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Abstract
Prion diseases are fatal and transmissible neurodegenerative disorders caused by the misfolding and aggregation of prion 
protein. Although recent studies have implicated epigenetic variation in common neurodegenerative disorders, no study has 
yet explored their role in human prion diseases. Here we profiled genome-wide blood DNA methylation in the most common 
human prion disease, sporadic Creutzfeldt–Jakob disease (sCJD). Our case–control study (n = 219), when accounting for 
differences in cell type composition between individuals, identified 38 probes at genome-wide significance (p < 1.24 × 10–7). 
Nine of these sites were taken forward in a replication study, performed in an independent case–control (n = 186) cohort using 
pyrosequencing. Sites in or close to FKBP5, AIM2 (2 probes), UHRF1, KCNAB2  successfully replicated. The blood-based 
DNA methylation signal was tissue- and disease-specific, in that the replicated probe signals were unchanged in case–control 
studies using sCJD frontal-cortex (n = 84), blood samples from patients with Alzheimer’s disease, and from inherited and 
acquired prion diseases. Machine learning algorithms using blood DNA methylation array profiles accurately distinguished 
sCJD patients and controls. Finally, we identified sites whose methylation levels associated with prolonged survival in sCJD 
patients. Altogether, this study has identified a peripheral DNA methylation signature of sCJD with a variety of potential 
biomarker applications.
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Introduction

Human prion diseases are typically rapidly progressive 
neurodegenerative conditions associated with misfolding 
of prion protein (PrP) [10]. They include sporadic, Men-
delian genetic, and acquired disorders which present and 
progress heterogeneously, although all are inevitably fatal. 
Neuropathologically, the diseases are characterized by 
spongiform changes in the grey matter with neuronal loss, 
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reactive gliosis, and the accumulation of misfolded forms of 
PrP. The causative and transmissible agent of prion diseases, 
or prion, is thought to comprise solely or predominantly of 
misfolded forms of PrP forming paired double helical fibrils 
[56]. Mechanisms inspired by the prion concept are now 
widely adopted in neurodegenerative diseases associated 
with misfolded forms of other proteins and peptides [10].

The most common form of human prion disease is spo-
radic CJD (sCJD), occurring almost exclusively in adults 
over the age of 40 years with an annual incidence of ~ 2 per 
million population. Whilst sCJD occurs seemingly at ran-
dom in the population, most of the cases present between 
60 and 80 years old. Prion diseases are under strong genetic 
control, with the most powerful risk factors being located at 
the PrP gene locus (PRNP), particularly the polymorphism 
at codon 129 in the PRNP gene where methionine (∼ 60% 
allele frequency in Europeans) or valine is encoded and 
both homozygous genotypes are at increased risk of disease 
[11, 45]. Codon 129 genotype also modifies the incubation 
period of acquired prion diseases and the resulting clinico-
pathological phenotype [12, 49]. Speed of decline in activi-
ties of daily living is fastest in those with the methionine 
homozygous genotype, and slowest in those with the het-
erozygous genotype [35, 47].

According to epidemiological case definitions, a brain 
biopsy or post-mortem examination is necessary to confirm 
a diagnosis of definite sCJD, although neurological investi-
gations such as cerebrospinal fluid (CSF) analysis, magnetic 
resonance imaging (MRI), electroencephalogram (EEG) and 
PRNP analysis can lead to a confident pre-mortem diagno-
sis of sCJD once it is suspected by specialist physicians. 
More recently, extensive research has been directed towards 
identification of specific and selective biomarkers such as 
metabolites or proteins. To date, these efforts have largely 
concentrated on altered protein concentrations, or the real-
time quaking-induced conversion assay using CSF [59]. The 
need for biomarkers in easily accessible tissues such as blood 
is important because such tests could help make diagnoses 
and prognoses earlier and screen individuals before invasive 
procedures, tissue or blood donation. Such approaches might 
also improve screening of individuals for inclusions in clini-
cal trials prior to irretrievable neuronal damage.

Epigenetic signals are emerging as biomarkers for screen-
ing and early detection of various diseases, for prognostic 
and treatment monitoring, and for predicting future risk of 
disease development [51]. Accumulating evidence suggests 
that epigenetic modification of gene expression regulates 
memory acquisition and consolidation in the healthy brain 
and that epigenetic dysregulation contributes to the impaired 
cognition and neuronal death that are associated with neu-
rodegenerative diseases [23]. Whether these changes are 
causally involved in diseases remain poorly understood. 
However, the contribution of epigenetic mechanisms to the 

initial steps and disease progression in neurodegeneration is 
yet still poorly understood.

Here, we compared genome-wide DNA methylation 
profiles in whole blood taken from patients with sCJD and 
age-matched healthy controls and characterized the genomic 
distribution of differentially methylated sites and regions. 
We identified sites where loss of DNA methylation corre-
lates with disease progression. We further demonstrated that 
the DNA methylation signature is not altered in AD or in 
other prion diseases and found that the sites affected in blood 
are not differentially methylated in brain. Next, we show 
that machine learning models trained using DNA methyla-
tion profiles can discriminate sCJD from control individu-
als. Finally, our findings, when used in combination with 
the genetic information of the patients, help refine disease 
duration predictions. We report the first sCJD DNA meth-
ylation-based blood signature that provides diagnostic and 
genotype-independent prognostic information.

Methods

Patient samples and genomic DNA extraction

Patients with definite diagnosis of sCJD according to World 
Health Organization criteria were recruited by the National 
Prion Clinic (London, UK), and other referrers in the UK 
between 1995 and 2018. All sCJD patients were of UK resi-
dency. Blood or DNA from control donors was sourced from 
Cardiff University (Cardiff, UK), or from the National Prion 
Clinic (London, UK). Genomic DNA was extracted from 
peripheral blood using either a BACC2 DNA extraction kit 
(GE Healthcare, IL, USA) or a Zymo Quick gDNA MiniPrep 
Kit (Zymo Research, CA, USA) according to the manufac-
turers’ instructions.

