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Abstract

Purpose—A major challenge for accurate quantitative SPECT imaging of some radionuclides is 

the inadequacy of simple energy window based scatter estimation methods, widely available on 

clinic systems. A deep learning approach for SPECT/CT scatter estimation is investigated as an 

alternative to computationally expensive Monte Carlo (MC) methods for challenging SPECT 

radionuclides, such as 90Y.

Methods—A deep convolutional neural network (DCNN) was trained to separately estimate each 

scatter projection from the measured 90Y bremsstrahlung SPECT emission projection and CT 

attenuation projection that form the network inputs. The 13 layer deep architecture consisted of 

separate paths for the emission and attenuation projection that are concatenated before the final 

convolution steps. The training label consisted of MC-generated ‘true’ scatter projections in 

phantoms (MC is needed only for training) with the mean square difference relative to the model 

output serving as the loss function. The test data set included a simulated sphere phantom with a 

lung insert, measurements of a liver phantom and patients after 90Y radioembolization. OS-EM 

SPECT reconstruction without scatter correction (NO-SC), with the true scatter (TRUE-SC) 

(available for simulated data only), with the DCNN estimated scatter (DCNN-SC), and with a 

previously developed MC scatter model (MC-SC) were compared, including with 90Y PET when 

available.

Results—The contrast recovery (CR) vs. noise and lung insert residual error vs. noise curves for 

images reconstructed with DCNN-SC and MC-SC estimates were similar. At the same noise level 

of 10% (across multiple realizations) the average sphere CR was 24%, 52%, 55% and 67% for 

NO-SC, MC-SC, DCNN-SC and TRUE-SC, respectively. For the liver phantom, the average CR 

for liver inserts were 32%, 73% and 65% for NO-SC, MC-SC and DCNN-SC, respectively while 

the corresponding values for average contrast-to-noise ratio (visibility index) in low-concentration 
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extra hepatic inserts were 2, 19 and 61, respectively. In patients, there was high concordance 

between lesion-to-liver uptake ratios for SPECT reconstruction with DCNN-SC (Median 4.8, 

range 0.02 −13.8) compared with MC-SC (Median 4.0, range 0.13 – 12.1; CCC = 0.98) and with 
90Y PET (Median 4.9, range 0.02 – 11.2; CCC = 0.96) while the concordance with NO-SC was 

poor (Median 2.8, range 0.3 – 7.2; CCC = 0.59). The trained DCNN took ~ 40 seconds (using a 

single i5 processor on a desktop computer) to generate the scatter estimates for all 128 views in a 

patient scan, compared to ~ 80 min for the MC scatter model using 12 processors.

Conclusions—For diverse 90Y test data that included patient studies, we demonstrated 

comparable performance between images reconstructed with deep learning and MC based scatter 

estimates using metrics relevant for dosimetry and for safety This approach, that can be 

generalized to other radionuclides by changing the training data, is well suited for real-time 

clinical use because of the high speed, orders of magnitude faster than MC, while maintaining 

high accuracy.
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Introduction

Accurate scatter estimation is essential for improving quantitative SPECT for dosimetry 

applications as well as to improve visibility of low-uptake regions that is important for safety 

in some applications. It is generally accepted that the Monte Carlo (MC) method that fully 

models the physics of photon transport in the patient and camera provides the most accurate 

scatter estimation. However, MC simulation is very time consuming because one must track 

many photon histories to generate low-noise estimates. Hence, simpler but less accurate 

energy window based scatter approximation methods are commonly used in the clinic. 

Although high quantitative accuracy with practical methods such as the triple-energy 

window scatter estimation has been demonstrated for Tc-99m SPECT [1], performance is 

less well-established for more complex radionuclides with multiple high intensity gamma-

rays, large downscatter components and cross-talk. Furthermore, energy window based 

methods are generally not suited for bremsstrahlung photons because the energy spectrum is 

continuous. MC scatter modeling has demonstrated enhanced 90Y bremsstrahlung 

SPECT/CT imaging [2,3], but only in a clinical research setting where its high 

computational cost/complexity is acceptable.

