parameters affecting NP delivery impedes NP optimization for 

treating human disease.

Multiscale Modeling of NP Transport and Binding

Using quantitative physiologically relevant inputs to develop and validate a computational 

model for in silico prediction of time-dependent organ-specific NP accumulation to indicate 

how NP characteristics impact tissue delivery will minimize the future need for empirical in 
vivo experimentation. Assessing NP delivery efficacy through computational approaches is 

already informing mechanisms of NP-cell interactions and the effects of many design factors 

such as size, chemical composition, and surface charge influencing their tissue delivery. In 

traditional design, the relevant estimates are typically generated using compartmental 
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analyses or pharmacokinetic (PK) models [10–12]; however, such models do not fully 

include mechanistic interactions of NPs with the vasculature. Hydrodynamic and 

microscopic molecular interactions mediating NP (drug nanocarriers, imaging agents) 

motion in blood flow, cell binding/uptake and biodistribution in different tissues involve a 

broad range of length and time scales warranting a multiscale modeling approach [9]. A 

predictive mechanism-based nanoparticle targeting model (see Fig. 1) integrates physiology, 

subcellular, and molecular levels and is customizable to different NP materials, chemistries, 

shapes, sizes, and other features. Moreover, the multiscale model should be transferable 

across NP architecture, chemistry, size, shape, and other factors. Recently, such models have 

been developed in order to provide a predictive landscape of NP hydrodynamics and 

margination in the vasculature, NP-cell adhesion, and ultimately NP tissue uptake. The 

predictive power of these methods are valuable to clinicians, academicians or researchers in 

the industry for applications in clinical healthcare, research, or NP development. Recent 

progress in modeling focused on hydrodynamics, cellular adhesion, and molecular 

recognition, and the multiscale integration of the three components (Fig. 1) are discussed 

below.

Hydrodynamic Factors

In the multiscale framework, the macroscale is focused on vascular hydrodynamics and NP 

margination. The transport of NPs and their approach to the endothelium in the presence of 

blood flow through a process called margination is mediated by the hydrodynamic (i.e., 

fluid-flow-mediated) interactions of the nanoparticles with the red blood cells and the vessel 

walls [13–21]. To develop the hydrodynamics elements of the modeling, the physiological 

and NP characterization parameters of interest include blood vessels diameter and length 

distributions, blood viscosity, cell-free layer (CFL) characteristics, flow rates or velocity 

distributions and physiology specific vasculature traits (such as tumor versus normal), all of 

which collectively dictate the NP margination from the core to the periphery of the blood 

vessels. Blood flow in microvascular networks have been modeled using the apparent 

viscosity dependence on hematocrit, vessel diameter, and reduced hematocrit in daughter 

vessels, and based on experimental data on tube diameter and length [22, 23]. Previous 

works have developed an Immersed Finite Element Method (IFEM) [24] and Lattice 

Boltzmann (LB) numerical method based on the Immersed Boundary Method (IBM) for the 

simulation of biological and particulate systems. These numerical methods have been used 

to model the deposition of platelets on injured vessel walls [24], 3D aggregation of red blood 

cells, and blood flow in a capillary [24]. In these applications, the complex deformation, 

motion, and binding of cells of arbitrary shapes are modeled. The transport and deposition of 

nanoparticles under shear and blood flow have also been investigated by coupling fluid 

dynamics with adhesion kinetics [24–31].

NPLive Cell Adhesion

Endothelial cells lining the luminal surface of blood vessels are the critical target and barrier 

for vascular therapeutic delivery. NPs (10–200 nm) coated with antibodies (Abs) or affinity 

peptides that bind specifically to endothelial surface receptors provide targeted delivery of 

therapeutic cargoes to these cells. Endothelial targeting consists of several phases, including 

circulation in the bloodstream, anchoring on the endothelial surface, and, in some cases, 
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intracellular uptake and trafficking of the internalized materials [5]. In addition to dynamic 

parameters of the vasculature, including the blood hydrodynamics, physiological factors 

such as surface density, accessibility, cell membrane mobility, and clustering of target 

determinants modulate NP biodistribution, particularly when targeting strategies are 

involved. Furthermore, controlled parameters of the design of therapeutic or diagnostic NPs 

such as affinity, surface density, and epitope specificity of targeting Abs, carrier size, shape, 

and flexibility also modulate endothelial targeting and resultant subcellular distribution [4, 5, 

9].