GPower 3.1 [15] was used to estimate sample sizes 
required to power a genome-wide study. Where brain 
samples were used, genomic DNA was extracted from 
frontal cortex grey matter from 51 autopsied sCJD brains 
in Biosafety Level 3 facilities. 50–100 mg of tissue was 
transferred to a 2 ml screw-capped tube (Eppendorf, Ger-
many) and incubated in 450 μl ATL lysis buffer (Qiagen, 
NL) and 50 μl proteinase K (from 20 mg ml−1 stock) in 
a Thermomixer Comfort heating block (Eppendorf, Ger-
many) overnight at 50 °C with mixing at 800 rpm. The next 
day, samples were mixed with 500 μl of TRIS equilibrated 
phenol (Sigma-Aldrich, DE) by inversion. Tubes were then 
centrifuged at 16,100g for 5 min at room temperature before 
the upper aqueous phase was transferred to a fresh tube and 
lower organic phase was discarded into a phenol waste bot-
tle. Addition of TRIS-equilibrated phenol, centrifugation 
and selection of the aqueous phase were repeated before 
500 µl of a 1:1 v/v TRIS-equilibrated phenol and chloroform 



865Acta Neuropathologica (2020) 140:863–879	

1 3

mixture was added and mixed by inversion. Centrifugation 
and selection of the aqueous phase was repeated before a 
final addition of 500 µl chloroform to the sample, which was 
centrifuged at 16,100g for 2 min. The upper aqueous phase 
was transferred to a clean tube and from containment level 3 
facilities to containment level 2 facilities, where 500 µl 100% 
ethanol was added and mixed to induce DNA precipitation. 
DNA was spooled out onto a flame-sealed glass Pasteur 
pipette and left to dry for 2 min, before resuspension in a 
1.5 ml Eppendorf tube containing 500 µl Tris–EDTA buffer 
(Sigma-Aldrich, DE). Genomic DNA from was similarly 
extracted from 33 non-prion control frontal cortex samples 
acquired from Cambridge Brain Bank (University of Cam-
bridge, UK). Concentration of extracted DNA was meas-
ured via Qubit (Thermo Fisher, MA, USA) and integrity was 
assessed using gDNA Tapestation ScreenTapes (Agilent, 
CA, USA). Samples with a DIN < 7.0 were excluded from 
the study. Ethical approval was obtained from the National 
Hospital Local Research Ethics Committee.

Genome‑wide DNA methylation profiling

Bisulfite conversion of 500 ng of genomic DNA was per-
formed using the Zymo EZ-96 DNA Methylation-Gold 
Kit™ (Zymo, CA, USA) according to the manufacturer’s 
instructions. All DNAs were hybridized onto the Infinium® 
Human Methylation 450 K BeadChip array (Illumina, CA, 
USA). Fully methylated and unmethylated DNA standards 
(Zymo, CA, USA) and a commercially available leukocyte-
derived DNA standard (AMSBIO, UK) were included as 
comparative controls for extreme variance of global DNA 
methylation profiles, while control probes on the array were 
used to monitor bisulphite conversion efficiency. DNA meth-
ylation data have been deposited in GEO (accession number 
GSE156994).

Identification of differentially methylated CpG loci

Analyses were performed in RStudio version 1.0.136 using 
R v3.4.1. IDAT files were loaded into ChAMP version 
2.10.2 [39] and normalised using the BMIQ method [57]. 
Reported values at thousands of 450 K array probes are 
known to associate with assigned positions on the Bead-
Chip [25]. We confirmed this using singular value composi-
tion and used ComBat [26] to correct for BeadChip number 
and sample position batch effects. Leukocyte population 
heterogeneity was estimated and corrected for using the 
Houseman method [22]. Quantile–quantile plots and Man-
hattan plots were generated using an in-house script adapted 
from qqman version 0.1.4 [60] and the pQQ function from 
version 7.0.0 of the haplin package [19]. An area of 95% 
confidence level was shaded around the reference line in 
the QQ plot. For Manhattan plots, a significance threshold 

was drawn at Bonferroni-adjusted significance threshold of 
p value = 1.24 × 10–7. Principal component analysis (PCA) 
was performed using the R packages FactoMineR version 
1.41 [30] and factoextra version 1.0.5 (https​://CRAN.R-
proje​ct.org/packa​ge=facto​extra​). Heatmaps were produced 
using a script adapted from (https​://githu​b.com/obigr​iffit​h/) 
using either the top 38 or 1000 most significant differen-
tially methylated CpG loci. Hierarchical clustering analysis 
was performed using the average clustering method based 
on Euclidean distance. Plotly (https​://plot.ly/) was used to 
generate the pie charts showing the genomic locations of 
the CpG loci.

We used limma version 3.36.5 to build linear regression 
models of methylation versus disease status with age and 
sex included as covariates [48]. Bivariate Pearson’s corre-
lations were used to correlate identified DMPs with MRC 
Scale score and slope in sCJD patients, while a one-way 
ANOVA with Dunnett’s post hoc test was used to test for 
association of methylation at DMPs with genotype at codon 
129 of PRNP. To identify DMRs, we used the DMRcate 
function in ChAMP [24] setting the lambda at 500. We used 
Bioconductor package ‘PWMEnrich’ [54] to perform motif 
scanning and enrichment analysis across the DMPs using 
probe sequences extracted from the Illumina HumanMethyl-
ation450K manifest file, and on the DMRs using sequences 
retrieved from Bioconductor package BSgenome.Hsapiens.
UCSC.hg19 version 1.4.0 [55]. For pathways and ontology 
analysis, MetaCore [37] was used. Differentially methyl-
ated probes (Bonferroni corrected p ≤ 0.1) and their Δβ val-
ues were uploaded to MetaCore and analysed as a single 
experiment, using the Illumina 450 K array background and 
a significance threshold of p ≤ 0.1. Pathmap analysis was 
performed using Dijkstra’s shortest path algorithm with a 
maximum node distance of 2, using canonical pathways.

Pyrosequencing

Genomic DNA was bisulfite converted as described above. 
PCR primers were designed using the PyroMark® Assay 
Design 2.0 software (Qiagen, NL) and manually adjusted 
using the following criteria: (i) amplicon length less than 
200 bp, (ii) sequencing read length below 40 nt, (iii) for-
ward and reverse primers have a length of 20–25 nt and 
do not overlap CpG sites, (iv) sequencing primer does not 
exceed 20 nt in length and has an optimal Tm of 40 °C. Prim-
ers were checked for specificity in silico using BiSearch [2] 
and optimum annealing temperatures were determined using 
PCR with an annealing temperature gradient between 52 and 
62 °C. PCR amplification of bisulfite-converted DNA was 
performed in a Veriti 96-Well Thermo Cycler (Thermofisher, 
MA, USA) using the following mastermix per 1 μl bisulifte-
converted DNA: 1X Buffer B1 (Solis BioDyne, EE), 25 mM 
MgCl2 (Solis BioDyne, EE), 10 mM dNTP mix (Promega, 

https://CRAN.R-project.org/package=factoextra
https://CRAN.R-project.org/package=factoextra
https://github.com/obigriffith/
https://plot.ly/
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WI, USA), 10 μM forward/reverse primer mix (Supplemen-
tary Table 5, online resource), 1 U HotFire Polymase (Solis 
BioDyne, EE) and RNAse-free water (Thermofisher, MA, 
USA) to a total reaction volume of 20 μl. PCR products were 
sequenced using the Pyromark™ Q96 system (Qiagen, NL) 
according to the manufacturer’s protocol. Where the assay 
permitted, a non-CpG cytosine was selected as a control for 
complete bisulfite conversion. Statistical analysis was per-
formed in SPSS version 25 using a linear regression model 
of methylation (%) versus disease status, with age and sex as 
covariates. Pyrosequencing data are presented as Tukey box 
plots, where the box is divided by the median and extends 
across the interquartile range. Whiskers protrude from the 
box up to 1.5 times the interquartile range, and outlying val-
ues are plotted as single points beyond them.