Machine learning methods in medical imaging, including deep learning, have rapidly 

advanced in the past 5 years [4,5] with next generation tools in CT reconstruction recently 

receiving FDA clearance. Recently, there has been an increase in studies reporting on using 

machine learning methods to enhance nuclear medicine imaging [6–9]. In PET, promising 

initial results have been presented using convolutional neural networks (CNNs) for image 

denoising, image reconstruction and compensation for attenuation and scatter [10–15]. Due 

to the challenges of deriving attenuation coefficient maps from MR, the focus in deep 

learning based attenuation correction has been for PET/MR applications, mostly using 

CNNs trained to generate pseudo-CT images from the MR images [9]. For PET scatter 
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correction, two studies report initial results using CNNs trained to generate scatter profiles 

from input PET emission and attenuation data. Berker et al [11] used the popular U-Net 

structure [16], trained with single-scatter simulation, to generate single-scatter profiles. In 

brain imaging, high accuracy was demonstrated relative to the conventional model based 

single scatter simulation, but performance was poor for the bed position with the high uptake 

bladder extending outside the axial field-of-view, questioning the adequacy of using single 

scatter simulation for training. Qian et al [12] used a deep learning approach to estimate both 

single and multiple scatter as an alternative to Monte Carlo based total scatter estimation. 

Initial results limited to testing of PET scatter profiles in phantom studies were promising 

but the need for further evaluation was emphasized.

The few studies reporting on deep learning to enhance gamma camera planar imaging and 

SPECT, thus far, have been limited to post-reconstruction image denoising [17, 18]. For 

Tc-99m MAA SPECT, recently, a U-net structure was used to enhance FBP reconstruction 

in image space [17]. For whole body 99mTc-hydroxydiphosphonate bone scans, a CNN, 

trained with sets of Monte Carlo generated noisy and noiseless images, demonstrated 

denoising with little or no resolution loss [18]. For SPECT attenuation correction, a recent 

study reports on a deep CNN to directly estimate the attenuation map from emission images 

without using CT-information [19]. For SPECT scatter estimation/correction, although 

artificial neural networks trained on (energy) spectral analysis were proposed over two 

decades ago [20–22], to our knowledge, there have been no studies that exploit the recent 

advances in deep learning.

The aim of this study was to investigate a deep learning based SPECT scatter estimation that 

overcomes the accuracy-computational efficiency trade-off associated with MC scatter 

modeling. We incorporate the scatter projections estimated by the trained deep CNN 

(DCNN) into the forward model of the traditional model-based iterative reconstruction. 

While our proposed method is applicable to SPECT scatter correction in general, we 

implement and evaluate it here for the challenging case of scatter estimation in 90Y 

SPECT/CT that relies on bremsstrahlung photons due to the lack of gamma-ray emissions. 

The continuous 90Y bremsstrahlung energy spectrum extends up to 2.3 MeV, and there is 

substantial downscatter into the acquisition window that is typically set in the range 100 – 

250 keV. In phantom measurements and simulations, we compare images reconstructed with 

the proposed DCNN scatter estimate with those reconstructed with our previous MC scatter 

model [3] as well as with the true scatter, in the case of simulated data. Application in 90Y 

microsphere radioembolization (RE) patient imaging is also demonstrated and compared 

with 90Y PET, generally considered as superior to 90Y SPECT for quantitative imaging.

Materials and Methods

Overview

Fig. 1 shows the entire workflow that includes generation of phantom projection data for 

training, the training process and the evaluation of reconstructed test images. The DCNN is 

trained to estimate each scatter projection from the corresponding measured total (primary + 

scatter) SPECT projection view and the projected (to SPECT projection space) CT-based 

linear attenuation coefficient map (mu-map). The training process involves minimizing the 
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mean square error (MSE) between the DCNN output and the “ground truth” for the 

(phantom) training data set, which is the true scatter we generate by high-count Monte Carlo 

simulation. MC simulation is needed only once, for a given SPECT system, to generate 

training data, since the network learns to reproduce the MC-based scatter output given only 

the acquired projections as input. For testing with independent data, the estimated scatter 

from the trained DCNN is used as an additive term in the OS-EM forward projection 

reconstruction model. We use qualitative/quantitative metrics to evaluate the reconstructed 

test images.

Network

Very deep convolutional networks such as VGG [23] and ResNet [24] have been 

successfully used recently for large-scale image recognition. We mimic these architectures, 

but with modifications relevant for the current task of estimating 2D scatter projections (Fig. 

2): the pooling layer and the fully connected layer are not used because the desired scatter 

projections and the input projections are of the same size and the training data set is limited. 

The depth of our network is determined to balance the trade-off between over-fitting and 

size of receptive field. Following the designs of [23,24], the size of the convolution filters is 

set to a typical value (3 × 3). The spatial dimensions are maintained by using zero-padding 

after 3 × 3 convolution with a stride of 1. After evaluating different choices for the number 

of filters for the convolutional layers, the final design used 32, 64, 128 with the number set 

to first increase and then decrease as in popular encoder-decoder designs such as U-net [16]. 