Computational models [32–40], have been developed to delineate the roles played by 

targeting ligand density, target protein expression, mechanical factors of the target cell 

membrane as well as the glycocalyx in determining the avidity of functionalized NCs to live 

cells. These models can be described using a common integrative framework (Fig. 2): the 

input to the models can be broadly classified into three categories that represent (i) cellular 

phenotype, (ii) NC design parameters and (iii) non-targeted contributions (Kp) which 

denotes the partitioning coefficient measured in experiments. Flow chart of a computational 

framework to compute the association constants (KEC and KM) for NCs binding to live 

endothelial cells and macrophages is provided in Fig. 2. Computational techniques for 

computing live cell adhesion are based upon the framework of equilibrium statistical 

mechanics; the best models combine continuum field models for cell membranes with 

coarse-grained molecular-scale models for the NC, Abs, and target receptors. Fig. 2 

highlights the major components of the proposed computational approach, which can be 

broadly classified as: (i) a set of input parameters for the coarse-grained and continuum 

models that define entirely the protein expression and mechanical properties of the target 

cell membrane, the biochemical interactions of the receptor-ligand bond, the flexural rigidity 

of the target receptors, and experimentally controllable quantities such as the geometry and 

the surface chemistry of the functionalized NC; (ii) a computational engine to accurately 

compute the association constant Ka, for a specified mechano-chemical microenvironment 

and (iii) a framework that accounts for the targeted contributions due to NC binding to other 

cells such as a macrophage. The expression for Ka is adopted and generalized based on 

studies from molecular simulations of drug binding, which have formulated techniques to 

compute the absolute free energy of binding [32, 41]. The main output of the model is the 

calculation of the free energy landscape for carrier binding to the cells, which is quantified 

through enhanced sampling methods [42, 43]. The primary learnings from the computational 

studies have been the compensation of different entropy, and the enthalpy terms are 

dependent on NP flexibility, membrane tension, receptor density, and receptor-ligand 

interaction strength [32, 33, 37–40, 44, 45].

Molecular Scale Factors in NP Membrane Interactions

There are several aspects of the multiscale problem (Fig. 1) that deserve molecular-level 

treatment and characterization. Engineering antibodies and studying receptor-ligand 

interactions using molecular modeling already has a rich literature in computational 

chemistry. Engineering the structural and mechanical features associated with the receptor-

ligand interactions that have already been identified as critical variables through sensitivity 

analyses, such as flexural rigidity [34], catch-bond behavior [46], can be vastly improved 
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and influenced through advances in molecular simulations and multiscale methods [47–49]. 

Recently it was hypothesized that while targeting adhesion molecules with antibodies 

represent strong binding (SB) interactions, the surface protein epitopes such as Fc receptors 

and even albumin will represent intermediate binding (IB) and weak binding (WB) on the 

surface of the NP [33]. Moreover, targeting flow adapted healthy endothelial cells versus 

leaky endothelial cells can be different because the later presents a less stiff membrane due 

to lack of flow adaptation and improper glycocalyx; here, parameter variations involving 

cytoskeletal pinning and excess membrane area can be considered. The effect of 

opsonization was considered by tuning the ratios of SB:IB:WB on the NP.

Conclusion and Future Outlook

An integrative mechanism-based model for tissue biodistribution and prediction of NP tissue 

targeting can be obtained via a unified multiscale model combining the different modules in 

Fig. 1. The resultant multiscale model will power exploration of a myriad of tunable 

physical options for NP design for clinical tissue targeting. We envision an integrative 

multiscale framework to combine the different scales using formalisms discussed above. The 

models will need to be tightly and iteratively coupled with in vitro, cellular, as well as in 

vivo experimentation to validate, to predict, and to guide the design of targeted nanoparticles 

in translational applications of targeted nanomedicine.