Cortisol profiling

500 μl aliquots of sera taken from patients and controls 
between 10 a.m. and 4 p.m. were sent to The Doctor’s Labo-
ratory (Sonic Healthcare Ltd., London, UK), where cortisol 
concentration was measured using the Elecsys Cortisol II 
assay (Roche: 11875116160) on a Cobase 801 module. Dif-
ference in cortisol concentration between sCJD and control 
donors was calculated in SPSS version 25 using a linear 
regression model with age and sex as covariates.

Machine learning classification

Preprocessing of the β values from the 1000 most signifi-
cantly altered loci from 105 sCJD and 105 control patients 
was performed in R version 3.5.1 and Rstudio version 
1.1.456. The deep learning neural network model was cre-
ated using the machine learning Tensorflow version 1.12.0 
library [34] (Abadi et al., 2015) run in Python 3 platform. 
The dataset was randomized and partitioned into training 
and test sets in a 50:50 ratio. The architecture of the model 
consisted of three dense hidden layers using the rectified 
linear unit activation function, and a sigmoid output layer 
to compute a score between 0 and 1 for classifying sCJD 
status. Furthermore, L2 weight regularization of 1 × 10–3 
was applied to the hidden layers to impose a penalty to the 
cost function and reduce overfitting. The model was com-
piled using the Adam optimizer [13] with a learning rate of 
5 × 10–5. Classification model performance was measured 
using two different metrics: accuracy and binary cross-
entropy loss. The model was then fit into the training and 
test sets in 400 epochs with a batch size of 8. The model was 
compared to a basic random forest classifier imported from 
version 0.21 of the Python ‘sklearn’ library [46], which was 
also used to analyse the ROC curve, AUC and 10-k fold 
validation.

Kaplan–Meier curves

Survival curves were generated using the packages ggplot2 
and survminer [28] using the ggsurvplot() function. Survival 
curves were plotted based on data from 102 sCJD patients 
after removing 12 patients without complete clinical infor-
mation. For each of the 38 DMPs, beta values from each 
patient were categorized into “High” or “Low” according 
to the mean methylation levels. The confidence interval and 
p values were computed using default options (log-rank test 
for p value). For the Codon129 MM-MV-VV comparisons, 
a threshold p value < 0.05 was used so that there is a signifi-
cant difference within the particular subgroup, i.e. methyla-
tion level has an effect. For the effect of DNA methylation 
on survival independent of codon 129, “High versus Low”, 
p value > 0.05 was used. For the combined survival analysis, 
beta values from the DMPs were transformed into z-scores 
after passing parametric test (Shapiro–Wilk cg01084918 p 
value = 0.4967; cg05343106 p value = 0.4372; cg17641710 
p value = 0.2549). The average z-score is then used to inform 
levels of methylation (z-score > 0, “High”; z-score < 0, 
“Low”).

Results

DNA methylation profiles are altered in blood 
from sCJD patients

We profiled DNA methylation in whole blood from UK 
sCJD (n = 114) patients and age- and sex-matched controls 
(n = 105; Table 1) using Illumina Infinium HumanMethyla-
tion450 BeadChip arrays (450 K arrays). One sample and 
82,158 probes were discarded, which either failed quality 
control or were included in published blacklists [39, 43] 
(Supplementary Fig. 1a, online resource). To identify an 
association between methylation β values [4] and sCJD 
disease status, we used a mixed linear regression model, 
including age and sex as covariates. Principal component 
analysis (PCA) of pre-processed data showed that the first 
two components were highly correlated with the contrasted 
groups, accounting for 9.7% and 6.7% of the variability, 
respectively (Fig. 1a and Supplementary Fig. 1b, online 
resource), demonstrating that stringent quality control and 
adjustment steps removed sources of variation from factors 
unrelated to the biological variables. In this initial analysis, 
uncorrected for cell composition, we found 22,398 differen-
tially methylated positions (DMPs) between healthy controls 
and sCJD patients (Bonferroni correction; p < 1.24 × 10–7) 
(Fig. 1b). Of those, 283 sites showed an absolute change in 
methylation greater than 10% (Δβ >|0.1|) in sCJD (Fig. 1b 
and Supplementary Table 1, online resource). 
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Given that whole blood is a heterogeneous collec-
tion of different cell types, each with their own distinct 
DNA methylation landscape, we next used Houseman’s 
statistical method to estimate the relative proportions 
of cell type components [22]. Figure 1 shows that cell 
proportion estimates (the sum of which is forced to 
100%) differed subtly between samples in the study. The 
algorithm estimated that granulocytes comprised more 
than 75% of the blood cell types in 58 sCJD patients 
and 16 healthy controls, which is the upper limit of 
the normal range for granulocytes proportion in whole 
blood. When accounting for differences in the six cell 
types, the number of differentially methylated probes 
that passed genome-wide significance (p < 1.24 × 10–7) 
dropped from 22,398 to 38 (Supplementary Fig. 1c–e, 
online resource and Table 2). Strikingly, this cell type 
correction substantially reduced the inf lation factor 
(λ) of our epigenome-wide analysis from 5.12 to 1.72 
(Fig.  1d). Hierarchical clustering analysis (Pearson 
minus one correlation) of the significant 38 DMPs from 
the 219 patients and controls identified 3 clusters of 
sCJD cases and one cluster of controls (Supplementary 
Fig. 1f), raising the possibility of heterogeneity in DNA 
methylation associated with the disease. In contrast to 
disease status, PRNP codon 129 genotype and sex of 
the patients did not cluster within the data. Of the sig-
nificant 38 DMPs, 4 were hypomethylated with a mean 
effect size of Δβ − 0.037 (95% CI ± 2.01 × 10–2) and 34 
were hypermethylated with a mean effect size of Δβ 
+ 0.022 (95% CI ± 3.67 × 10–3). Figure 1 shows a Man-
hattan plot for these DMPs. Altogether, these results 
suggest sCJD patients have distinct blood DNA meth-
ylation profiles compared with healthy controls.