Except for the last convolutional layer, a rectified linear unit (ReLU) is added after each 

convolutional layer as the nonlinear function. The filter size, together with the depth of the 

network is designed to work well enough on training dataset, while maintaining a reasonable 

training speed.

The input to the network is the scaled SPECT projection measurements and the projected 

attenuation map. Scaling is used because the total counts in the emission projections vary 

largely between MC simulation used for training and the patient measurements. We included 

the attenuation projection as an additional input because scatter within a patient depends 

both on the activity distribution and the attenuation map. There are 128 projection views (of 

matrix size 128 × 80) per patient study and each view is processed separately. First, there are 

2 separate paths for the attenuation coefficient projection and SPECT emission projection 

respectively, each consisting of 3 separate convolutional layers (Fig 2). Then, the outputs of 

these two paths are concatenated and finally, the concatenated projection passes through 3 

convolutional layers to produce the scatter projection. The total number of convolutional 

layers for each (emission and attenuation projection) path is 13 and the number of trainable 

parameters is about 0.5 million. We train the DCNN to minimize the pixel-wise mean square 

error (MSE) between model output (estimated scatter) and the ground truth (‘true’ scatter 

from Monte Carlo phantom simulations) (Fig. 1). The MSE is optimized by backpropagation 

using Adam optimizer method [25] using 100 epochs, with the initial learning rate of 

0.0001. Our network is implemented in Python using Tensorflow [26] deep learning library 

and trained on NVIDIA GPU (8GB GTX 1080).
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Training and validation data

Using measurement data for training the DCNN is infeasible because the camera records all 

events within the acquisition window and it is impossible to separate the scatter only events 

to be used as ground truth training label. Thus, we generated training/validation data using 

the SIMIND MC code [27] by coupling digital phantoms with the SPECT/CT camera 

model. Parameters used for 90Y patient imaging in our clinic (Siemens Intevo with HE 

collimators, a 5/8” crystal, a 105 – 195 keV acquisition window, 128 views, 128 × 80 matrix, 

4.8 × 4.8 mm pixel size) were modeled. Approximately 1 billion MC histories per projection 

were used to generate the training data with low statistical noise. The SIMIND model 

includes full photon transport in the object and camera, including collimator septal 

penetration and scatter effects in the object, collimator, the NaI(Tl) crystal and a backscatter 

layer. For 90Y, because SIMIND does not include electron transport, we used a pre-

calculated spectrum of bremsstrahlung photons to sample the photon emission energy. The 

bremsstrahlung spectrum included the contribution from external bremsstrahlung (EB) 

photons that are produced as beta particles traverse tissue and internal bremsstrahlung (IB), 

which arises during the beta decay process itself. IB photons are sampled at the decay 

location while EB photons are sampled using a distance histogram that accounts for the 

distance between the beta decay location and bremsstrahlung generation site. We previously 

validated SIMIND for 90Y SPECT using this model [28]. Training and validation sets used 

SIMIND-generated SPECT projections corresponding to the following anthropomorphic and 

non-anthropomorphic digital phantoms:

Virtual patient phantoms for training/validation—To emulate highly clinically 

relevant scatter conditions, 8 digital representations (virtual patients) were generated from 
90Y SPECT/CT images of patients who underwent RE at our clinic (see upper branch of Fig. 

1). To generate the activity map, masks of the radiologist-segmented lesions, the treated non-

tumoral liver lobe and the entire non-tumoral liver were combined after scaling the voxel 

values in the masks to reflect the lesion-to-liver uptake ratios in the patient’s SPECT image. 

The density map was generated from the patient CT using a calibration curve that was 

experimentally determined using a Tissue Characterization Phantom [Gammex, Inc.]. The 

virtual patient matrix size was 512 × 512 × 196 with voxel size of 0.98 × 0.98 × 2 mm3. The 

SIMIND generated total projections were each scaled to the same count-level as the 

corresponding actual SPECT patient projection images before addition of Poisson noise (For 

the 8 patients selected, administered 90Y activities ranged from 0.7 to 5.6 GBq and total 

projection counts ranged from 3 to 20 million). These digitized ‘patient’ phantoms cover a 

range of noise levels, liver and lesion volumes, and lesion-to-liver uptake ratios typical for 
90Y RE. Thus, a wide range of scatter conditions that is clinically relevant were represented. 

Six (6 × 128 projections) of the virtual patients were used for training and 2 (2 × 128 

projections) for validation. The validation data is used to monitor the network performance 

during the training process to avoid overfitting.