One promising area of future development in design is to combine the bivalent and 

bispecific Abs, along with the multivalency of engaging SB, IB, and WB receptors [50]. The 

nature of interactions of these bivalent bispecific interactions on an immobilized NP surface, 

on a flexible polymeric NP or liposome, or engaging receptors on a fluid membrane. On the 

membrane interface, several molecular-scale considerations can impact and revolutionize the 

NP cell interactions: (1) membrane curvature aids and influences the NP cell adhesion [44, 

51]; (2) the mechanisms through which curvature inducing proteins generate curvature and 

influence NP binding and subsequent internalization are hugely important [52]; (3) the 

clustering of receptors on the membrane interface can be mediated through formation of 

lipid domains often involving phosphoinositide proteins [53]; (4) lipid, and in particular, 

phosphoinositide nanocluster formation, has a significant influence on actin nucleation and 

subsequent NP internalization [54–56]; (5) the nature of the molecular assembly and 

curvature at the membrane interface is not only influenced by cell mechanics and the 

mechanics of the tissue microenvironment, but also impacts the internalization of rigid, 

semi-rigid, and flexible NPs differently [51].

While the previous models, including those described above, have been successful in 

evaluating the effects of Ab density and NP targeting to different cell types, accurate 

representations of specific and non-specific contributions require a more detailed description 

of the tissue morphology and the physiological conditions. First, in the modeling of live cell 

adhesion, will need to extend the analysis to include the effects of NP surface 

functionalization (such as PEGylation) [57], targeting of multiple receptors using bivalent 

and bispecific antibodies [58, 59], and NP opsonization (by surface deposition of albumin 

and Fc receptors on NPs to consider the architecture and chemistry of the NP). These factors 

will need to be considered in addition to physiological factors such as glycocalyx [35, 36, 
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60], cell membrane compliance and deformation [32], and vascular margination. Second, 

cell microenvironment effects need to be considered, such as: (a) the effect of the 

cytoskeleton and cytoskeletal heterogeneity; (b) the effect of cortical tension and cell-cell 

adhesion is considered through frame tension [61, 62]. These variables lead to significant 

heterogeneity in the adhesion surface by inducing/inciting morphological features. The 

topographical heterogeneity induced by the effects described under couples with 

biochemical heterogeneity because of lipids and proteins sort in the membrane phase in a 

curvature-dependent fashion [52, 63, 64]. These features can be included by following the 

methods recently described [52, 64].

New multiscale bridging algorithms warrant future development in order to realize the 

coupling of hydrodynamic and adhesion models and their objective validation against 

experimentation. One avenue could be to develop functionals incorporating relevant 

physicochemical and hydrodynamic interactions. An example is through the use of 

dynamical density functional theory, which utilizes a functional approach to treat the far-

field many-body hydrodynamics [57, 65], near-field hydrodynamics [66–71], and 

multivalent adhesion of NPs to soft membranes can be combined into one coherent 

framework in order to either obtain the spatial distribution of NP [44, 45]; another example 

is through the use of stochastic dynamics using generalized Langevin equation methods [70, 

71] to capture the temporal dynamics of NP [70–72]. A second avenue to realize the 

multiscale integration is to use a loosely coupled framework where a small number of 

parameters are passed between the different scales, and the integration is achieved through 

high-performance computing workflow management software such as TAVERNA [73], 

MUSCLE [74], or the VPH hypermodel framework [75]. As a computational scientist, one 

is also encouraged and optimistic about machine-learning [76, 77] enabled multiscale 

methods to improve accuracy, speed-up performance, and utilize the emerging high-

performance computing architectures.
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Highlights

• Computational methods for modeling hydrodynamic factors in nanoparticle 

membrane interactions in targeted drug delivery

• Computational frameworks for predicting lice cell adhesion of nanoparticles

• Molecular-level considerations in nanoparticle cell membrane interactions

• Outlook for multiscale model integration for developing the next-generation 

mechanism-based pharmacokinetic models
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Figure 1: 
(left) Schematic of the multiscale pharmacokinetic model showing the different length scales 

and resolutions of the transport problem in targeted drug delivery. (right) A flowchart for an 

algorithmic implementation of the multiscale model consisting of the “Hydrodynamics” 

component, the “Cellular Adhesion” component, and the “Pharmacokinetics” component. 

The arrows represent the flow of information between the suite of models and the flow of 

information for experimental validation.
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Figure 2: 
(a) Depiction of the live cell adhesion NP tissue targeting highlighting the parameter 

mapping (inputs and outputs). A Monte Carlo framework constitutes the live cell adhesion 

suite.
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