Characteristics of differentially methylated sites 
in sCJD

A circular ideogram was used to visualize the chromosome 
distribution of the 38 positions (DMPs) identified in sCJD 
patients’ blood (Fig. 2a and Supplementary Table 2, online 
resource, respectively). Genomic features of the 38 DMPs 
and 67 differentially methylated regions (DMRs) were 
compared to the null distribution of CpG probes included 
in the array. No significant associations between features 
and DMPs were observed, while as expected DMRs had a 
significant overlap with Transcription Start Sites (DMPs: 
Chi-square = 3.0267, df = 6, p value = 0.8055; DMRs: 
Chi-squared = 204.64, df = 6, p value < 2.2 × 10–16) (Sup-
plementary Fig. 2a, online resource). Next, we asked if 
sCJD-specific DMPs were enriched for transcription fac-
tor binding motifs. Using PWMEnrich [54], we identi-
fied the most significantly over-represented motifs within 
the DMPs (Fig. 2b and Table 3) as those recognized by 
GLTPD1, a negative regulator of interleukin-1 beta secre-
tion (p value = 1.55 × 10–5). Other transcription factors 
identified included cell cycle regulators DBP and DIABLO, 
an inhibitor of apoptosis protein (IAP)-binding protein (p 
value = 2.63 × 10–5 and p value = 0.0002, respectively). To 
further investigate potential consequences of the site-spe-
cific DNA methylation in sporadic CJD, we curated a list 
of RefSeq genes overlapping each of the 38 differentially 
methylated site and performed downstream analysis using 
Metacore Gene Ontology [37]. The results in Fig. 2c show 
enrichment of negative regulators of protein tyrosine phos-
phatase activity, negative regulators of adenylate cyclase-
activating adrenergic receptors, and negative regulators of 

Table 1   Sample characteristics 
of the individuals included in 
the analyses

sCJD sporadic CJD, AD Alzheimer’s disease, iCJD iatrogenic CJD, IPD inherited prion disease

Study stage Group N Average age (range) Sex (% F) Codon 129 (%)
MM:MV:VV

Average MRC 
Scale score 
(range)

Exploratory sCJD 114 67.6 (49–85) 50.9 46:22:32 6.3 (0–20)
Control 106 69.3 (41–83) 55.7 44:43:13 20

Replication sCJD 72 67.3 (26–86) 58.3 54:23:23 4.5 (0–18)
Control 114 78.2 (61–93) 64.9 Unknown 20

Specificity Control 114 78.2 (61–93) 64.9 Unknown 20
AD 60 72.8 (70–77) 56.7 Unknown Unknown
iCJD 18 46.4 (41–53) 11.1 27:73:00 10.3 (0–18)
IPD 11 46.0 (39–68) 45.4 64:36:00 17.0 (8–20)

Brain sCJD 51 59.2 (38–87) 41.2 65:10:25 0
Control 33 74.0 (41–89) 54.2 Unknown 0
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Fig. 1   Genome-wide differential methylation in sporadic CJD blood. 
a Principal component analysis (PCA) of 219 DNA methylation 
profiles showing the first (PC1) and second (PC2) principal compo-
nents (9.7% and 6.7% of the total variance). 95% confidence ellip-
ses are drawn around the two groups: sCJD (triangles, purple) and 
healthy controls (squares, orange). b Volcano plot DMP association 
analysis (X and Y chromosomes were excluded from analysis), cor-
rected for  sex but not for blood cell composition. X-axis represents 
(effect size) adjusted mean delta difference, Y-axis represents − log10 
(q value). Vertical lines indicate delta beta >|0.1|. c Tukey box plots 
showing proportions of six different cell types as estimated by House-
man algorithm in sCJD (purple) and healthy controls (orange). Wil-

coxon–Mann–Whitney test to identify differences between sCJD and 
control: granulocytes p = 1.47e−14; CD4T p = 5.05e−11; monocytes 
p = 0.78; natural killers cells p = 1.10e−08; B cell p = 1.55e−10; 
CD8T p = 0.59. d Quantile–quantile plots (QQ plots) of the distribu-
tion of observed − log10 association p values against the expected 
null distribution without (dark red) and with (blue) cell type correc-
tion. The red line represents the expected distribution with 95% con-
fidence interval. e Manhattan plot of probes associated with disease 
status corrected for blood cell type composition. Red line indicates 
significance threshold (Bonferroni-adjusted = 1.24 × 10–7). X-axis rep-
resents ranked chromosomes, Y-axis represents − log10 (p value)
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cAMP-mediated signalling (Supplementary Fig. 2b, online 
resource). 

Using these 38 probes, we set out to examine whether 
patient metadata would help identify disease-modifying loci. 
We investigated the effect of PRNP codon 129 polymor-
phism (which is known to alter susceptibility to prion dis-
ease and rate of disease progression) [35], age at onset and 
disease duration (binned in three groups: less than 100 days, 
longer than 200 days, or between 100 and 200 days) and 

found no significant difference between any of these groups 
(Supplementary Fig.  3a–c, online resource). Next, we 
explored disease severity using the MRC Scale, which rates 
functional impairment in sCJD from a score of 20 (healthy) 
to 0 (moribund) [58]. We correlated the patient’s score 
measured at the time each sample was collected with the 
methylation values at each DMP. The test was performed 
genome-wide (Supplementary Fig. 3d, online resource) and 
again with the 38 significant DMPs only (Fig. 2d). Figure 2 

Table 2   List of 38 differentially 
methylated positions

TSS 1500 located 200-1500 nucleotides upstream transcriptional start site, TSS 200 located 0-200 nucleo-
tides upstream transcriptional start site, Body body of the gene, IGR intergenic regions, 5′UTR and 3′UTR​ 
are, respectively, 5′ and 3′ untranslated regions