XCAT phantom for training—Eighty slices of the 3D XCAT [29] phantom ranging from 

lung to liver were generated. The voxel activity values for lesion: liver: lung: rest-of-body 

were set to 100: 20: 1: 0 to be representative of patients following Y-90 RE. Activity and 
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density maps were 128 × 128 × 80 with voxel size of 4.8 × 4.8 × 4.8 mm3. The SIMIND 

generated projections were scaled to 10 million counts before the addition of Poison noise.

Sphere phantom for training—An elliptical shaped phantom with six 90Y filled spheres 

and a single non-radioactive water filled sphere at the center was generated. The sphere-to-

background ratio was set to 6:1. The 90Y sphere volumes were 2, 4, 8, 16, 29 and 113 mL, 

the non-radioactive sphere volume was 95 mL and the total phantom volume was 10,000 

mL. The density of the phantom was assumed to be that of water. The SIMIND generated 

projections were scaled to a count-level of 3 million counts before the addition of Poisson 

noise.

Test data for evaluating trained DCNN

For testing the performance of the trained DCNN, we used data from 90Y phantom 

measurements as well as a phantom simulation using SIMIND. The SPECT/CT acquisition 

system/parameters were same as those used for training. The phantoms were selected to 

represent a relevant range of non-uniform activity distributions and heterogeneous tissue 

densities, both of which impact scatter.

Simulation of a sphere phantom with a lung insert—This phantom is a digital 

representation of the NEMA 2012 PET phantom [30], but with the sphere volumes expanded 

in size to be more relevant to SPECT spatial resolution capabilities. The modified sphere 

volumes were 2.7, 4, 7, 16, 33, and 50 mL. All other dimensions were identical to that of the 

NEMA phantom. The sphere-to-background activity concentration ratio was set to 8:1. The 

simulated projections were scaled to 90 million total counts before addition of Poisson noise 

(count level set to ~10 times higher than in a typical patient because the phantom 

background volume was ~10 times higher than the typical liver volumes). Five noise 

realizations of the projection data were generated to evaluate noise.

Measurement with liver phantom—The torso phantom (Data Spectrum) consists of a 

liver compartment filled with water, lung compartments filled with Styrofoam beads and 

water (to mimic lung tissue density) and a spine insert mimicking bone density. The liver 

(1200 mL) was modified to include 3 lesion inserts (insert 1 = 29 mL ovoid, insert 2 = 16 

mL sphere, insert 3 = 8 mL sphere). In addition, to mimic inadvertent extra-hepatic 

deposition of microspheres, two inserts (insert 1 = 11 mL ovoid, insert 2 = 14 mL sphere) 

were positioned in the non-radioactive background outside the liver. The total 90Y activity in 

the phantom at time of imaging was 2.0 GBq. The lesion-to-liver background activity 

concertation ratio was 5:1 and the lung shunt was 5%. The activity concentrations in the 

liver inserts were 6.4–7.8 MBq/mL and liver minus inserts was 1.3 MBq/mL, which are 

clinically relevant conditions for 90Y RE. The two extrahepatic inserts were filled with very 

low activity concentrations (insert 1 = 11 mL ovoid with 0.6 MBq/mL; insert 2 = 14 mL 

sphere with 0.09 MBq/mL). A second non-radioactive water filled cylindrical phantom was 

placed adjacent to the liver during imaging to mimic scatter in abdomen/pelvis in patients. 

The acquisition time on the Intevo SPECT/CT was 30 min as in our patient scans, hence the 

count-level (9 million counts) was in the range observed in typical patient studies.
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Measurement with 3D printed non-uniform activity sphere—A sphere with 

concentric fillable shells of volume 8 mL, 58 mL and 143 mL, was positioned off axis in a 

water-filled phantom. The 3 ‘layers’ of the sphere were filled with 90Y according to the 

following ratios core: inner layer:outer layer 0.0 : 0.7 : 2.1 MBq/mL to represent a lesion 

with a necrotic core and enhancing rim. The acquisition time on the SPECT/CT system was 

90 minutes and the total projection counts were 6 million. For comparison, a 90 min 90Y 

time-of-flight PET/CT acquisition was also performed on a Siemens Biograph mCT system.

SPECT reconstruction with scatter estimate

Test data, including the patient data, were reconstructed using an in-house developed OS-

EM algorithm with the scatter estimate included as an additive term in the following 

statistical model:

Y i Poisson ∑
j = 1

np
aijxj + si , (1)

where Y i denotes the number of counts measured in the ith detector pixel, aij denotes 

elements of the system matrix A that models effects of depth-dependent attenuation and 

collimator/detector blur for a photon leaving the jth voxel towards the ith detector pixel, si
denotes the estimated scatter component for the ith detector pixel and x = x1, …, xJ  denotes 

the vector of unknown 90Y activity voxel values. The current implementation used the same 

CNN-generated scatter estimate in all iterations, without updating. OS-EM reconstruction 

according to above equation was performed 1) without SC (NO-SC) using clinic software 

(Siemens Flash 3D) 2) with our previously reported [3] MC scatter model (MC-SC) 3) with 

the scatter estimate from the trained DCNN (DCNN-SC) 4) with the true scatter estimate 

from SIMIND (TRUE-SC), which was available only in the case of the simulated test data 

set. All reconstructions included CT-based attenuation correction, 3D collimator-detector 

response compensation and no post-filtering. MC-SC used two updates of the SIMIND 

generated scatter estimate based on our prior findings on convergence [3].

Metrics used to evaluate reconstructed phantom images

Contrast recovery (CR) for each 90Y sphere in the NEMA-like phantom simulation and 

hepatic inserts in the liver phantom measurement is calculated as:

CR = 100*CVOI/Cbkg − 1
Atrue/Abkg

true − 1 (2)

where CVOI is the mean counts in the target VOI, Cbkg is the mean background counts, Atrue

is the true activity concentration in the target, and Abkg
true is the true activity concentration in 

the background. The background VOI was defined as the total phantom (or liver) minus the 

inserts, eroded by 1 cm in all directions.

The visibility or detectability of the hepatic and extra-hepatic inserts of the liver phantom is 

assessed by the contrast-to-noise ratio calculated as:
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CNR = CVOI − Cbkg
STDbkg

(3)

where STDbkg is the standard deviation of voxel counts in the background region.

The residual count error in the lung insert in the NEMA-lime phantom is calculated as:

RE = Clung Cbkg* (4)

Where Clung is the mean counts in the lung insert and Cbkg*  is the mean counts in the 

background of the phantom for the reconstruction with the true scatter.

The normalized root mean square is calculated as:

NRMSE =
1
np

∑j = 1
np x j − x j 2

1
np

∑j = 1
np x j 2

(5)

Where np is the total number of voxels, x is the reference (true) image, x is the estimated 

image, subscript indicates the jth voxel of the object.

From the multiple realizations of the NEMA-like phantom simulations the image ensemble 

noise across realizations is calculated as:

Noise =
1

Jbkg
∑j ∈ BKG

1
M − 1 ∑m = 1

M xm j − 1
M ∑m′ = 1

M xm′ j 2

1
Jbkg

∑j ∈ BKG
1

M ∑m = 1
M xm j

(6)

Where M is the total number of realizations, xm indicates the mth realization and Jbkg is the 

total number of voxels in the uniform background region.

Patient studies
90Y SPECT/CT data from 6 patients with HCC or metastatic liver cancer treated with glass 

microspheres (Theraspheres, 1 to 3.9 GBq) were selected to demonstrate clinical 

application. This test data set were distinct from the cases used for generating the virtual 

patients for training. These patients were selected to represent a range of clinically relevant 

count levels and scatter conditions. 90Y PET/CT images were also available for these 

patients, for comparison. The acquisition time for Y-90 SPECT/CT and PET/CT were both ~ 

30 min and were performed within a couple of hours of the RE procedure. PET/CT data 

were reconstructed with 1 iteration (21 subsets) of Siemens OS-EM including time-of-flight 

information, PSF modeling, standard corrections for scatter, attenuation and randoms and a 

5 mm Gaussian post-filter, which are typical parameters used in our clinic.
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Patient SPECT emission projections and CT-based mu-map (available from the vendor 

software) projected to SPECT space were input to the trained DCNN to generate the 

corresponding scatter estimates that were used in the in-house OS-EM reconstruction (15 

iterations, 8 subsets). In addition to visual assessment of image quality and comparison of 

profiles, we also compare the lesion-to-non-tumoral liver activity concentration ratios for the 

different SPECT/CT reconstructions and the 90Y PET/CT. Lesions > 2 mL were defined 

manually on baseline diagnostic quality CT or MRI by a radiologist and applied to co-

registered 90Y SPECT/CT and PET/CT. The liver was segmented using semi-automatic atlas 

based software. The non-tumoral liver was defined as the entire liver minus lesion VOIs.