Cpg loci Delta β Adjusted p value Chromosome Gene Feature

1 cg10636246 − 0.0405317 9.58 × 10–5 1 AIM2 TSS1500
2 cg02481950 0.01975019 0.00012239 16 METTL9 Body
3 cg14427590 0.02273577 0.0001344 17 IGR
4 cg05740793 0.04394973 0.0003859 11 IGR
5 cg13965201 0.0290582 0.00193489 1 IGR
6 cg21540367 0.00991642 0.0023237 7 LRCH4 Body
7 cg05001044 0.05331962 0.00236357 1 MIR1977 TSS1500
8 cg09048334 0.03476521 0.00272688 6 IGR
9 cg22519265 0.01080344 0.00394136 17 ATP2A3 3′UTR​
10 cg02448796 0.03283323 0.00510789 1 KCNAB2 Body
11 cg17641710 0.0238572 0.00582785 3 GNAI2 Body
12 cg03819286 0.02679297 0.00622737 16 MGRN1 TSS1500
13 cg10855342 0.00640701 0.00634387 4 ALPK1 5′UTR​
14 cg15197458 0.01401478 0.00792343 19 IGR
15 cg00832928 0.02884309 0.00838196 3 SELT Body
16 cg22688566 0.02832814 0.00925244 17 MYO18A Body
17 cg25966751 0.02254565 0.01015631 14 IGR
18 cg20056593 0.01654389 0.01723034 12 IGR
19 cg27229664 0.02206902 0.01770546 16 KIAA0513 5′UTR​
20 cg22505006 0.02903491 0.02133475 1 ZBTB7B 5′UTR​
21 cg05343106 0.02028 0.0229423 11 DNAJB13 TSS200
22 cg17714703 0.03310906 0.02311756 19 UHRF1 Body
23 cg07081759 0.0249997 0.02342596 10 FAM53B Body
24 cg13444131 0.00917468 0.0237334 19 DYRK1B 5′UTR​
25 cg22434506 0.00961761 0.02800703 12 IFFO1 Body
26 cg17515347 − 0.0473728 0.02813301 1 AIM2 TSS1500
27 cg20003976 0.01435695 0.02817662 1 ACADM TSS1500
28 cg09007354 0.0237598 0.03272807 1 GLIS1 5′UTR​
29 cg20285559 0.01014608 0.03348693 1 THAP3 Body
30 cg19769147 0.01949328 0.03474175 14 PACS2 Body
31 cg24843003 0.02944661 0.03518602 19 DAZAP1 Body
32 cg03393322 0.0084795 0.03783743 7 SDK1 Body
33 cg04757081 0.01403053 0.03821293 10 IGR
34 cg01084918 0.02041746 0.03843211 1 FAM40A TSS1500
35 cg01101459 0.02894185 0.04051284 1 IGR
36 cg03546163 − 0.0535485 0.04329215 6 FKBP5 5′UTR​
37 cg21393135 0.00327746 0.04491255 6 VARS Body
38 cg21155515 − 0.0075201 0.04995584 17 CANT1 1stExon
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shows that methylation at two probes located in the pro-
moter of AIM2 (identified as a hit locus in the case–control 
study) decreased with disease progression (cg10636246: 
slope = 0.27, p value = 0.0013; cg17515347 slope = 0.32, 
p value = 0.012), whilst none of the other probes tested 

showed significant association (Supplementary Fig. 3e, 
online resource).

Given the previously reported link between FKBP5 
and neurodegeneration [5], our finding that the promoter 
of FKBP5 is demethylated in sCJD (Fig. 2e and Table 2) 
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prompted us to investigate the cortisol levels in sCJD 
patients. FKBP5 acts as a cochaperone in modulating glu-
cocorticoid receptor activity in the brain and periphery 
[62, 64]. We analysed cortisol levels in sera from 39 sCJD 
patients and 52 healthy controls. Figure 2 shows that cortisol 
levels were significantly elevated in sera from sCJD patients, 
with median cortisol concentration being 147.9 nM higher in 
sCJD patients (95% CI 77.8–218.1 nM, p value = 6.6 × 10–5).

The identified DNA methylation signature is unique 
to blood and sCJD

Next, we aimed at replicating these findings and explore the 
disease and tissue specificity of the associations. To this end, 
we designed a second case/control study and determined the 
sample size required to power individual bisulfite pyrose-
quencing assays at each DMPs. An independent cohort of 72 
sCJD and 114 age-matched controls was recruited (Table 1), 
and DNA methylation at candidate sites was profiled using 
pyrosequencing. Out of the 38 DMPs, 7 probes at 6 loci 
were selected for replication based on Bonferroni-adjusted 
statistical significance, effect size, and association with clini-
cal metrics (MRC Scale score) observed in the discovery 
study (at or close to AIM2 [cg10636246 and cg17515347], 
FKBP5, METTL9, UHRF1, KCNAB2, MIR1977). Two 
more sites were used as controls: one within the prion gene 
(PRNP) and another within ANK1, a gene whose hyper-
methylation has consistently been reported in Alzheimer’s 
disease (AD) [33]. DNA methylation levels at these two 
control sites remained unchanged in the discovery study. 
In total, seven sites identified from the discovery study rep-
licated (Fig. 3a): five DMPs and two controls sites. Given 
the length of the amplicon analysed via the pyrosequencing 
assays, this allowed us to quantify another five CpG sites 

not present on the 450 K array, adjacent to the tested DMPs 
in FKBP5, AIM2, and UHRF1, which also exhibited sig-
nificant differential methylation between sCJD and healthy 
controls (Fig. 3b). Altogether, the replication study identi-
fied a sporadic CJD methylation signature that comprises a 
total of ten sites (5 DMPs from the array and 5 sites from 
the pyrosequencing) overlapping four genes (AIM2, FKBP5, 
METTL9, UHRF1).

Next, we wanted to establish the disease specificity of the 
DNA methylation signature in the context of the differen-
tial diagnosis of dementia. Blood samples from Alzheimer’s 
disease, iatrogenic CJD, and inherited prion disease patients 
were collected, and pyrosequencing was used to measure 
DNA methylation at the ten sites (Supplementary Table 3, 
online resource). Figure 3 shows that none of the ten sites 
showed significantly altered DNA methylation levels in any 
of the tested non-sCJD cohorts, suggesting the DNA meth-
ylation signature is specific to sCJD.

We investigated whether changes observed in sCJD blood 
reflected DNA methylation alterations in the brain. The same 
pyrosequencing assays were performed using frontal cor-
tex-derived DNA obtained from 51 sCJD patients and 33 
non-cognitively impaired controls. Intriguingly, none of the 
sCJD-specific sites differentially methylated in blood were 
differentially methylated in brain (Fig. 3d). Altogether, these 
results demonstrate that a DNA methylation signature identi-
fied in blood from sCJD patients replicates in an independent 
case–control cohort using a different technology and that the 
signal is not found in sCJD brain, or in the blood of other 
prion disease or Alzheimer’s disease patients.