Results

Network training, validation and speed

Supplemental Fig. 1(a) shows the convergence of the MSE (MSE vs. epochs) for training 

and validation. The decrease in loss as a result of the network learning is evident. 

Supplemental Fig. 1(b) compares the profiles across DCNN estimated and SIMIND (true) 

scatter projections for a typical projection in the training set.

It took about 8 hours to train this DCNN on a 2.3 GHz Intel Core i5 CPU and approximately 

30 minutes to train on a GTX 1080 8GB GPU. Once trained, the DCNN takes about 40 

seconds on the i5 CPU to estimate all 128 scatter projection views of 128 × 80 matrix size. 

The time to generate one update of the corresponding SIMIND MC scatter estimate with 50 

million histories per projection is ~ 40 min using twelve i5 processors (this number of 

histories was found to be sufficient for low noise scatter estimation, in our prior study [3]). 

We used two MC scatter updates in the current study; hence the total simulation time was 80 

min on 12 processors (or 16 hours on a single i5).

Testing in phantoms

Sphere phantom with lung insert simulation—The center slice of the reconstructed 

images with the different scatter estimates and the corresponding NRMSE images are 

compared in Fig. 3. The NRMSE for the sphere regions was 0.66, 0.52, 0.45 and 0.45 for the 

reconstruction with NO-SC, with MC-SC, with DCNN-SC and TRUE-SC, respectively. The 

corresponding NRMSE for the total image was 0.50, 0.42, 0.41 and 0.36, respectively. The 

image ensemble noise versus CR (averaged over the 6 spheres) and the noise versus RE in 

the lung insert are plotted in Fig. 4(a) and (b) for iterations 1 to 50 (8 subsets). Considering 

trade-off between CR and noise evident in these plots, we selected 15 iterations (8 subsets) 

for the results presented in the rest of the paper. At this number of updates the noise, CR and 

RE were 0.07, 23% and 2.8 for NO-SC, 0.11, 54% and 0.66 for MC-SC, 0.11, 57% and 0.86 

for DCNN-SC and 0.15, 71% and 0.28 for TRUE-SC.

Liver phantom measurement—Two axial slices with the different reconstructions are 

compared in Fig. 5(a). The 0.09 MBq/ML extra-hepatic insert is not visible on the NO-SC 

image, but is faintly visible on the DCNN-SC image. Table 1 compares the CR and CNRs 

for the different reconstructions.
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3D printed sphere measurement—Fig. 5 (b) compares center slice and profiles of the 

different SPECT reconstructions with 90Y PET.

Application in patients

Fig. 6 compares images corresponding to the different 90Y SPECT/CT reconstructions and 
90Y PET/CT for two example patients,. A total of 13 lesions > 2 mL were segmented in the 

6 patients. Lesion volumes ranged from 4 mL to 818 mL. Fig. 7 shows lesion-to-non-

tumoral liver uptake ratios for 90Y SPECT/CT vs. 90Y PECT/CT for the different SPECT 

reconstructions (supplemental Table 1 lists the individual values). There was high 

concordance between uptake ratios for SPECT reconstruction with DCNN (Median 4.9, 

range 0.02 −11.2) compared with MC-SC (Median 4.0, range 0.13 – 12.1; CCC = 0.98) as 

well as with 90Y PET (Median 4.9, range 0.02 – 11.2; CCC = 0.96) while the concordance 

with NO-SC was poor (Median 2.8, range 0.3 – 7.2; CCC = 0.59).

Discussion

With test data that covered a range of noise-levels and scatter conditions pertinent to 90Y 

RE, we demonstrated that a trained DCNN can be used for the challenging task of 

estimating scatter in 90Y bremsstrahlung SPECT/CT with accuracy similar to MC based 

estimation, but at a fraction of the time. Although generating the training data by MC 

simulation with full radiation transport physics and the training process itself is 

computationally expensive, these steps are only performed once. Furthermore, the ability to 

use simulated data as training labels in the scatter estimation application circumvents the 

difficulties associated with obtaining sufficient real patient data sets for training that has 

been a challenge in some other applications of deep learning such as lesion segmentation. In 

the current study, the trained DCNN generated patient scatter projections for all 128 views in 

< 1 minute using a single processor on a desktop computer, which is about 3 orders of 

magnitude faster than our previous method of estimating bremsstrahlung scatter by MC [3].