DNA methylation array profiles to refine sCJD 
diagnosis and disease duration

Next, we sought to investigate whether DNA methylation 
changes could identify potential avenues for sCJD patient 
management by acting as diagnostic or prognostic biomark-
ers. To explore if DNA methylation array profiles could dis-
criminate sCJD from healthy controls, we applied a deep 
learning neural network classifier to our data. For each indi-
vidual, the 1000 most significantly altered sites identified 
from the discovery study (114 sCJD and 105 controls) were 
selected and partitioned into training and test sets (50:50 
ratio, with equal proportions of controls and patients in 
each set). Model accuracy varied during training, with an 
overall positive trend across sequential epochs. After 200 
epochs, validation accuracy appeared to plateau and the 
model started to overfit (Supplementary Fig. 3a, b, online 
resource). The model performed well in minimizing loss 
also called “binary cross-entropy loss”, indicating that the 
predicted probability converged to the actual label. After 
tenfold cross-validation, the model had an accuracy of 87.24 
(95% CI ± 3.16%) with an upper limit of 91.43% accuracy. 

Fig. 2   Key findings replicated using pyrosequencing in an inde-
pendent case–control cohort. a Circos plot of epigenome-wide 
methylation levels in sCJD. Outermost circle represents the chromo-
some ideogram. Middle circle shows p values (− log10) of the top 
25,000 most significant DMPs (Bonferroni significance threshold of 
p < 1.24 × 10–7 or  − log10(p) > 6.9 is distinguished with a red back-
ground). Significant DMPs are shown in red and labelled accordingly. 
The innermost circle represents the ∆β values across the genome, 
with hypermethylation in green and hypomethylation in red. b Top 
ten motifs enriched in sequences within  ± 122 bases flanking the CG 
found under ‘Forward_Sequence’ heading in the Illumina Human-
Methylation450 manifest file of the 38 significant DMPs. Rank-
ing based on p value. c Top ten gene ontologies enriched in genes 
overlapping DMPs as identified using MetaCore (p value thresh-
old = 0.1). d Pearson coefficients between MRC Scale score with 
hypomethylation at two CpGs in the AIM2 promoter (cg10636246 
and cg17515347). e Left: DNA methylation levels (%) at FKBP5 
cg03546163 from the discovery study in sCJD patients (n = 114; 
purple) and healthy controls (n = 105; orange) limma p = 1.07e−07, 
corrected p = 0.043. Right: serum cortisol concentrations (nM) in 39 
sCJD patients (purple, 239.8 nM) and 52 controls (orange, 387.6 nM) 
(p = 6.6 × 10–5)

◂
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As shown in Fig. 4, the receiver operating characteristic 
(ROC) curve, the trained neural network model demon-
strated a better performance compared to a basic random 
forest classifier with an AUC of 0.979 compared to 0.885, 
respectively (sensitivity 0.91; specificity 0.80). When trained 
using only the 38 significantly altered loci identified in the 
discovery study, the model achieved an accuracy of 79.45% 
(± 1.09%).

Finally, we evaluated the association between DNA 
methylation levels and survival. In our cohort, as expected, 
codon 129 of the prion gene PRNP strongly impacts disease 
duration: MV heterozygous individuals had the longest dis-
ease duration, whilst MM homozygous carriers die soonest 
(Supplementary Fig. 3c, online resource). To evaluate the 
influence of DNA methylation on survival, DNA methyla-
tion levels at each of the 38 DMPs were divided into high or 
low, based on the mean levels and correlated with disease 
duration. We found that elevated methylation levels at eight 
DMPs [cg01084918 (FAM40A), cg05343106 (DNAJB13), 
cg09007354 (GLIS1), cg13965201, cg17641710 (GNAI2), 
cg17714703 (UHRF1), cg25966751 and cg27229664 
(KIAA0513)] were associated with a longer survival in 
patients with sCJD (Supplementary Fig. 3d, online resource). 
When taking the genotype of PRNP codon 129 into account, 
this analysis revealed that the level of DNA methylation at 
two sites (UHRF1 and KIAA0513) refines the prediction on 
disease duration for MM patients only (Fig. 4b). When not 
accounting for the effect of codon 129, thee DMPs had an 
effect on survival: cg05343106 (DNAJB13), cg17641710 
(GNAI2), and cg17714703 (UHRF1). This effect was seen 
in the “Low” methylation group of cg05343106 (DNAJB13) 
and cg17641710 (GNAI2), and “High” methylation group 
of cg17714703 (UHRF1). Furthermore, combining together 

these three loci methylation profiles provided greater accu-
racy than each locus in predicting clinical outcomes. The 
distribution of beta values from these three DMPs was 
not significantly different from normality, thus we trans-
formed them into z-scores (Shapiro–Wilk cg01084918 p 
value = 0.4967; cg05343106 p value = 0.4372; cg17641710 
p value = 0.2549). Average z-scores were correlated 
(z-score > 0, “High”; z-score < 0, “Low”) with disease 
duration (Supplementary Table 4, online resource). Fig-
ure 4 shows that sCJD patients with higher levels of DNA 
methylation levels at those three sites had a 97 days longer 
median survival time, independently of PRNP genotype at 
codon 129. Together, these results demonstrate a potential 
utility of profiling DNA methylation in whole blood from 
patients with sCJD: these profiles can help discriminate 
sCJD patients from sex- and age-matched healthy controls 
and may help predict disease duration.

Discussion

Whilst DNA methylation has become increasingly studied in 
the context of neurodegenerative disorders, DNA methyla-
tion profiles have not yet been investigated in human prion 
diseases. Here, we performed a case–control study to ana-
lyse the relationship between DNA methylation and sporadic 
CJD using 405 peripheral blood samples from patients and 
controls. The discovery study used a genome-wide 450 K 
Illumina BeadChip array, with replication using a second 
technology, pyrosequencing. Seven of nine sites that we 
identified successfully replicated. We went on to show that 
these effects were tissue and disease specific and could be 
exploited for diagnostic and biomarker purposes. Overall, 
we highlight the potential of DNA methylation array profil-
ing of peripheral blood for a rare and serious neurodegenera-
tive disorder.

Like GWAS, the more recently developed EWAS is 
subject to biases, in particular variability in the measured 
methylome differences between case and controls groups 
unrelated to the pathobiology of interest. Strategies have 
been developed to measure and correct for biases, in par-
ticular we found Houseman’s reference-based algorithm that 
corrects for alterations in cell composition proved successful 
in reducing the study-wide inflation [22, 61]. In this case, 
observed differences in the methylome might have resulted 
from a change in the cell types in blood that contributed 
to DNA in the study. The Housman algorithm estimates 
the relative proportion of major cell types in blood sam-
ples, using validated methylation markers. No differences 
in sCJD blood cell types have previously been detected [8, 
31], although to date no large-scale studies have explored 
this aspect. The residual inflation of our discovery study 
(1.72) is higher than the lambda observed in similar studies 

Table 3   PMWEnrich motifs

Top ten most significant position weight matrix (PWM) motifs found 
enriched in the 38 DMPs. The first column is the rank, the second 
shows the target name, and the next column is the motif ID. This ID 
comes from the MotifDb package and can be used to look up further 
information about the motif. The fifth column gives the estimated p 
value

Rank Target id Raw Score p value

1 GLTPD1 MGC10334 1.927 1.55e−05
2 DBP M5338_1.02 1.37 2.63e−05
3 UW.Motif.0555 UW.Motif.0555 7.02 0.0001
4 DIABLO DIABLO 2.46 0.0002
5 EBF1 M5364_1.02 1.43 0.0002
6 ATF3 M4683_1.02 5.54 0.0002
7 UW.Motif.0654 UW.Motif.0654 5.43 0.0002
8 UW.Motif.0283 UW.Motif.0283 15.02 0.0002
9 CERS4 LASS4 1.34 0.0003
10 GOT1 GOT1 1.14 0.0003
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[29] and raises the possibility that the false positive rate is 
not entirely controlled. In blood, comorbidity with systemic 
diseases and environmental factors such as nutrition [17] and 
environmental chemicals [21] have been linked to inflation 
in EWAS.

We questioned the relevance of the magnitude of the 
effect size we report here compared with the effects seen 
in cancerous tissues [50]. The mild to moderate effect size 
observed in sCJD blood could be caused by the fact that 
the signal is observed in the periphery rather than in the 
main tissue affected by the disease. To date, no genome-
wide DNA methylation profiling has been reported in brain 
tissues in sporadic CJD. However, similarly mild effect sizes 
(around 10%) have been reported for significant DNA meth-
ylation change observed in brain samples from other neu-
rodegenerative disorders such as Alzheimer’s disease (AD) 
[1], multiple system atrophy (MSA) [3], and amyotrophic 
lateral sclerosis (ALS) [18]. Another possible explana-
tion for the mild effect size is that the difference in DNA 
methylation is cell type specific, and therefore the signal is 
diluted in whole blood. If this was the case, changes in DNA 
methylation at identified sites should be evaluated in differ-
ent blood fractions. In line with this possibility is the fact 
that effect sizes are systematically greater in our replication 
study, where results were not corrected for cell type com-
position. Similarly, whether these DNA methylation altera-
tions become magnified over the course of disease remains 
to be investigated, as we did not test patients longitudinally. 
We replicated our findings in an independent case–control 
cohort of blood samples using an independent technology, 
namely pyrosequencing. Furthermore, differentially methyl-
ated sites in sporadic CJD patients remained unaffected in 
blood from other neurodegenerative disorders (iatrogenic 
CJD, inherited prion diseases, Alzheimer’s disease). One 
possible explanation for this is the fact that sCJD patients 
are generally at an advanced neurological state at diagnosis 
when blood samples taken compared to other prion diseases 
and AD. To date, it remains difficult to confidently identify 
loci that replicate across studies given the few, relatively 
small EWAS studies in neurodegenerative diseases, their dif-
fering designs and number of samples analysed [16].

Concordance of DNA methylation signatures between 
blood and brain has been reported in ALS [18]. However, 
the vast majority of the literature suggests that the degree 
of cross-tissue correlation for DNA methylation signals is 
not very high [6]. Studies in AD, Parkinson’s disease (PD), 
and Huntington Disease (HD) all show very little overlap 
between blood and brain DNA methylation signals [6, 14, 
20]. Our findings that DNA methylation profiles in periph-
eral blood do not mirror those in the frontal cortex in sCJD 
corroborate these reports. Of note, these samples did not 
belong to the same individuals. Whether this general lack of 
correlation is due to the nature of the samples that are being 

compared (blood samples are taken from living individuals 
whilst brain samples are collected post-mortem) requires 
further investigation.

Although blood-based DNA methylation might not be 
generally considered as a surrogate for brain tissues, DNA 
methylation profiles detected in peripheral tissues might 
remain useful as biomarkers [16]. Our findings support 
this. First, we report that loss of DNA methylation at two 
sites on the AIM2 promoter correlates with disease severity. 
AIM2 is a key component of the inflammasome pathway, a 
component of the innate immune system that drives the pro-
duction of the inflammatory cytokine interleukin-1β (IL-1β) 
in response to microbial and nonmicrobial signals [52]. In 
yeast, AIM2 triggering induces a prion-like polymerization 
of ASC into filaments that provide platforms for activating 
inflammatory cytokine production [7, 32]. However, prion 
pathogenesis does not seem to lead to inflammasome acti-
vation in mice [44]. Second, we show that sCJD patients 
display a concomitant decrease in FKBP5 DNA methyla-
tion and elevated cortisol levels. FKBP5 binds to glucocor-
ticoid receptors and modulates glucocorticoid sensitivity. 
Epigenetic regulation of FKBP5 and its consequences on 
patient’s behaviour is well documented: accelerated age-
related decreases in FKBP5 methylation are associated with 
childhood trauma and depressive phenotypes [63], whilst 
increased DNA methylation levels of FKBP5 have been 
found in patients suffering from post-traumatic stress dis-
orders (PTSD) and major depressive syndromes [27]. Such 
changes are reminiscent of the alterations observed in sCJD. 
Although additional functional work is needed to clarify the 
relationship between sCJD, FKBP5 and the hypothalamic 
pituitary adrenal (HPA) axis (where FKBP5 plays a major 
role), it could be that the HPA axis provides a link between 
the pathology in the brain and the periphery.