Although CNN based fast scatter estimation of the current study is applicable to SPECT/CT 

imaging in general, it has the most value for bremsstrahlung SPECT or SPECT with 

radionuclides that have multiple gamma-ray emissions where accurate scatter estimation by 

empirical window-based methods is challenging. Furthermore, DCNN based scatter 

estimation may be particularly well suited for the RE application because the source is 

almost exclusively limited to the liver, hence patient-to-patient variation in scatter conditions 

may be less than in some other applications. Thus, fewer training data sets may suffice 

compared to applications with radiotracers that distribute throughout the body.

In testing with the phantom simulation, the reconstruction with DCNN-SC performed 

similarly to MC-SC, both visually and in terms of sphere contrast – noise trade-off and lung 

insert residual error – noise tradeoff (Fig. 4). For example, at a noise level of 10% across 

multiple realizations, the average sphere CR was 24%, 52%, 55% and 67% for NO-SC, MC-

SC, DCNN-SC and TRUE-SC, respectively. In Fig. 4, even when the true scatter estimate is 

used the CR is < 100% and the RE is > 0, because of resolution effects. In the phantom 

measurements, the improvement in contrast with both MC and DCNN scatter estimation is 

clearly visible (Fig. 5) and evident from the CR and CNR values of Table 1. Improving CR 
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is clinically relevant for dosimetry applications and improving CNR (visibility index) is 

important because of the safety concerns associated with inadvertent microsphere deposition 

(typically of very low concentration) outside the liver. Going from reconstruction without 

SC to with DCNN SC the CNR increased from 4 to 119 for the 0.6 MBq/mL extra-hepatic 

insert. The extra-hepatic insert with ultra-low 90Y concentration of 0.09 MBq/mL is not 

visible on the reconstruction w/o SC where CNR is −0.2, but is faintly visible on the 

reconstruction w/ DCNN SC where CNR is 4. This is consistent with the Rose criteria [31] 

that states that for an object to be detectable the CNR must exceed 3 – 5, although this 

applies to idealized conditions of an approximately circular shaped object and a relatively 

uniform background. In the measurement with the challenging scatter conditions of a sphere 

with a small non-radioactive central core region surrounded by 2 rings of 90Y, the impact of 

the scatter correction is clearly visible in the core region (Fig. 5b). The visual image quality 

and profiles of DCNN-SC approached that of 90Y TOF PET/CT. This geometry was chosen 

to represent scatter conditions encountered in lesions with a necrotic core and enhancing rim 

as in Fig 6 (a), for example.

The patient test cases included a diverse range of scatter conditions corresponding to a range 

of lesion sizes (4 – 818 mL), administered activity (1 – 3.9 GBq), left vs. right lobe 

treatment and lesions with necrotic cores and enhancing cores (Fig. 6). Although the true 

distribution is unknown, in our comparison of the lesion-to-non-tumoral liver uptake ratio, a 

quantity pertinent to dosimetry applications, results for DCNN-SC showed high 

concordance with both MC-SC (CCC=0.98) and with 90Y PET (CCC= 0.96). Some of the 

difference in uptake ratios compared with PET could be due to mis-registration effects and 

differences in partial volume effects for the two modalities. While 90Y PET/CT is generally 

considered as superior to bremsstrahlung SPECT for quantitative imaging, 90Y SPECT has 

higher sensitivity. Improving 90Y SPECT/CT is also important from a pragmatic standpoint 

because of the wider availability and the fact that, typically, only SPECT imaging of 90Y is 

reimbursed by insurance.

In our test data set, DCNN-SC was compared with our previous iterative approach for 

generating MC scatter updates for 90Y SPECT. Here, an initial image reconstructed without 

scatter correction provides the emission activity distribution for generating the SIMIND 

scatter estimate, which is used in the subsequent reconstructions. Two such MC updates 

were used in the current work, based on prior findings on convergence. The alternative fully 

MC based projector that has been proposed by Elschot et al [2] for 90Y SPECT is even more 

computationally complex and was not investigated in the current study. However, CR and 

RE values reported in their study are comparable to results reported here, although direct 

comparison is difficult due to difference in reconstruction parameters and phantom 

geometries.

Our network for projection space scatter estimation borrows concepts from widely used 

architectures for pattern recognition and image segmentation [16, 23,24]. Despite using only 

modest amounts of training data (8 phantoms x 128 projections), the network provided 

highly promising results as determined by multiple metrics applied to reconstructed images. 