Several lines of evidence support the implication of 
FKBP5 in prion diseases. Work from the Soto group showed 
that FK506, a calcineurin (CaN) inhibitor which binds to 
FKBP5, substantially decreased the severity of clinical signs 
in mice presenting symptoms of prion disease. In the same 
study, the authors report that FK506, also known as tacroli-
mus, reduces brain degeneration and increases survival [40]. 
Another study by Nakagaki et al. demonstrated that FK506 
markedly reduced the abnormal form of prion protein in the 
cell cultures [42]. Stocki et al. proposed that FK506 treat-
ment results in a profound reduction in PrPC expression due 
to a defect in the translocation of PrPC into the endoplasmic 
reticulum with subsequent degradation by the proteasome 
[53]. More recently, treatment with FK506 suppressed typi-
cal sCJD pathology (gliosis) and significantly prolonged the 
survival of sCJD-inoculated mice [41]. Finally, FKBP5 DNA 
methylation decreases along the life span; this age-related 
decrease is not confounded by blood cell type heterogene-
ity and occurs in purified immune cell subtypes [63]. The 
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same group also showed that FKBP5 upregulation promotes 
NFkB-related peripheral inflammation and chemotaxis. The 
role played by FKBP5 in inflammation and PTSD resonates 
with the function of another gene found to be differentially 
methylated in sCJD blood: AIM2. Indeed, PTSD cases are 
more likely to have high levels of C-reactive protein (CRP), 
a widely used measure of peripheral inflammation, and this 
association is mediated by methylation at the AIM2 locus 
[38].

We acknowledge several limitations of this study. Having 
independent replication and a larger sample size of DNA 
methylation data would further increase the generalizability 
of the classifiers identified in this study. Additionally, since 
methylation values can change throughout the life span, it 
will be insightful to evaluate the methylation signature over 
the course of the disease, longitudinally. In the long-term, 
we seek to determine when the alterations to DNA methyla-
tion patterns begin to show relative to the onset of prion 
diseases, and whether robust and stable DNA methylation 
patterns can predict the onset of disease in those at high risk 
of the disorder. We also aim at investigating DNA methyla-
tion profiles in first-degree relatives of the sCJD patients. We 
were underpowered to confidently determine whether some 
changes discovered in sCJD were shared with other very 
rare prion diseases, so it remains possible our findings asso-
ciate with multiple aetiological groups. Further, whilst we 
compared to non-prion disease neurodegenerative disorders, 
these affect more specific brain functions in early stages, and 
are less aggressive in progression. These superficial disease-
related differences may contribute to observed differences 
in blood DNA methylation, not necessarily only pathways 
specific to prion disease pathobiology. Finally, the brain 
samples were not selected because of PrP abnormalities, yet 

all cases had misfolded PrP immunoreactivity confirmed on 
neuropathological examination.

What are the functional consequences of these mild 
changes for cellular malfunction and disease? Future work 
will help investigate the mechanisms that underlie role of 
the selected CpG on sCJD establishment and progression. 
In line with this, our study can only provide correlative evi-
dence for a blood-based sCJD-specific DNA methylation 
signature that robustly discriminates sCJD patients from 
controls, and other types of prion disease and AD patients. 
EWAS studies do not allow us to infer whether the DNA 
methylation observed represents a cause or consequence of 
sporadic CJD. Further investigations and functional stud-
ies will be required to understand better the contribution of 
epigenetic changes to sCJD.

Finally, our results suggest that DNA methylation profil-
ing could be of use to refine sCJD disease management. We 
show that a data-driven machine learning approach using 
DNA methylation profiles accurately distinguishes sCJD 
patients from healthy individuals using peripheral blood. To 
date, our study is the first to report an assay that is capable 
of identifying sCJD patients from a blood sample, and that 
discriminates between sCJD and AD. Moreover, it is also the 
first study to suggest that DNA methylation could be used 
as a blood biomarker in human prion diseases. In line with 
this, we additionally demonstrated that a risk score based 
on DNA methylation of three identified sites predicts dis-
ease duration. Work from Zhang et al. recently demonstrated 
that DNA methylation age acceleration associated with ALS 
survival [65]. The finding that DNA methylation levels on 
two sites (KIAA0513 and UHRF1) refined survival informa-
tion driven by PRNP codon 129 genotype is informative, 
particularly for individuals most at risk. PRNP codon 129 
methionine homozygosity is associated with shorter disease 
duration in sCJD [36] and therefore combining genetic and 
epigenetic information provides further insights than geno-
type only. None of these sites overlapped with established 
ageing-related CpGs. Future work in independent cohorts 
of sCJD patients is needed before these methods might be 
considered for clinical use.

Regardless of the underlying mechanisms, our results 
demonstrate that non-protein-mediated information about 
sCJD disease status is present in blood and suggest that 
mapping such DNA methylation patterns alterations, with 
future independent replication, might be of use for testing 
and counselling. Future work will unravel whether DNA 
methylation is also altered in acquired prion diseases, which 

Fig. 3   Differential methylation signature is unique to sCJD and to 
blood. a DNA methylation levels (%) at each DMPs chosen for rep-
lication by pyrosequencing sCJD patients (purple) and controls 
(orange). Labels above each plot show genomic coordinates and over-
lapping genes. b DNA methylation levels (%) at CpG sites adjacent 
to DMPs in sCJD patients (purple) and controls (orange). Labels 
above each plot show genomic coordinates and overlapping genes. 
c DNA methylation (%) at replicated DMPs in Alzheimer’s disease 
(grey), iatrogenic CJD (brown) and inherited prion disease patients 
(green) compared to controls (orange). d Methylation at replicated 
sites in frontal cortex-derived DNA from sCJD patients (purple) and 
non-demented controls (orange). See Supplementary Table 3, online 
resource, for all p values. p value < 0.05 (*); p value < 0.01 (**); p 
value < 0.001 (***); p value < 0.0001 (****)

◂
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Fig. 4   Diagnostic and prognostic utility of a DNA methylation in 
sCJD. a Receiver operating characteristic (ROC) curve performance 
comparison between neural network model (Keras; blue) and random 
forest classifier (RF; orange) on the validation set. b Kaplan–Meier 
survival analysis. Patients were divided into three groups based on 
the genotype at PRNP codon 129 (MM, VV or MV). Patients were 
divided into high (above median; red) and low (below media; green) 

DNA methylation values at KIAA0513 and UHRF1 DMPs. p values 
were calculated using the log-rank test. c Survival analysis for three 
sites (DNAJB13, GNAI2, UHRF1) independent of PRNP genotype. 
Beta values from these three DMPs were transformed into z-scores. 
Kaplan–Meier curves using the average z-score (z-score > 0, “High”; 
z-score < 0, “Low”). See Supplementary Table 4, online resource, for 
median survival values
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involve peripheral pathogenesis. This study is meaningful 
in providing new avenues for understanding sporadic CJD 
disease mechanisms and identifying biomarkers which com-
plement existing clinical signals in the periphery.
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