In the future, further optimization of the network can be investigated, for example by 

including down sampling layers that might exploit the spatial smoothness of scatter. For 
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FDG-PET brain imaging Yang et al. [13] proposed a joint correction of attenuation and 

scatter with a DCNN trained to directly map uncorrected images to attenuation and scatter 

corrected images in image space. We expect that the approach of combining deep learning 

based scatter projections with an imaging physics-based iterative reconstruction framework, 

as in the current study, will have more generalizability than methods that use DCNNs for 

post-reconstruction enhancement. However, this conjecture can be tested only by direct 

comparison of our approach with post-reconstruction approaches. Despite the fact that 

scatter is a depth-dependent process, our 2D projection-by-projection scatter estimation 

performed well in the current application. To potentially further improve accuracy/

generalizability, we plan to investigate an iterative process starting with the current 2D 

projection space DCNN for an initial scatter estimate for the initial reconstruction followed 

by refinement with a 3D DCNN for subsequent scatter estimation. Advantages of the current 

2D approach compared with fully 3D training are reduced requirements on GPU memory 

and potentially on the number of training data sets. For 3D DCNNs, methods to reduce 

requirements on training data such as data augmentation, patch-based learning and transfer 

learning can be explored. Future studies will include generalization to other SPECT 

radionuclides and different anatomical regions than evaluated here, potentially by changing 

just the training data.

Conclusion

We constructed a DCNN to find the mapping from measured SPECT emission and CT 

attenuation projections and the estimated scatter events. The performance of the proposed 

method, evaluated with reconstructed images, was comparable to our previous MC-based 

scatter estimation for 90Y SPECT/CT, but took a fraction of the time in a test-data set that 

had varied noise-levels and scatter conditions relevant to RE. In patient studies, there was 

high concordance between lesion-to-non tumoral liver uptake ratios for reconstructions with 

DCNN-SC compared with MC-SC and with 90Y PET/CT. The DCNN scatter estimation 

holds much promise for real time clinical use because of the short processing time (< 1 

minute on a desktop computer for 128 projections) while maintaining high accuracy even 

under challenging scatter conditions encountered in bremsstrahlung SPECT.

Data Availability

Python code for the DCNN of Fig. 2 and phantom training and test data are available at: 

https://github.com/haoweix/spect-scatter-deep-learning

Select 90Y SPECT/CT patient test data sets (anonymized) are available at the University of 

Michigan Library Deep Blue repository: https://doi.org/10.7302/v07v-z854

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of the scatter correction workflow showing the data generation, training and 

testing of the trained DCNN.
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Fig. 2. 
DCNN architecture. Number near each block refers to the number of filters for each layer. 

Each projection view is processed independently.
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Fig. 3. 
Axis slices of the different reconstructions of the test phantom simulation (top row) and 

profiles across the center. Images have been normalized by the sum counts. The NRMSE 

images relative to the true phantom are shown in the bottom row.
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Fig. 4. 
Test results from the multiple realizations of the phantom of Fig. 3. (a) Noise vs. contrast 

recovery averaged over 6 spheres (b) Noise vs. residual count error for the lung insert. The 

data points represent OS-EM iteration number.
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Fig. 5. 
Measured 90Y phantom images. (a) Axiel and coronal SPECT/CT slices of the liver phantom 

for the different reconstructions. (b) Center slice and profiles of the non-uniform sphere for 

the different SPECT/CT reconstructions compared with 90Y PET. SPECT images without 

scatter correction show high counts in the regions without 90Y and demonstrate the 

improvement in contrast with MC and DCNN scatter estimation. Images have been 

normalized to the maximum counts in the slice.
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Fig. 6. 
Comparison of SPECT/CT and PET/CT images following Y-90 radioembolization (a) 

Patient with large 818 mL lesion with a necrotic center and enhacing rim treated with 3.9 

GBq to the left-lobe (b) Patient with a 6 mL lesion treated with 2.9 GBq to the right lobe.
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Fig. 7. 
Patient lesion-to-non-tumoral liver uptake ratios from the different Y90 SPECT/CT 

reconstructions plotted vs. the corresponding ratios from 90Y PET/CT. The dashed line 

indicates the identity line. Full results for the 13 lesions in 6 patients are given in 

Supplemental Table 1.
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Table 1:

CR and CNR for inserts in the liver phantom measurement of Fig. 5(a)

Contrast recovery (%) CNR (visibility index)

Liver 
insert 1

Liver 
insert 2

Liver 
insert 3

Liver 
insert 1

Liver 
insert 2

Liver 
insert 3

Bkg. insert 
1

Bkg. insert 
2

w/o SC 41 31 23 9.7 8.3 4.9 3.6 −0.2

w/ MC SC 92 60 67 20.3 15.2 13.3 35.8 1.2

w/ DCNN 
SC

75 56 65 15.5 13.1 11.9 119.2 3.9
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